Hankel and Toeplitz Operators
on the Fock Space

KAREL STROETHOFF

1. Introduction

Throughout this paper let n £ N be fixed. Let u be the Gaussian measure on
C" defined by du(z)=e 1 /de(z)/(Zr)" where V is the usual Lebesgue
measure on C”. The Fock space &, also called the Segal-Bargmann space, is
the set of holomorphic functions which are in L2(C", p). The Fock space &
is a closed subspace of the Hilbert space L%(C", n), with inner product given
by {f, g>={cn f(2)e(z) du(z) for f, ge L*(C", ). Let P denote the orthog-
onal projection of L%(C", 1) onto §. For a function fe L*(C"), the Toeplitz
operator Ty: § — § and the Hankel operator Hy: § — G+ are defined by

Trg=P(fg), ge¥,
Heg=(I—-P)(fg), ge¥.

It is clear tﬁat these are bounded operators for every function fe L*(C").
Berger and Coburn [1] characterized the functions fe L*(C") for which H,
is compact, and also obtained the result that H, is compact if and only if
HfF is. In this paper we will give an alternate approach to Berger and Co-
burn’s work. Our method is more elementary and furthermore it also gives
the functions fe L*(C") for which T is compact. Writing 7, to denote the
translation on C" by A, we will prove that the Hankel operator Hy is com-
pactif and only if | fory— P(fe°7))|,— 0as |\| — co. This result is completely
analogous to the author’s characterization of the compact Hankel operators
on the Bergman spaces of the unit disk [6], and the unit ball and polydisk
in C" [7]. We will show how this result implies Berger and Coburn’s result.

The paper is arranged as follows. In Section 2 we give the preliminaries
needed for the rest of the paper. In Section 3 we give the proof of our main
result, characterizations of compact Hankel and Toeplitz operators. In Sec-
tion 4 we obtain Berger and Coburn’s result that H is compact if and only
if Hyis. In Section 5 we consider Hankel operators with bounded contin-
uous symbols. For a subclass of these Hankel operators we formulate a very
useful criterium for compactness. As an immediate consequence we obtain
another proof of Berger and Coburn’s result mentioned above. In Section 6

Received December 21, 1988. Revision received January 3, 1991.
Michigan Math. J. 39 (1992).



4 KAREL STROETHOFF

we describe the essential spectrum of Toeplitz operators for which the cor-
responding Hankel operator is compact.

The author thanks Dechao Zheng for helpful discussions and the referee
for suggesting the statement of Theorem 16.

2. Preliminaries

Point evaluation is a bounded linear functional on the Hilbert space &; thus
for every A € C" there exists a unique holomorphic function &, € & such that

JN)=(f,k\y forall fed.

These functions k) (A€ C") are called the reproducing kerneis for &. They
can be computed explicitly (see, e.g., [5]): Using (-, -) to denote the usual
inner product on C”, for each A € C” we have

(1) ky(z)=e‘>M2  zeC"

For fe L*(C"), ge &, and z € C" we have (T;g)(z) ={(P(fg), k) ={fg, k),
so we obtain the following formula for T g:

@ (Tre)@)= | , ek dutw), zeC".

Also using the reproducing property of k,, we obtain the following formula
for Hyg:

B Hp@ =] S -f2)gmkmdut), zeC".

In our characterization the translations on C” will play an important role.
For A € C"let the translation 7, : C"— C”be defined by 7,(z) =z+\, z€ C".

It is easy to check that for a Lebesgue integrable or nonnegative Lebesgue
measurable function # on C” we have the change-of-variable formula:

@ [ o ) i) = MDD du(2).

1
k_)\()\_)gc

3. Compact Hankel and Toeplitz Operators

In this section we will give our characterization of compact Toeplitz and
Hankel operators. The following proposition, which gives formulas for the
images of the reproducing kernels k) (A€ C") under the operators 7; and
H,, will play an important role in our characterization.

PROPOSITION 1. Let fe L*(C"). For each A€ C" we have:

(5) Tr(ky) = (P(feoT1)\)oT_)\)k)
and
(6) He(ky\) = (f—P(for\)o1_\)k)-
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Proof. Take fe L®(C") and X\ e C". Clearly it suffices to prove (5). Let z €
C”. By (2) we have

(Trkn (@)= |, S ks () k() dp(w).

