A Density Criterion for Frames
of Complex Exponentials

S. JAFFARD

1. Introduction

The notion of a frame has been introduced by Duffin and Schaeffer in [1]. It
can be defined in a general Hilbert space H as follows. A sequence (e,) of
vectors of H is a frame if there exist positive constants C; and C, such that,
for all f in H,

1) CilfIP= ZTKSfled?= Co| f12

Frames are important in the study of complex exponentials (cf. [1] and the
book of R. M. Young on nonharmonic Fourier series [3]).

The following problem will be studied in this paper. Let A=(},), ez be
a sequence of distinct real numbers. What is the upper bound of all numbers
R such that the sequence of functions (e !) is a frame of L2([—R, R])?
This number, denoted R(A), will be called the frame radius of the sequence
A. Partial results were found by Duffin and Schaeffer [1] and Landau [2].
They are summarized in Theorems 1 and 2. The goal of the present paper is
to give a necessary and sufficient condition for A to have a strictly positive
finite frame radius, and, when it does, to obtain a formula for that radius.

We shall consider only sequences with distinct A,’s since the general case
can be dealt with as follows. The frame radius of the sequence A, is not
changed if we repeat some \,’s a finite and uniformly bounded number of
times. If the number of repetitions is not bounded, the functions (e*‘) can
never be a frame on any interval. Note also that, if the sequence of functions
(e ) is a frame for the interval 7, it is also a frame for each subinterval
of I.

The reference space is L2(I), where [ is a finite interval, and the inner
product is given by

1

Sloy=Tr |, S0z ar

where |I| denotes the length of the interval. We denote by C, C;, and C,
constants which can change from one line to the next.
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2. Some Definitions and Results

A sequence A is said to be separated if

inf [\y—Ap| > 0.
nZEm

If A is separated, it has a uniform density d(A) if there exists a number L
such that, for all integers n,

n

FTIN <L.

ANo—

Duffin and Schaeffer [1] proved the following theorem.

THEOREM 1. If A is a sequence of uniform density d(A), then the frame
radius of A is at least wd(A).

Let A be a separated sequence and n~(r) the smallest number of \; in any
interval of length r. The following result has been obtained by Landau [2].

THEOREM 2. If A is a separated sequence, then the lower uniform density
of A, defined as
D~(A)=lim ~ r(” ,

r— 00

always exists, and the frame radius of A is at most tD~(A).

Let U(A) be the set of all the subsequences of A with a uniform density.
Then the “frame density” of A is defined by

(2) D/(A)= sup d(©).
B e U(A)

In this paper, the following result will be proved.

THEOREM 3. Let A be a sequence of distinct real numbers. Then: If
U(A) =0, or if the numbers A,, of elements of AN[n, n+1] are not bounded
(n taking all integer values), then there exists no interval over which (e'™»")
is a frame. Otherwise, the frame radius of A is equal to wD/(A).

The proof of Theorem 3 is divided into two parts. In the first part, we ob-
tain a “qualitative” result on a convenient partitioning of the A, when the
sequence of functions e’ is a frame over a certain interval, thus proving
the first part of Theorem 3 and half of the last equality; in the second part,
we complete the frame radius equality.
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3. A Partitioning of A
The first lemma is a direct consequence of the definition of a frame.

LEMMA 1. Let I be a finite interval. If (e*") is a frame of L*(I), then the
number of points \, inside each interval of length 1 is uniformly bounded.

Proof. Suppose that (e"*!) is a frame of L?([—a, a]), since the position of
the interval I is obviously of no importance. Let ¢ be chosen so that, for all
7 with |g| <e,
2
=—.
2

Suppose now that the number of A, inside an interval of length 1 is not
bounded; then neither is the number of A\, inside an interval of length e.
Thus, there exists a sequence p; of real numbers with the following prop-
erty: the number of N, inside [u;—e, ur+ €] is at least k. Let f; be the func-
tion e’#*’, Then, an immediate consequence of (3) is that

a .
e dt

3) T

; k
S Sele™H?= 5

But | fi| =1, so that the second inequality of (1) cannot hold, and the con-
tradiction proves the lemma. L]

The following lemma gives the structure of all sequences A =()\,) such that
(e'*n’) is a frame of L2(I), for a certain interval 1.

LEMMA 2. The following two assertions are equivalent.

(a) There exists I such that (e™"), ., is a frame of L*(I).
(b) A is the disjoint union of a sequence with a uniform density (denoied
by d,) and a finite number of separated sequences.

