A Density Criterion for Frames of Complex Exponentials

S. JAFFARD

1. Introduction

The notion of a frame has been introduced by Duffin and Schaeffer in [1]. It can be defined in a general Hilbert space H as follows. A sequence (e_n) of vectors of H is a *frame* if there exist positive constants C_1 and C_2 such that, for all f in H,

(1)
$$C_1 ||f||^2 \le \sum |\langle f | e_n \rangle|^2 \le C_2 ||f||^2.$$

Frames are important in the study of complex exponentials (cf. [1] and the book of R. M. Young on nonharmonic Fourier series [3]).

The following problem will be studied in this paper. Let $\Lambda = (\lambda_n)_{n \in \mathbb{Z}}$ be a sequence of distinct real numbers. What is the upper bound of all numbers R such that the sequence of functions $(e^{i\lambda_n t})$ is a frame of $L^2([-R,R])$? This number, denoted $R(\Lambda)$, will be called the *frame radius* of the sequence Λ . Partial results were found by Duffin and Schaeffer [1] and Landau [2]. They are summarized in Theorems 1 and 2. The goal of the present paper is to give a necessary and sufficient condition for Λ to have a strictly positive finite frame radius, and, when it does, to obtain a formula for that radius.

We shall consider only sequences with distinct λ_n 's since the general case can be dealt with as follows. The frame radius of the sequence λ_n is not changed if we repeat some λ_n 's a finite and uniformly bounded number of times. If the number of repetitions is not bounded, the functions $(e^{i\lambda_n t})$ can never be a frame on any interval. Note also that, if the sequence of functions $(e^{i\lambda_n t})$ is a frame for the interval I, it is also a frame for each subinterval of I.

The reference space is $L^2(I)$, where I is a finite interval, and the inner product is given by

$$\langle f | g \rangle = \frac{1}{|I|} \int_{I} f(t) \overline{g}(t) dt,$$

where |I| denotes the length of the interval. We denote by C, C_1 , and C_2 constants which can change from one line to the next.

Received March 6, 1989. Revision received February 19, 1991. Michigan Math. J. 38 (1991).

2. Some Definitions and Results

A sequence Λ is said to be *separated* if

$$\inf_{n\neq m} |\lambda_n - \lambda_m| > 0.$$

If Λ is separated, it has a *uniform density* $d(\Lambda)$ if there exists a number L such that, for all integers n,

$$\left|\lambda_n - \frac{n}{d(\Lambda)}\right| \leq L.$$

Duffin and Schaeffer [1] proved the following theorem.

THEOREM 1. If Λ is a sequence of uniform density $d(\Lambda)$, then the frame radius of Λ is at least $\pi d(\Lambda)$.

Let Λ be a separated sequence and $n^-(r)$ the smallest number of λ_i in any interval of length r. The following result has been obtained by Landau [2].

THEOREM 2. If Λ is a separated sequence, then the lower uniform density of Λ , defined as

$$D^{-}(\Lambda) = \lim_{r \to \infty} \frac{n^{-}(r)}{r},$$

always exists, and the frame radius of Λ is at most $\pi D^-(\Lambda)$.

Let $U(\Lambda)$ be the set of all the subsequences of Λ with a uniform density. Then the "frame density" of Λ is defined by

(2)
$$D^{f}(\Lambda) = \sup_{\Theta \in U(\Lambda)} d(\Theta).$$

In this paper, the following result will be proved.

THEOREM 3. Let Λ be a sequence of distinct real numbers. Then: If $U(\Lambda) = \emptyset$, or if the numbers A_n of elements of $\Lambda \cap [n, n+1]$ are not bounded (n taking all integer values), then there exists no interval over which $(e^{i\lambda_n t})$ is a frame. Otherwise, the frame radius of Λ is equal to $\pi D^f(\Lambda)$.

The proof of Theorem 3 is divided into two parts. In the first part, we obtain a "qualitative" result on a convenient partitioning of the λ_n when the sequence of functions $e^{i\lambda_n t}$ is a frame over a certain interval, thus proving the first part of Theorem 3 and half of the last equality; in the second part, we complete the frame radius equality.