Now, using (1) and the properties of the exponential function, we have

= =k 2) _y (@)
k (uy=k,; (N k (u—N)=k\(2)k,_\(u—N\) o)’
thus
Tk @ =2 ) kSt ) ditw)
SN k)\()\) c” Z—X\ PN

= k@ |, Sk duw) by @)

=k\(2) P(fo\)(2—]). O

In the sequel we will frequently encounter weighted integrals of the repro-
ducing kernels. By the reproducing property of ky we have |k, [3=(ky, k) =
k\(\) = eMN/2 Using that [ky(cw)| =k 2(w)|? for real ¢, a simple change
of variables yields the following formula:

_ dVv(z)
Pp—{(a/2)z,2)
Scnlk)\(z)l e (27!’)"

(7) N
= (—) e"z()"“/w“), AeC", a>0, p=0.
a
An immediate consequence is that for a function fe L*(C”") we have the

estimate
8) (Pf)(2)| =|floe®?8, zeC™

The following lemma gives an estimate that will be used in the proofs of
Theorems 5 and 6, our characterization of compact Toeplitz and Hankel
operators on the Fock space &.

LEMMA 2. Let F be a nonnegative measurable function on C"xXC". As-
sume that B is a constant such that F(w, z) < Be‘> /8 for all z, we C". Then
there exists a constant C (depending only on B and n) such that, for every
weC”,

1/4
[ oo PO 7 (@D K@) o)V di(2) = Cley ()72 (Sc F(w,z)? du(z)) :

Proof. Let F be a nonnegative measurable function on C"XC" and B a
constant such that F(w, z) < Be‘®»¥/8 for all z, we C". In the integral at the
left make the change of variable z = 7,,(«). We obtain
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SC,, Fw, 7_, ()| (2) | k.(2)"/? dp(2)

= kY2 [ Fow,wpe= s 220

(2m)"”
Now, using Hélder’s inequality with conjugate exponents 4 and 4/3, we have
_ dV(u)
F (u, ud/4
Scn (w,u)e 20"
— S F(w u)e—(3/16)(u,u)e—(1/16)(u, u) dV(u)
ct (27)"
_ dv(u)\"* dV(u)\*
< F(w, u)*e— /4w S —(ut, uy/12
(Sc” (w, u)'e 27)" cn© 271)"
dVv 1/4
= (B2 SCH F(w, u)’e™ /2 _—(2;;‘,,) ) x63/*  (using (7))
1/4
_ C<Sc” F(w,z)? du(z)> . 0

In the proofs of Theorems 5 and 6 we will also need the estimates contained
in the following lemma.

LEMMA 3. Let fe L*(C"). Then, for every zeC",
O | P @) kD) K 00) V2 dpow) = 227) f oo (2) V2

and

S nlf(z)_P(fOTW)(T—w(Z))llkw(Z)|kw(w)1/2 d}L(W)

(10) ¢
< 22n+1||f“ookz(z)l/2'

Proof. Let fe L*(C") and ze C”. It is easy to see that inequality (10) fol-
lows from (9), so it is enough to show (9). Then, using (5) and (2):

P ) @@ = Tk @ = [, a0 0 i) d)

=1/l | )] eoa0)| ).
Thus

S NP(fory W7 u(2))]|ky(2) | Koy (W) dp(w)
(11) N
<1/1 jc,ilkz(u)l(SC,,lkw(u)lkw(w)‘/2 du(W)) dp(u).

As a consequence of (7) we have {¢n|k,, ()| k,,(W)2 du(w) = 2"k, (u)"% Ap-
plying this identity twice in (11) we get (9). Ol
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To estimate the norms of certain (integral) operators we will make use of
the Schur test as stated in the following proposition, a proof of which can
be found in [4].

PROPOSITION 4. Let (X, v) be a measure space and K a measurable func-
tion on X X X. Suppose there are positive measurable functions p and q on
X and positive numbers o and 3 such that

(12) [ JKG»la) dv()=ap(x) for Dnha.e. xin X
and

(13) [ JKGe»lp(x) dv(x) =Ba(y) for [vha.e.yin X.
Then

AN = Kx S0 dv(y),

with fe L*(X, v) and x € X, defines a bounded linear operator from L*(X, v)
into itself. Moreover, | A|* < af.