Furthermore, if (b) holds, then (e ') is a frame of L*(I) for each I such
that |I|<2nd,. Hence R(A) = nd,.

Proof. Let us prove (b)=(a). Let A=A'U---UA", where A' has a positive
uniform density d; and A?,..., A" are separated. By Theorem 1, (™), . ytis
a frame for each interval of length less than 27d,; denote one such interval
by I. Then there exist positive constants C; and C, such that, for all f in
L*(I),
@) CilfIP= 3 Kfle™ = ColfI~
re Al
A direct computation (performed in [1]) shows that, for each separated

sequence A’ and each interval 7, there exists a constant C such that for all f
in L2(I),
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() > KfleMPP=ClfI?

Ne XN

Hence, there are C; for j=2,..., n, such that

> KfleM 2= CilfI>
)\eAj
Adding inequalities, A satisfies the inequalities of (1). Hence (b)=(a) and
the last statement of Lemma 2 is established.

We now prove (a) = (b). It is sufficient to prove that there exists an N >0
and a Cy larger than 1 such that, for each integer k, the number A% of \;
in each inteval [N, (k+1)N) lies between 1 and Cp. For, if it is so, we
can define a subsequence u; of \; by picking one of the \; in each interval
[2kN, (2k+1)N). The py satisfy |pugry1—pi/> N and |pp—2kN| < N; thus
the p; will form a sequence having a uniform density. The remaining A\; can
then be divided into at most 2C, — 1 separated sequences by picking at most
one \; in each interval of the form [2kN, (2k+1)N) (for Cn—1 sequences)
or of the form [(2k+1)N, (2k+2)N) for the remaining sequences.

We now proceed to show the existence of such an N. Because of Lemma 1,
for each N, the number of \; in each interval [kN, (k+1)N) is uniformly
bounded. So it is sufficient to prove that each A% is at least 1 for some N. If
this were not the case, then for each N we could pick a half-open interval
of length N such that no A, lies in this interval. Let up be the center of this
interval, and let fy(¢) =e’*N!. Then

2sin((\g—pn) |1]/2) 2< 4
[ 7| (A=) TN o]

By Lemma 1, there are at most C, numbers A\, in the interval [#n, n+1), and
there are none if |n—py| < N/4 (for N> 4). Thus

SKfivle™H* =3 X Kfule™hH|?
k

neZ hyeln,n+l)

Kfnle™hH)?=

_ 4C,
n,in—un)>N/a I[P (luny—n|—1)?
< E _C_
in)>nya (] —2)2

”

C
< N (for N > 4).

Since | fy[| =1, if N is chosen large enough then a contradiction with the first
inequality of (1) is obtained, and the first part of Lemma 2 follows. L]

Because of Lemma 2, we shall assume from now on that all the sequences
we consider are finite disjoint unions of separated sequences.

Some of the conclusions of Theorem 3 follow immediately from Lemmas
1 and 2. When U(A) is empty, (e’*#') cannot be a frame by Lemma 2. When
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the cardinality of AN[n, n+1] is unbounded, (e’*+!) cannot be a frame by
Lemma 1. If (e !) is a frame over some interval, by Lemma 2, A is a dis-
joint union of separated sequences. Consequently, each subsequence of Ais
such a union. If © is in U(A) and has density d(©), then A=0U(A\6),
where A\©O is a disjoint union of separated sequences. Again, using Lemma
2, we see that R(A) = nd(©). Hence

R(A)=m sup d(©)=wxD/(A).
OeU(A)

The purpose of the next section is to complete the proof of Theorem 3 by
showing that R(A) = =D/(A).

It is perhaps worth noting that when O is a separated sequence of uniform
density d(©), then D ~(O) = d(O); this together with Theorem 2 establishes
the conclusion of Theorem 3 in this case. Similarly, a slight improvement
of this argument leads to the same conclusion if © is only separated. The
main difficulty we shall have to deal with in the next part will come from the
fact that © may not be separated.

4. A Determination of the Frame Radius
The key ingredient in this determination is given by the following propo-
sition.
PROPOSITION 1. Let A'=(\L) and A*>= (\2) be two disjoint sequences of
distinct real numbers such that
INL—=N2| >0 when |n|— oo
let us also suppose that R(A!) exists. Then
R(AY)=R(A'UA?).
The proof of Proposition 1 will use the two auxiliary lemmas that follow.
LEMMA 3. If asequence of vectors e, is a frame of a Hilbert space H, then
the mapping T: 1> - H defined by
T((a,) = 2 aye,

is continuous and onto.