3. A Partitioning of Λ

The first lemma is a direct consequence of the definition of a frame.

LEMMA 1. Let I be a finite interval. If $(e^{i\lambda_n t})$ is a frame of $L^2(I)$, then the number of points λ_n inside each interval of length 1 is uniformly bounded.

Proof. Suppose that $(e^{i\lambda_n t})$ is a frame of $L^2([-a,a])$, since the position of the interval I is obviously of no importance. Let ϵ be chosen so that, for all η with $|\eta| \le \epsilon$,

(3)
$$\left|\frac{1}{2a}\int_{-a}^{a}e^{i\eta t}\,dt\right|^{2}\geq\frac{1}{2}.$$

Suppose now that the number of λ_n inside an interval of length 1 is not bounded; then neither is the number of λ_n inside an interval of length ϵ . Thus, there exists a sequence μ_k of real numbers with the following property: the number of λ_n inside $[\mu_k - \epsilon, \mu_k + \epsilon]$ is at least k. Let f_k be the function $e^{i\mu_k t}$. Then, an immediate consequence of (3) is that

$$\sum_{n} |\langle f_k | e^{i\lambda_n t} \rangle|^2 \ge \frac{k}{2}.$$

But $||f_k|| = 1$, so that the second inequality of (1) cannot hold, and the contradiction proves the lemma.

The following lemma gives the structure of all sequences $\Lambda = (\lambda_n)$ such that $(e^{i\lambda_n t})$ is a frame of $L^2(I)$, for a certain interval I.

LEMMA 2. The following two assertions are equivalent.

- (a) There exists I such that $(e^{i\lambda_n t})_{\lambda_n \in \Lambda}$ is a frame of $L^2(I)$.
- (b) Λ is the disjoint union of a sequence with a uniform density (denoted by d_1) and a finite number of separated sequences.

Furthermore, if (b) holds, then $(e^{i\lambda_n t})$ is a frame of $L^2(I)$ for each I such that $|I| < 2\pi d_1$. Hence $R(\Lambda) \ge \pi d_1$.

Proof. Let us prove (b) \Rightarrow (a). Let $\Lambda = \Lambda^1 \cup \cdots \cup \Lambda^n$, where Λ^1 has a positive uniform density d_1 and $\Lambda^2, \ldots, \Lambda^n$ are separated. By Theorem 1, $(e^{i\lambda t})_{\lambda \in \Lambda^1}$ is a frame for each interval of length less than $2\pi d_1$; denote one such interval by I. Then there exist positive constants C_1 and C_2 such that, for all f in $L^2(I)$,

(4)
$$C_1 ||f||^2 \le \sum_{\lambda \in \Lambda^1} |\langle f | e^{i\lambda t} \rangle|^2 \le C_2 ||f||^2.$$

A direct computation (performed in [1]) shows that, for each separated sequence Λ' and each interval I, there exists a constant C such that for all f in $L^2(I)$,

(5)
$$\sum_{\lambda \in \Lambda'} |\langle f | e^{i\lambda t} \rangle|^2 \le C ||f||^2.$$

Hence, there are C'_j for j = 2, ..., n, such that

$$\sum_{\lambda \in \Lambda_j} |\langle f | e^{i\lambda t} \rangle|^2 \le C_j' \|f\|^2.$$

Adding inequalities, Λ satisfies the inequalities of (1). Hence (b) \Rightarrow (a) and the last statement of Lemma 2 is established.

We now prove (a) \Rightarrow (b). It is sufficient to prove that there exists an N > 0 and a C_N larger than 1 such that, for each integer k, the number A_N^k of λ_i in each inteval [kN, (k+1)N) lies between 1 and C_N . For, if it is so, we can define a subsequence μ_k of λ_i by picking one of the λ_i in each interval [2kN, (2k+1)N). The μ_k satisfy $|\mu_{k+1} - \mu_k| > N$ and $|\mu_k - 2kN| < N$; thus the μ_k will form a sequence having a uniform density. The remaining λ_i can then be divided into at most $2C_N - 1$ separated sequences by picking at most one λ_i in each interval of the form [2kN, (2k+1)N) (for $C_N - 1$ sequences) or of the form [(2k+1)N, (2k+2)N) for the remaining sequences.