We are now ready to state and prove our main result, contained in The-
orems 5 and 6. The proofs of these theorems will be combined into one
proof.

THEOREM 5. Let fe L(C"). The following statements are equivaleni:

(@) T} is compact;
(b) [P(for)|2— 0 as [\ - .

THEOREM 6. Let fe L®(C"). The following statements are equivalent:

(@) Hyis compact;
(b) |fery—P(for\)|2— 0 as [\ — oco.

Proof of Theorems 5 and 6. Fix a function fe€ L*(C"). Let M/ be the mul-
tiplication operator § — L*(C", u) defined by M,(g) = fg for ge F. Writing
Q for either P or I— P, we note that both H; and T are of the form QMj;
the proofs of Theorems 5 and 6 will be combined into one proof.

Proof that (a)=(b). Suppose that the operator QM is compact. We have
already observed that |ky|3=e!™"2. If g is a polynomial on C”, then

(8 ky/lkl2y=e N 74g(\) >0 as |\ co.

Since the polynomials are dense in &, this shows that &, /|k,|, — 0 weakly in
F as |A\] = . A compact operator maps weakly null sequences to norm null
sequences, so we have |QM,(k,/|k\|,)|.— 0 as |\| - . By Proposition 1,
OM;(ky\) =(Q(f°1)\)°T_\) k). We have
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LN o o
“QMf"kxuz 2 k() SC,,IQ(f (A2 k\(2)|* dp(z)
- Scle(ch)\)(W)lzd/L(W);

thus [Q(fom\)2=|OM(ky\/|k\]2))]2— 0 as |A] - co.

Proof that (b)=(a). Suppose that |Q(f>7y)|,— 0as |\|— . We will show
that the operator (QMj)* is compact by showing that (QM/)* can be approx-
imated—in the operator norm—by compact operators.

Let i € Q(L*(C", p)). Then (QM;)*h € F, so that for we C" we have

((OM)*h)(w) ={(OM[)*h, ky) =(h, (Q(feTy)oT_y)k,); hence

(14) ((QMy)*h)(w) = SC,, h(z) Q(for,)(7-4(2)) k\y(2) dp(z).

For each number R € (0, ) define the operator Sg: Q(L2(C", p)) » L%(C", p)
by

(Skh)O0) = X, 0¥) | _, 12) DT> r) (72D (@) dp(2)

for he Q(L*(C", 1)), we C" (where B, denotes the unit ball in C"). Then,
using Fubini’s theorem and change-of-variable formula (4), we have

Sc"(Sc" Xz, WS 1) (T_(2))|* K (2) [ dp-(z)) dp(w)

= gRBn kW Q(fo7,)|3 dn(w) < oo,

and it follows that Sy is Hilbert-Schmidt. Using (14) and the definition of
S we see that, for e Q(L*(C", p)) and we C”,

(@M =S = Kov,2)h(2) du(2),

where K(w, z) = xcm\ rB,(W) Q(fo7,)(7_,,(2)) k,,(z). We will apply Proposi-
tion 4 to obtain an estimate on the operator norm |[(QM/)*— Sg|. Let p(w) =
k,,w)Y? and q(z) = k,(z)"/? for w,ze C". By Lemma 3, inequality (13) in
Proposition 4 is satisfied with 8=2%"*!| f|.. For w,ze C" put F(w,z)=
xcm\ kB, (W)|Q(f°7,)|. By (8) we have F(w,z) < 2] flwe®®/8, so we can ap-
ply Lemma 2. Noting that |K(w, z)| = F(w, 7_,,(2))|k,,(z)|, this lemma then
tells us that there is a constant C, depending only on f and n, such that

1/4
Scn!K(w, 2)|k;(2)"/? dpu(z) < Ck,(w)"/? (SC F(w,z)? du(Z))

= Ck, (W) *xcm s MIQ(fo7, Y%
so that inequality (12) in Proposition 4 holds with

a = Csup{|Q(fo7,)|¥?: |\| = R}.
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It follows from Proposition 4 that, with a possibly different constant C,
[(QM))*~ Sgl =< Csup{Q(for,)I¥*: I = R). Since |Q(for,)],~ 0 as [A[ -
oo it follows that Sg— (QM))* in operator norm as R — oo. Since the Sk are
Hilbert-Schmidt and thus compact, it follows that (QMj)* is compact and
therefore QM is compact. O

For fe L*(C") define f, the Berezin symbol of f, by
2, dV(z)
(2m)"’

Although we will not make use of this, we note that the function f is the
solution of the heat equation on C”=R?”at time ¢ =1/2 with initial value f
(see [3]). Observe that, by change-of-variable formula (4),

(15) Fonv={_, sizyehs NeCn.