Proof. Let ge H. Then

KTWa)) | 8)=|Y a.le,| ]
<|(a)] (Z<e.| gYH)"?
<Cl(an)|lgl-

Hence T is continuous. Thus, to prove that 7T is onto it is sufficient to prove
that, for any f in H, if f is orthogonal to all the e, then f=0. But thisis a
consequence of the first inequality of (1). O]
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LEMMA 4. Suppose that a sequence of functions (e,),cz is a frame of
L%(I). Then (e,),x is a frame on each interval I'C I such that |I'|<|I|.

Proof. The (e,),cz are a frame of L2(I’). Then, either (e,),.ois a frame
of L?(I’), and we have nothing to prove, or the (e,), . 7 are a Riesz basis of
L2(I") (cf. [3, p. 186]). We now make this assumption.

Let f be a square integrable function defined on 7, and vanishing on 7’
but not on I. By Lemma 3, f= 3, a,e,, with (a,,) in /% Since the (e,), 7 are
a Riesz basis of L2(I’), and f vanishes on I’, we obtain that a,= 0 for all ».
Hence, f vanishes on 7, and a contradiction is obtained. O

Proof of Proposition 1. The proposition will be proved in two steps. The
first step is to prove it under the stronger assumption that

If this assumption holds, then
Kfle™aty—(f [ePit] | f] et —e™i|
< CIAIIN— N
|/1
< C—,;?’

so that

2
H(flet)\lt>|2 |<f| 1)\2t>| |<C'"f"

We saw that R(A'UA%) = R(A"). Let I be an interval over which (™)) ¢ ,ua,
is a frame. There exist C, and C, such that
Cl/P= 2 I<f|e”" P+ T KS1eMO=Col 11
)\EAZ
Let N be such that
| I
C' > —=—
n=nn? 2
Then
TS e 2+ T f i
< 3 KS1eMORe T KfIeMDRe2 S (e S EaUE
|n|<N |n|<N |n|=N
so that

||f||2 < ZKSe™MH2+ T Kfle™2=Cyf fIP.

n<N

Lemma 4 means that the frame radius is not changed by deleting one ele-
ment of a sequence (hence also by deleting a finite number), so that Proposi-
tion 1 holds under the assumption |\, —\2| <1/n2 The general case will be
a consequence of the following lemma (proved in [1]).
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LEMMA 5. Let (e'*?') be a frame over I. There exists 6, >0 such that
(e ") is a frame over the same interval whenever (p,) is a real sequence
such that |p,—\,| < 6.

We can now complete the proof of Proposition 1.

Suppose that |\, —\2| — 0, and let R be less than R(A!U A%). Then
(e™M!)U(eM?) is a frame over [—R, R]. Let &, be as in Lemma 5. Change
A2 into p,= N, +1/n?, if n is such that 1/n2<6,/2 and |\,—\2| <6,/2. By
Lemma 5, the set of functions (e”‘ nt)U(e#n?) is a frame over [—R, R]. But,
since |\, —p,| =1/n? for n large enough, R=< R(A'). Thus

R(AD < R(AIUA?),
and hence Proposition 1 is proved. O

Let us call V' (A) the set of all the subsequences of A that are separated. Then
the following lemma holds.

LEMMA 6. Forany sequence A such that the cardinality of AN[n,n+1]is
bounded, the following equality holds:

sup D™(O©)= sup d(6)=D'(A).
Oe V(A) 8 U(A)

Proof. A sequence of uniform density is separated, so that
sup D ()= sup d(©)
OeV(A) O e U(A)

because, for a sequence © with a uniform density, d(©) =D ~(0). Suppose
that p, is a separated subsequence of A, with a lower uniform density D .
Let € > 0. Choose R large enough so that R(D ™ —¢) is an integer and

n—(R

——1(2-—) =D —e.

In each interval [kR, (k+1)R) there are at least R(D ™ —¢) numbers p,,. Ex-
tract a subsequence (vy,,) of (u,) that has exactly R(D ~—¢) elements in each
of these intervals. The sequence (vy,) is separated and
_n
Ly
so that (-y,) has a uniform density D~ —e¢, and
sup d(©)=D —e.
O U(A)
This proves Lemma 6. ]

<R

The two following lemmas are a slight generalization of Theorem 2.

LEMMA 7. If A is a finite union of separated sequences, then the limit

D-(A)= lim "

r— oo

exists; D~ (A) is said to be the lower density of A.
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Proof. Define, for r =1, the function Q(r)=n"(r)/r. Let us first establish
three simple properties of the function Q. Because of Lemma 1, there exists
a constant C such that n~(r) <Cr. Thus Q is a bounded function.