We now proceed to show the existence of such an N. Because of Lemma 1, for each N, the number of λ_i in each interval [kN, (k+1)N) is uniformly bounded. So it is sufficient to prove that each A_N^k is at least 1 for some N. If this were not the case, then for each N we could pick a half-open interval of length N such that no λ_k lies in this interval. Let μ_N be the center of this interval, and let $f_N(t) = e^{i\mu_N t}$. Then

$$|\langle f_N | e^{i\lambda_k t} \rangle|^2 = \left| \frac{2\sin((\lambda_k - \mu_N)|I|/2)}{|I|(\lambda_k - \mu_N)} \right|^2 \le \frac{4}{|I|^2 |\lambda_k - \mu_N|^2}.$$

By Lemma 1, there are at most C_1 numbers λ_k in the interval [n, n+1), and there are none if $|n-\mu_N| < N/4$ (for N > 4). Thus

$$\begin{split} \sum_{k} |\langle f_{N} | e^{i\lambda_{k}t} \rangle|^{2} &= \sum_{n \in \mathbb{Z}} \sum_{\lambda_{k} \in [n, n+1)} |\langle f_{n} | e^{i\lambda_{k}t} \rangle|^{2} \\ &= \sum_{n, |n-\mu_{N}| > N/4} \frac{4C_{1}}{|I|^{2}(|\mu_{N}-n|-1)^{2}} \\ &\leq \sum_{|n| > N/4} \frac{C'}{(|n|-2)^{2}} \\ &\leq \frac{C''}{N} \quad \text{(for } N > 4\text{)}. \end{split}$$

Since $||f_N|| = 1$, if N is chosen large enough then a contradiction with the first inequality of (1) is obtained, and the first part of Lemma 2 follows. \Box

Because of Lemma 2, we shall assume from now on that all the sequences we consider are finite disjoint unions of separated sequences.

Some of the conclusions of Theorem 3 follow immediately from Lemmas 1 and 2. When $U(\Lambda)$ is empty, $(e^{i\lambda_n t})$ cannot be a frame by Lemma 2. When

the cardinality of $\Lambda \cap [n, n+1]$ is unbounded, $(e^{i\lambda_n t})$ cannot be a frame by Lemma 1. If $(e^{i\lambda_n t})$ is a frame over some interval, by Lemma 2, Λ is a disjoint union of separated sequences. Consequently, each subsequence of Λ is such a union. If Θ is in $U(\Lambda)$ and has density $d(\Theta)$, then $\Lambda = \Theta \cup (\Lambda \setminus \Theta)$, where $\Lambda \setminus \Theta$ is a disjoint union of separated sequences. Again, using Lemma 2, we see that $R(\Lambda) \ge \pi d(\Theta)$. Hence

$$R(\Lambda) \ge \pi \sup_{\Theta \in U(\Lambda)} d(\Theta) = \pi D^f(\Lambda).$$

The purpose of the next section is to complete the proof of Theorem 3 by showing that $R(\Lambda) = \pi D^f(\Lambda)$.

It is perhaps worth noting that when Θ is a separated sequence of uniform density $d(\Theta)$, then $D^-(\Theta) = d(\Theta)$; this together with Theorem 2 establishes the conclusion of Theorem 3 in this case. Similarly, a slight improvement of this argument leads to the same conclusion if Θ is only separated. The main difficulty we shall have to deal with in the next part will come from the fact that Θ may not be separated.

4. A Determination of the Frame Radius

The key ingredient in this determination is given by the following proposition.

PROPOSITION 1. Let $\Lambda^1 = (\lambda_n^1)$ and $\Lambda^2 = (\lambda_n^2)$ be two disjoint sequences of distinct real numbers such that

$$|\lambda_n^1 - \lambda_n^2| \to 0$$
 when $|n| \to \infty$;

let us also suppose that $R(\Lambda^1)$ exists. Then

$$R(\Lambda^1) = R(\Lambda^1 \cup \Lambda^2).$$

The proof of Proposition 1 will use the two auxiliary lemmas that follow.