Fy=|_, S\ dpow).

An immediate consequence of this formula is that the Berezin symbol is

~

invariant under translations: fo\'r;\= SoTy.

As in the preceding proof, for fe L*(C") let M, be the multiplication
operator & — L2(C", ) defined by M;(g)=fg for ge J. As an easy corol-
lary of Theorems 5 and 6 we get the following result of Berger and Coburn
[1, Thm. C].

COROLLARY 7. Let fe L™(C"). The following statements are equivalent:
(@) My is compact;
(b) [SIF(\) = 0as |\ .
Proof. It is easily verified that, for Ae C”,
(16) _ |fIFN) =] fer 3= IP(for)i+]fora—P(for\)5-
So if |/ |*(\) = 0 as |\| - o, then both
|P(fem\)|2—0 and |fery—P(for)\)|,—0
as |A| — oo, so that by Theorems 5 and 6 both 7, and H, are compact; thus,

M, is compact. The converse is obvious. ]

4. More on Compacf Hankel Operators

In this section we will obtain Berger and Coburn’s result [1] that H is com-
pact if and only if Hyis. We start with a result that gives estimates on the
norms of the Hankel operators.

PROPOSITION 8. Let fe L*(C"). Suppose that | f(z)—f(w)|<L|z—w|
Jor all z,we C". Then |H;|<4L.

Proof. Let fe L*(C") and suppose that | f(z) — f(w)| < L|z—w| for all
z, we C”. Making a change of variable, it is easy to verify that
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Lnuz— Wik, O0)| K,y (W) /2 dpu(w) = 4 (2) V2.
Hence
[l @) = FON k(9] oy 9)2 o) = 4Lk ()12
The statement follows immediately from Proposition 4. ]

The following corollary is perhaps not surprising in view of the fact that
repeatedly taking Berezin symbols leads to smoother and smoother func-
tions. For a function ge L=(C") and me N, let 2 denote the mth Berezin
symbol of g.

COROLLARY 9. Let ge L*(C"). Then |Hzm|—0 as m— .

Proof. For ge L®(C") and me N, the function " is Lipschitz with Lip-
schitz constant at most 2(2wm)~1/? (see [1, Lemma 2]). O

The following lemma will make the connection with our results in the pre-
vious section.

LEMMA 10. Let ge L*(C"). Then there is a constant C, depending only
on g and n, such that for every \e C":

|go7\—P(gor\)l, = Clger,— P(gor]Y*.
Proof. 1t follows immediately from (15) and (8) that
(17) |8(wW) — (Pg)(W)| =2|g]oe™™”® forall weC".
Using (7) and (8) it is easily seen that (Pg)k,, € F for fixed we C”; thus, by
the reproducing property of k,,, {cr(Pg)(2)|kw(2)|? du(z) = e /2 (Pg)(w).
Also, g(w)=e~""/2{n g(z)|k,(z)|* du(z). Thus we have
1)) |20 =PRI e~ | lg(x)~(Pe)(@)lky(2)] di().

Combining (17) and (18), we see that

dVv
lg—Pel3={_J20n - (Peyome w20
dvi
<2|g|w Scnlg(z) —(Pg)(2)| (Scnlkw(z)|2e_(7/8)(w’ w) (ZT(’)"")> du(z)

4\"
=208l | 8@~ (P)@(7) eV @ (by )

4

n dVv
=2(3)lel | Js@—(Pe@le= e i)

7 Qm)"
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Proceeding as in the proof of Lemma 2, we see that there is a constant ¢,
such that

_ dV(z)
- (3/14)¢z,z) =7\~ /
[ le@—Pe)@le fomy

dv(z) )1/4

scn<5cn|g(z>—<Pg)(z)|4e“3/“’“’z> )"

dVv(z)

1/4 .
2y ) (using (17))

= Cn (SC 41g]%|g(z) — (Pg)(z)|2e = 2/2

=212 | g|'?| g~ Pg|Y>

Combining this with the inequality in the previous paragraph, we see that
for a constant C,,;

|2—Pel,=<C,|elX*|g—Pgly*.