Let p be an integer and 7 an interval of length pr. Let us write 7 as a dis-
joint union of p intervals I}, ..., I,,, each of length r. For each k, the cardi-
nality of (AN1Z;) is at least n~(r), so that the cardinality of (ANJ) is at
least pn—(r); thus

Q(pr)=Q(r).
Let o> 1. Obviously n = (ar)=n—(r), so that

1
Oar)=—Q(r).
(84

Let
Q=sup Q(r).

r=1

Given ¢ in (0,1/2), choose a positive and a positive integer » such that
QO(a)=Q0—e€ and
n+1 1
<<

n 1—e¢

Consider x = na. There exists an integer p at least equal to #» such that

pa<x<(p+1)a.
Then
—ol X pa pa pPa 5
Q(x)—Q(papa>2 p O(pa)= o Q(a) = p (Q—e)
no - _
(p+1)a(Q— €)= ——_I-_—T(Q—G)Z(I—E)(Q—E)-
Hence Lemma 7 is established. O

LEMMA 8. If A is a finite union of separated sequences, the frame radius
of A is at most wD~(A).

Proof. Let A be a finite union of disjoint separated sequences. Then, for
each 6, one can find a single separated sequence A’ such that

INg— N, < 6.

From Lemma 5, if § is small enough then the frame radius of A’ will be at
least the frame radius of A. But

D~ (A)y=D~(A).
Because of Theorem 2,

R(N)Y=wD~(A),
so that
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R(A)<wD~(A)
and Lemma 8 follows. ]

We can now complete the proof of Theorem 3. It remains only to show that
R(A)<7D'(A)

for a sequence A which is the union of k separated sequences.

The idea of the proof is to split A into a separated sequence £ of uniform
density at least D/(A)—e, a finite union of sequences I'? each of which tends
to Q (or a subsequence of 1), and a remaining sequence O of lower uniform
density at most 3ke.

Suppose that such a splitting is achieved. Then, by Proposition 1, we can
disregard the I'/in the calculation of the frame radius, and by Lemma 8, the
frame radius of QU O is at most w(D/(A)+ 3ke). Thus Theorem 3 will be
proved once this splitting of A is constructed.

Let € be fixed. We can extract from A a sequence Q= (w,) which has a
uniform density at least D/(A)—e and is separated. We now construct the
sequence O = (6,) by induction. We do this construction only for positive
values of A,; it is the same for the negative values. Let

E=U [ow,—1,0,+1].
w, =0

Let ©'=(0)) be the subsequence of A composed of all the \,,> 0 which are
not in E;. The sequence ©'is the union of at most k separated sequences,
none of which has a density larger than 2e; for, if such a subsequence X
had a density larger than 2¢, then the union of ¥ and 2 would be a sepa-
rated subsequence of A with a density at least D/(A)+ ¢, which is impos-
sible. Thus D~ (©!) <2ke, and there exists an interval I; large enough such
that the number of 6, in 1 is less than 3ke|[].

Let A;=sup [, if I, does not intersect E;; otherwise, let p be the largest
integer such that

Ilﬂ[wp—-l, (Op+1] #O;

then A;= w,+1. The beginning of the construction of © is as follows: 6, =
0lif 0l<A,.

The induction now works as follows. We suppose that O is constructed
for 6,<A,,_,. We now define the set

1 1
and the sequence ©” which is composed of the A, larger than A4,,_; that
are not in E,,. We can find by the same argument as above an interval 7,,,
included in [A,,_,, +), of length at least # and such that the number of
elements of the sequence ©™in I, is less than 3ke|1,,|. Let A,,=supl,,if I,,
does not intersect E,,; otherwise, let p be the largest integer such that
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I,,N [wp—— %, wp+ r—;—] # 0;
then A= w,+1/m. The sequence O for A,,<0,<A,,,;is composed of the
elements of ©™ in the same interval.

Once the construction of O is achieved, we have finally split A into a se-
quence  of uniform density A — ¢, a sequence O of lower density less than
3ke (because the number of elements of O in I is at most 3ke|Iy|), and a
remaining sequence included in a set

E= U[.”'n_am Bnt oy,

where the «, are certain 1/m, and are such that «,— 0; this sequence can
obviously be written as a finite union of sequences I';, each of which tends
to 2 or a subsequence of . The requested splitting is thus performed and
Theorem 3 is proved. ’ 1
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