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1. Introduction

In this note we apply James’ techniques on norm-attaining linear forms to
roughness properties of every equivalent norm on a non-Asplund space. We
answer in particular a question of Klee [10] which we recall: A Banach space
X is said to have the A-property [1] if for every norm-compact subset K of
X, the restriction of the duality mapping J to K has a selector ox such that
ox(K) is norm-relatively compact. Klee asked whether every space, or sep-
arable space, can be renormed to have the A-property; it follows from Theo-
rem 1I.1 that only Asplund spaces may have such a norm. The proof relies
heavily on an inequality of Simons [16].

NOTATION. We work in real Banach spaces, and keep notation which is
standard in Banach space theory. In particular, S;(X’) and X, denote the unit
sphere and the unit ball of X, respectively. More generally, if » >0 and x € X,
then B,(x) denotes the closed ball of radius r centered at x. We denote by
J the duality maping of X, that is, the multivalued map of X into X™* de-
fined by

J(x)={yeX*|y(x)=|y[*=|x[*}.

We refer to ([12], [9], [4]) for the construction of rough norms on non-
Asplund spaces, and to ([3], [18]) for James’ theorem and its applications.
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II. The Results

The following result asserts that, if X is not an Asplund space, then there
are points at which the norm is very “not Frechét differentiable”.
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THEOREM 11.1. Let X be a Banach space which is not an Asplund space.
Then for every e > 0, there is a norm-convergent sequence {x,} in S{(X) such
that, for every n#k,

dist(J(x,), J(x;)) >1—c¢.

Proof. Let us assume first that X is separable. Then, by a result of Mazur
[14], the set G of points of S;(X) at which the norm is Giateaux-smooth is a
norm-dense G; of S;(X). We recall that x € G if and only if J(x) is reduced
to a point.

We now fix a countable dense subset D of G. For every x € S;(X), we pick
a sequence {x,} in D which is norm-convergent to x, and we also pick a w*-
cluster point o(x) of {J(x,)} in (Xf, w*); it is clear that o(x) € J(x). We let

B={o(x)|x e S$)(X)}.

The following lemma is the crucial point of the proof; it relies on Simons’
inequality [16], which itself stems from James’ characterization of weakly
compact sets [7].

LEMMA I1.2. Given e >0, there exists xy€ S(X) such that for every x € D,
lo(xo) —J(x)|>1—e.

Proof. If the result is false, we have
ey BCU{B;-(J(x))|x e D}.

Since X* is not separable and D is countable, there is z € X** with |z| =1and
z(J(x)) =0 for every x € D. We pick y,€ X{ such that z(yy) >1—¢/2.

Since X is w*-dense in X7*, z belongs to the closure of X for the topology
of pointwise convergence on J(D)U{y,}, and thus we may find {x,} in X,
such that

(2) vn, xn(y0)>1_e/2
and
3) vxeD, lim x,(J(x))=0.

Clearly, (1), (3), and | x,,| <1 imply
@) vyeB, lim x,(y)<l—e.

n—

Observe that every x € X attains its norm at some point of B. Therefore, by
using the Simons’ inequality [16, Thm. 3], (4), and (2), it follows that

1—e=sup[lim x,(y)]= lim x,(y) =1—<.
YEB n—o n— oo 2

This contradiction completes the proof of Lemma I1.2. U
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We now come back to the proof of Theorem II.1. If x, € S;(X) is the point
provided by Lemma II.2, then (by construction of ¢) there exists a sequence
{x,} in D such that lim|xy—x,| =0 and ¢(x,) is a w*-cluster point of J(x,).
By taking a subsequence, we may and do assume that

(5) a(xg) =w*—1lim J(x,)

Hn— o0

in (X* w*). Now, by Lemma II.2, we have
lo(xo)—J(x,)|>1—¢

for every n; this implies, by (5) and the w*-lower semicontinuity of the norm,
that
vn=1, lim |J(xz)—=J(x,)|>1—c¢.
k — oo
It is then easy to construct, by induction, a subsequence {x/} of {x,} such
that |J(x;)—J(x;)|>1—e€ for every n# k. This concludes the proof if X
is separable.

The general case will now follow from the separable one. If Y is any non-
Asplund space, then Y contains a separable subspace X such that X* is non-
separable. By the above, there is a norm-convergent sequence {x,} C S;(X)
of points of Gateaux-smoothness of the norm of X such that

J(x,) = J(xp)|>1—€ for n#k.