Finally, replacing g by ge7, and using the translation invariance of the Ber-
ezin symbol, we obtain the desired inequality. ‘ 0

The following proposition is implicit in the work of Berger and Coburn [1],
who proved it by an averaging operation over a representation of the Hei-
senberg group related to the operation of taking the Berezin symbol. In our
set-up, an elementary proof is obtained by simply combining Lemma 10 with
Theorems 5 and 6.

PROPOSITION 11.  Let ge L¥(C") be such that H, is compact. Then both
operators Hz and T, _; are compact.

Proof. Suppose that ge L*(C") is such that H, is compact. By Theorem
6 we have |ge7,—P(ge7)\)|2— 0 as |A\]|— . Invoking Lemma 10, we see
|&e7n—P(go7))|2— 0 as || — «. By continuity of P this implies that also
| P(&°7\)— P(g°7))|>— 0; thus, by Theorem 5, T,_; is compact. Also

|&o7x—P(&>\)|2—>0 as |\]— oo,

and Theorem 6 gives us that H; is compact. ]

Now we are in a position to prove the following theorem. The equivalence
of (a) and (b) was proved by Berger and Coburn [1]; condition (d) was ob-
tained by Berger, Coburn and Zhu [2]. Berger and Coburn had to develop
quite a lot of machinery to prove the equivalence of (a) and (b); our proof is
very elementary.

THEOREM 12. Let fe L*(C"). The following statements are equivalent:
(@) Hjy is compact;
(b) Hyis compact;
©) [fora=S(M]2—= 0 as |\ - o;
@ [SPON=|FO)]> = 0as [\] - .
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Proof. For (b) (), first suppose that Hy is compact. By Theorem 6 we
have | fer\—P(f°7))|2— 0 as |A| - . Invoking Lemma 10, we see that
| forx—P(for\)|>—0; thus | fory—fory|,—0 as [N - oo. Taking complex
conjugates (using that f= f) we see that | fory— for,|,— 0 as |\| - o, and
it follows that Hy_ 7is compact. Using Proposition 11 and iteration, we con-
clude that H,_ 7¢n is compact for every m e N. By Corollary 9, Hy_ 7om — Hy
in operator norm as m— . Hence H is compact. Reversing the role of f
and f, we also get that (a) = (b).

Proof that (a) = (c): Using that P(P(fe7))) = P(fo1,)(0) = f(\), it is easy
to verify that |P(fo7y) —Ff(N\)|2=<| fern— P(fe7))|,. It is then readily veri-
fied that

| fora—FNB=|fora—P(for )5+ fory—P(fo)|3,

and by using Theorem 6 for both H, and Hj the statement follows.
Proof that (c)=(a): This follows immediately from the inequality

[ forx—P(for 2= |forn—F(N)]2

and Theorem 6.
That (c) &(d) follows from the identity | fory—f(\)|;3= |f|2()\) | FON|%.
This completes the proof of Theorem 12. ]

5. Hankel Operators with Bounded Continuous Symbols

In this section we will give a description for compactness of the Hankel op-
erator associated with bounded continuous symbols. This description will
then be used to give yet another proof of Berger and Coburn’s result that
for fin L*(C"), Hy is compact if and only if HFis.

Let BC denote the algebra of bounded continuous functions on C”. Let
BC"denote the Stone-Cech compactification of C”". Every function f in BC
has a unique continuous extension to SC” which we will denote by f#. Let 3
be the set of all possible limits in the product space ( 6C")C of nets {7')\ } for
which |\,[ = . Note that by Tychonoff’s theorem the space (8C")C"is com-
pact, so that every net [)\a] for which |\,| — o has a subnet {w.,} such that
{rw,} converges in (BC™C" to some 7€ 3. We refer to the subsets 7(C") of
BC" as the 3-parts of BC". Define the algebra COJ, which stands for “Con-
stant On J-parts,” by

CO3={feBC: fP-7is constant on C” for every 7€ J}.

It is easily seen that for a function fin L®(C") its Berezin transform f is
in BC. In the following theorem we will characterize the compact Hankel
operators whose symbol is the Berezin transform of a bounded measurable
function.