LEMMA 3. If a sequence of vectors e_n is a frame of a Hilbert space H, then the mapping $T: l^2 \to H$ defined by

$$T((a_n)) = \sum a_n e_n$$

is continuous and onto.

Proof. Let $g \in H$. Then

$$\begin{aligned} |\langle T((a_n)) | g \rangle| &= |\sum a_n \langle e_n | g \rangle| \\ &\leq \|(a_n)\| (\sum \langle e_n | g \rangle^2)^{1/2} \\ &\leq C \|(a_n)\| \|g\|. \end{aligned}$$

Hence T is continuous. Thus, to prove that T is onto it is sufficient to prove that, for any f in H, if f is orthogonal to all the e_n then f = 0. But this is a consequence of the first inequality of (1).

LEMMA 4. Suppose that a sequence of functions $(e_n)_{n\in \mathbb{Z}}$ is a frame of $L^2(I)$. Then $(e_n)_{n\neq 0}$ is a frame on each interval $I'\subset I$ such that |I'|<|I|.

Proof. The $(e_n)_{n\in\mathbb{Z}}$ are a frame of $L^2(I')$. Then, either $(e_n)_{n\neq 0}$ is a frame of $L^2(I')$, and we have nothing to prove, or the $(e_n)_{n\in\mathbb{Z}}$ are a Riesz basis of $L^2(I')$ (cf. [3, p. 186]). We now make this assumption.

Let f be a square integrable function defined on I, and vanishing on I' but not on I. By Lemma 3, $f = \sum a_n e_n$, with (a_n) in I^2 . Since the $(e_n)_{n \in Z}$ are a Riesz basis of $L^2(I')$, and f vanishes on I', we obtain that $a_n = 0$ for all n. Hence, f vanishes on I, and a contradiction is obtained.

Proof of Proposition 1. The proposition will be proved in two steps. The first step is to prove it under the stronger assumption that

$$|\lambda_n^1 - \lambda_n^2| \le \frac{1}{n^2}.$$

If this assumption holds, then

$$\begin{split} |\langle f | e^{i\lambda_n^1 t} \rangle - \langle f | e^{i\lambda_n^2 t} \rangle| &\leq ||f|| ||e^{i\lambda_n^1 t} - e^{i\lambda_n^2 t}|| \\ &\leq C ||f|| ||\lambda_n^1 - \lambda_n^2|| \\ &\leq C \frac{||f||}{n^2}, \end{split}$$

so that

$$||\langle f|e^{i\lambda_n^1t}\rangle|^2 - |\langle f|e^{i\lambda_n^2t}\rangle|^2| \le C' \frac{\|f\|^2}{n^2}.$$

We saw that $R(\Lambda^1 \cup \Lambda^2) \ge R(\Lambda^1)$. Let *I* be an interval over which $(e^{i\lambda t})_{\lambda \in \Lambda_1 \cup \Lambda_2}$ is a frame. There exist C_1 and C_2 such that

$$C_1 \|f\|^2 \le \sum_{\lambda \in \Lambda_1} |\langle f | e^{i\lambda_n^1 t} \rangle|^2 + \sum_{\lambda \in \Lambda_2} |\langle f | e^{i\lambda_n^2 t} \rangle|^2 \le C_2 \|f\|^2.$$

Let N be such that

$$C' \sum_{|n|>N} \frac{1}{n^2} \leq \frac{C_1}{2}.$$

Then

$$\sum |\langle f | e^{i\lambda_n^1 t} \rangle|^2 + \sum |\langle f | e^{i\lambda_n^2 t} \rangle|^2$$

$$\leq \sum_{|n| < N} |\langle f | e^{i\lambda_n^1 t} \rangle|^2 + \sum_{|n| < N} |\langle f | e^{i\lambda_n^2 t} \rangle|^2 + 2 \sum_{|n| \ge N} |\langle f | e^{i\lambda_n^1 t} \rangle|^2 + \frac{C_1}{2} ||f||^2,$$

so that

$$\frac{C_1}{4} \|f\|^2 \le \sum |\langle f | e^{i\lambda_n^1 t} \rangle|^2 + \sum_{|n| < N} |\langle f | e^{i\lambda_n^2 t} \rangle|^2 \le C_2 \|f\|^2.$$