If Q: Y*— X* is the canonical quotient map and J: Si(Y)— S;(Y*) is the
duality mapping of Y, the restriction of (QJ) to X is equal to J; because
|Q] =1, it follows that

dist(J(x,), J(xg)) >1—¢

for every n # k; this concludes the proof. L]

It is not clear to us whether or not it is possible to improve Theorem II.1 by
replacing in its statement the norm-convergent sequence by a norm-compact
set without isolated points. However, it is possible to do so if we replace the
mapping J by one of its “reasonable” selectors. Indeed, we have the next
proposition.

PROPOSITION I1.3. Let X be a Banach space that is not an Asplund space.
Then, for every e >0, there exists a subset K of S;(X) which is norm homeo-
morphic to the Cantor set {0,1}, and a selector o of the duality mapping J
such that

lo(x)—a(x")|>1—¢

Jorevery x #x’ in K.

Proof. Again, we first assume that X is separable. It follows from [8, Thm.
3] that then there exists a selector ¢: X — X* of the duality mapping which
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is (norm-w¥*) of the first Borel class. If we let B =d(S5;(X)), then B is a w*-
analytic subset of S;(X™) (cf., e.g., [11, 38.II1.5]) on which every element
of X attains its norm. This latter condition allows us to apply the proof
of Lemma II.2 which shows that B is not contained in a countable union
of balls of radius (1—¢). Since B is w*-analytic, this implies that there is a
subset Ky of B, w*-homeomorphic to {0,1}¢ such that |y —y’|>1—¢ for
every y #y’ in K. This follows from a more general result ([5, Lemma 2.2];
[13]). For the reader’s convenience, we include a few hints on how to prove
it directly.

If B is a continuous image of a Polish space P and d is the semimetric on
P obtained by lifting the norm metric on B, then the following statement
holds true: Given 6 >0, if P is not é-separable in d, then there are x,, x, € P
such that d(x,, x;) > é and no neighborhood of x, or x; in P is é-separable
in d. To see that this statement holds true, put D = {x € P, no neighborhood
of x in P is é-separable in d}. From the Lindel6f property of P it follows
that P\ D is é-separable in d. Because P is not §-separable in d, it follows
that D is not 6-separable in d and the statement follows. From the statement
and the lower semicontinuity of d on P it follows that there are points x
and x; in P and closed neighborhoods V, and V; in P (of x, and x;, respec-
tively) such that d(V,, V;) > 6. Because both V; and V; are not é-separable in
d, we can apply the above argument to both of them. It is then clear how to
complete the construction of a Cantor-like set K in B.

If we now let @ =0 ~!(Kj), then Q is a G; set since ¢ is (norm-w*) of the
first Borel class. Since (2 is obviously uncountable, it contains a Cantor sub-
set K which clearly works since o(K) € K, (cf. [17, Thm. 119]).

The general case can be done as before: If Y is not an Asplund space, then
it contains a separable subspace X with a nonseparable dual; by the above
argument there is a Cantor subset K of S;(X) and a selector ¢ satisfying
the above conditions; if now j: X*— Y™* is a map such that, for x*e X,
[/ (x*)|=]x*|, Qj =1dx+, 6 =jo, and ¢ is a selector: Y — Y* which extends
g, it follows from |Q] =1 that K and & work. ]

REMARKS I1.4. (1) When the above statements are compared with Smul-
yan’s lemma (see [2, p. 29]), they naturally appear as “roughness” assertions.
For instance, Proposition I1.3 means that any norm on a non-Asplund space
is “uniformly rough” when restricted to an appropriate Cantor set; note that
conversely, such a norm cannot exist on a separable Asplund space X, since
the conditions of Proposition II.3 clearly imply that X* is nonseparable.
The same techniques provide several statements which stress the dichotomy
between Asplund and non-Asplund spaces.

(2) A connection between these results and James’ constructions of trees
in non-superreflexive spaces is provided by the notion of flat Banach space;
recall that X is said to be flat if there exist x € §;(X) and a 2-Lipschitz map g
from [0, 1] into S;(X) such that g(0) =x and g(1) = —x; for this notion and
related ones we refer to [15]. If X is flat then K = g([0, 1]) is a norm-compact
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subset of S;(X) such that dist(J(x’), J(x")) =2 for every x’#x” in K (see
[6]). However a non-Asplund Banach space is not necessarily isomorphic to
a flat space, since (for example) a space with the Radon-Nikodym property
cannot be flat; a proof of this latter fact is provided by the observation that
the 2-Lipschitz map g:[0,1] — S;(X) which joins two antipodal points is
nowhere differentiable.

(3) We do not know whether, when X is separable and X™* is not, every sub-
set B of S;(X*) on which every x € X attains its norm contains an uncount-
able biorthogonal system. Note that non-norm-separable and w*-analytic
subsets of dual spaces contain such systems [19]; under a determinacy axiom,
this is also true in the w*-projective hierarchy (see [5]).
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