THEOREM 13. Let fe L*(C"). Then H is compact if and only if fe CO3.

Proof. Let fe L*(C") and TE 3. Let {A\,} lge a net~in (BC")C" such that
{r\} converges to 7. Since fe BC we have fOT)\a—+fﬁ°'r pointwise on C".
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We claim that this convergence is uniform on each compact subset of C",
and consequently f o\, S fBor in L*(C", p). To prove this claim it suffices
to show that the family [ f °Ty, } is equicontinuous. But this follows from the
fact that fis Lipschitz with constant at most (2/7)Y?[1, Lemma 2], so that

[(fory M=) = (Fory YW)| = (2/m) 2|1y (2) — 7y W) = (2/7) /2| z— W,

and the claim is proved.

By Theorem 6, Hj is compact if and only if | fery— P(feor))],— 0 as
IN] = . Using the above claim and the definition of 3, this is easily seen
to be equivalent to | ffer— P(fPe7)|,=0; that is, fPor=P(fPor) for every
7€ 3, which by Liouville’s theorem is equivalent to £ 7 is constant for every
7€ 3; thus fe CO3. ]

The above theorem gives more insight into Berger and Coburn’s result that,
for a bounded measurable function f on C”, Hyis compact if and only if
Hj is compact: This fact follows from the absence of nonconstant bounded
holomorphic functions on C”. With the help of Theorem 13 this is now easy
to prove.

Second Proof of (a)=(b) in Theorem 12. Let fe L*(C"), and suppose that
Hy is compact. By Propzosition 11, Hy is compact, so that by Theorem 13,
S € CO3J. But then also fe CO3J, hence Hjis compact. As a consequence of
Proposition 11 we also have that Hy_ 7is compact, and it follows that Hfis
compact. O

Apparently the compactness of Hy implies “holomorphic-type” behavior of
the bounded function f, which must then be constant in some sense. This
idea can be made to yield yet another proof of the equivalence of (a) and (b)
in Theorem 12.

Third Proof of (a)&(b) in Theorem 12. Let fe L*(C") be such that His
compact. We must show that Hy is compact, which by Theorem 6 means
that | fory—P(fe7))],— 0 as ]])\l]—mo Let {\,} be a sequence in C” such
that |\,,| = cc. As in [1, Thm. 20], it can be shown that operator P | ;=(cn):
L®(C")—> § is compact. Since the for, are uniformly bounded, the se-
quence {P(fe7) )} has a further subsequence {P(fe7)}} which converges to
some / in &. Because Hy is compact we have f °Th; —P( f o’rxj) — 0, and thus
f or)\]—>h in L2(C", u). By going to yet another’ subsequence —which we
will not relabel—we may assume that fe7);—h [V]-a.e. on C". It follows
that the holomorphic function 4 is bounded on C”, and by Liouville’s theo-
rem h is_constant. Since % is constant and f °Th — h in L*(C", p), we have
(I=P)(fer,)—0in L*(C", ). We conclude that indeed

[ forx=P(fom\)l2—>0 as [\]— oo,

and thus His compact. L]
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6. The Essential Spectrum of Toeplitz Operators

Let £(F) denote the Banach algebra of the bounded linear operators on &,
and let JC denote the ideal of compact operators in £(F). For an operator T
in £(F), the essential spectrum of 7, denoted by ¢,(T), is by definition the
spectrum of the operator T+ X on the Calkin algebra £(F)/X; that is,
0,(T) is the set of all complex numbers ¢ such that 77— ¢+ X is not invertible
in £(F)/X. In this section we describe the essential spectrum of the Toeplitz
operator T for those bounded measurable functions f for which the Hankel
operator Hj is compact.

It will be convenient to make use of the following well-known identity,
which gives a simple relationship between Toeplitz and Hankel operators:

(19) T,,—T,T,= HiH,,

for f, ge L*(C").
For ECC", let cl E denote the closure of the set E in C”. The following
theorem and corollary are due to Berger and Coburn [1].

THEOREM 14. Let fe L*(C") and assume that H is compact. Then

0 (T) = N cl f(C"\RB,).
R>0
Proof. Let fe L*(C") and assume that H is compact. The proof will be
divided into several steps.

Step 1. Suppose that { ¢ cl f(C"\RB,) for some R > 0. Define the func-
tion g on C" by

(2) = (f(z)—¢)7! if ze C"\RB,,
=1 if zeRB,,.