Lemma 4 means that the frame radius is not changed by deleting one element of a sequence (hence also by deleting a finite number), so that Proposition 1 holds under the assumption $|\lambda_n^1 - \lambda_n^2| \le 1/n^2$. The general case will be a consequence of the following lemma (proved in [1]).

LEMMA 5. Let $(e^{i\lambda_n t})$ be a frame over I. There exists $\delta_1 > 0$ such that $(e^{i\mu_n t})$ is a frame over the same interval whenever (μ_n) is a real sequence such that $|\mu_n - \lambda_n| \le \delta_1$.

We can now complete the proof of Proposition 1.

Suppose that $|\lambda_n^1 - \lambda_n^2| \to 0$, and let R be less than $R(\Lambda^1 \cup \Lambda^2)$. Then $(e^{i\lambda_n^1 t}) \cup (e^{i\lambda_n^2 t})$ is a frame over [-R, R]. Let δ_1 be as in Lemma 5. Change λ_n^2 into $\mu_n = \lambda_n^1 + 1/n^2$, if n is such that $1/n^2 \le \delta_1/2$ and $|\lambda_n^1 - \lambda_n^2| \le \delta_1/2$. By Lemma 5, the set of functions $(e^{i\lambda_n^1 t}) \cup (e^{i\mu_n t})$ is a frame over [-R, R]. But, since $|\lambda_n^1 - \mu_n| = 1/n^2$ for n large enough, $R \le R(\Lambda^1)$. Thus

$$R(\Lambda^1) \leq R(\Lambda^1 \cup \Lambda^2),$$

and hence Proposition 1 is proved.

Let us call $V(\Lambda)$ the set of all the subsequences of Λ that are separated. Then the following lemma holds.

LEMMA 6. For any sequence Λ such that the cardinality of $\Lambda \cap [n, n+1]$ is bounded, the following equality holds:

$$\sup_{\Theta \in V(\Lambda)} D^{-}(\Theta) = \sup_{\Theta \in U(\Lambda)} d(\Theta) = D^{f}(\Lambda).$$

Proof. A sequence of uniform density is separated, so that

$$\sup_{\Theta \in V(\Lambda)} D^{-}(\Theta) \ge \sup_{\Theta \in U(\Lambda)} d(\Theta)$$

because, for a sequence Θ with a uniform density, $d(\Theta) = D^-(\Theta)$. Suppose that μ_n is a separated subsequence of Λ , with a lower uniform density D^- . Let $\epsilon > 0$. Choose R large enough so that $R(D^- - \epsilon)$ is an integer and

$$\frac{n^-(R)}{R} \ge D^- - \epsilon.$$

In each interval [kR, (k+1)R) there are at least $R(D^- - \epsilon)$ numbers μ_n . Extract a subsequence (γ_n) of (μ_n) that has exactly $R(D^- - \epsilon)$ elements in each of these intervals. The sequence (γ_n) is separated and

$$\left|\gamma_n - \frac{n}{D^- - \epsilon}\right| \le R$$

so that (γ_n) has a uniform density $D^- - \epsilon$, and

$$\sup_{\Theta \in U(\Lambda)} d(\Theta) \ge D^- - \epsilon.$$

This proves Lemma 6.

The two following lemmas are a slight generalization of Theorem 2.

LEMMA 7. If Λ is a finite union of separated sequences, then the limit

$$D^{-}(\Lambda) = \lim_{r \to \infty} \frac{n^{-}(r)}{r}$$

exists; $D^-(\Lambda)$ is said to be the lower density of Λ .