Then ge L*(C"), and using identity (19) it is readily verified that 7T,T;_,=
I-HiH;—T(f— ¢ Dxga," . Since both operators Hyand T(s_ ¢ Dxgp, &€ COM-
pact, it follows that 7} §+ X is left-invertible in the Calkin algebra £(§)/ X.
Using that also Hy is compact and T;_.=T7_ ¢, we see that T;_.+ X is
also right-invertible in £(F)/X. Thus T;—{+ X =T;_+ K is invertible in
L£(F)/XK, so that { ¢ 0.(Tf). We conclude that ¢,.(T)) Cclf(C”\RB ) for all
R>0.

Step 2. We have already seen that 7;_ 7is compact (Proposition 11). Thus
0.(T5) = 0,(T}), so that by Step 1, 0.(T) Ccl f(C*\RB,) for all R>0.

Step 3. Suppose that ¢ e cl f(C*\RB,) for all R > 0. Pick a sequence ()\; j)j
in C" such that f (\;) = ¢ and |\;| - o0 as j — co. It follows from the identity

|f— 5'120\,') = |f|2(>\j)_If()\j)|2+|f()\j)_ ¢
—~
and Theorem 12 that | f— {|*(\;) > 0 as j — . Then by (16), using (5), we

have | Ty_ o (ky,;/ |k 12)|2= | P((f =)oy )|2— 0 as j— oo, and T;_+ X can-
not be invertible in the Calkin algebra £(F)/X. Hence { € 0.(7}). OJ
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COROLLARY 15. Let fe L™(C") and assume that Hy is compact. Then
the essential spectrum o,(T;) is connected.

Proof. The function f is a bounded continuous function on C”, so all the
sets cl f(C™\ RB,) are compact and connected. By Theorem 14, ¢,( T}) is the
intersection of a nested family of compact connected sets. ]

If for fe L*(C") the operator Hy is compact, then also Hy is compact and
by Theorem 13 the function f is constant on 3-parts. The fo]lowmg theorem
states that the essential spectrum of 7} is then equal to the set of constant
values taken on by f on the J-parts.

THEOREM 16. Let fe L*(C") and assume that H is compact. Then
oo(Tp) = { fP(r(0)): 7€ 3}.

Proof. Let reJand ¢ = fﬁ(T(O)) Pick a net {\,} in C" with |\,|— o0 and
7~ 7in (BC")C". Then f(\,) = Sfory (0) > fPer(0) =, so that
fe N CIf(C"\RBn) = Ge(Y})-
R>0
Conversely, if e 08(7}), then there is a net {\,} in C" with |\,|— o and

J(\,) — ¢. By passing to a subnet we may furthermore assume that T\, 7iN
(BC”)C Then ¢ =lim_, f(\,)=lim for)\ (0) = fPo7(0) efB(T(C”)) ]

The essential norm of an operator is its distance to the compact operators;
that is, if 7" is an operator in £(F) then its essential norm, denoted by |T|,, is
by definition the norm of the operator 7+ X in the Calkin algebra £(F)/X.
The following corollary gives the essential norm for certain Toeplitz oper-
ators on the Fock space.

COROLLARY 17. Let fe L*(C") and assume that H; is compact. Then
| T; ] = max{| f%(r(0))|: 7€ 3}.

Proof. 1t is an easy consequence of identity (19), together with the fact that
both H; and Hjyare compact, that 7+ & is a normal element of the Calkin
algebra £(EF)/ X. Thus |T;+ X| is equal to the spectral radius of T+ X,
max{|{|: ¢ € 0,(T)}, which by Theorem 16 is equal to max{| f2(7(0))|: 7€ 3}.
]

To state another corollary of Theorem 16, we recall that an operator in
L£(TF) is called Fredholm if its kernel has finite dimension and its range has
finite co-dimension. It is a standard fact that 7 in £(F) is Fredholm if and
only if the operator 7+ X is invertible in the Calkin algebra £(F)/X.

COROLLARY 18. Let fe L™(C") and assume that Hy is compact. Then T,
is a Fredholm operator if and only if f%(r(0)) #0 for all e 3.

Proof. Observing that T is Fredholm if and only if 0 ¢ 0.(7}), the statement
follows immediately from Theorem 16. ]
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