Proof. Define, for $r \ge 1$, the function $Q(r) = n^-(r)/r$. Let us first establish three simple properties of the function Q. Because of Lemma 1, there exists a constant C such that $n^-(r) \le Cr$. Thus Q is a bounded function.

Let p be an integer and I an interval of length pr. Let us write I as a disjoint union of p intervals I_1, \ldots, I_p , each of length r. For each k, the cardinality of $(\Lambda \cap I_k)$ is at least $n^-(r)$, so that the cardinality of $(\Lambda \cap I)$ is at least $pn^-(r)$; thus

$$Q(pr) \ge Q(r)$$
.

Let $\alpha > 1$. Obviously $n^-(\alpha r) \ge n^-(r)$, so that

$$Q(\alpha r) \ge \frac{1}{\alpha} Q(r)$$
.

Let

$$\bar{Q} = \sup_{r \geq 1} Q(r).$$

Given ϵ in (0,1/2), choose a positive and a positive integer n such that $Q(a) \ge \bar{Q} - \epsilon$ and

$$\frac{n+1}{n} \le \frac{1}{1-\epsilon}.$$

Consider $x \ge na$. There exists an integer p at least equal to n such that

$$pa \leq x < (p+1)a$$
.

Then

$$Q(x) = Q\left(\frac{x}{pa}pa\right) \ge \frac{pa}{x}Q(pa) \ge \frac{pa}{x}Q(a) \ge \frac{pa}{x}(\bar{Q} - \epsilon)$$
$$\ge \frac{pa}{(p+1)a}(\bar{Q} - \epsilon) \ge \frac{n}{n+1}(\bar{Q} - \epsilon) \ge (1 - \epsilon)(\bar{Q} - \epsilon).$$

Hence Lemma 7 is established.

LEMMA 8. If Λ is a finite union of separated sequences, the frame radius of Λ is at most $\pi D^-(\Lambda)$.

Proof. Let Λ be a finite union of disjoint separated sequences. Then, for each δ , one can find a single separated sequence Λ' such that

$$|\lambda_n - \lambda'_n| < \delta.$$

From Lemma 5, if δ is small enough then the frame radius of Λ' will be at least the frame radius of Λ . But

$$D^-(\Lambda) = D^-(\Lambda')$$
.

Because of Theorem 2,

$$R(\Lambda') \leq \pi D^{-}(\Lambda')$$
,

so that

$$R(\Lambda) \leq \pi D^{-}(\Lambda)$$

and Lemma 8 follows.

We can now complete the proof of Theorem 3. It remains only to show that

$$R(\Lambda) \leq \pi D^f(\Lambda)$$

for a sequence Λ which is the union of k separated sequences.

The idea of the proof is to split Λ into a separated sequence Ω of uniform density at least $D^f(\Lambda) - \epsilon$, a finite union of sequences Γ^i each of which tends to Ω (or a subsequence of Ω), and a remaining sequence Θ of lower uniform density at most $3k\epsilon$.

Suppose that such a splitting is achieved. Then, by Proposition 1, we can disregard the Γ^i in the calculation of the frame radius, and by Lemma 8, the frame radius of $\Omega \cup \Theta$ is at most $\pi(D^f(\Lambda) + 3k\epsilon)$. Thus Theorem 3 will be proved once this splitting of Λ is constructed.

Let ϵ be fixed. We can extract from Λ a sequence $\Omega = (\omega_n)$ which has a uniform density at least $D^f(\Lambda) - \epsilon$ and is separated. We now construct the sequence $\Theta = (\theta_n)$ by induction. We do this construction only for positive values of λ_n ; it is the same for the negative values. Let

$$E_1 = \bigcup_{\omega_n \ge 0} [\omega_n - 1, \omega_n + 1].$$

Let $\Theta^1 = (\theta_n^1)$ be the subsequence of Λ composed of all the $\lambda_n > 0$ which are not in E_1 . The sequence Θ^1 is the union of at most k separated sequences, none of which has a density larger than 2ϵ ; for, if such a subsequence Σ had a density larger than 2ϵ , then the union of Σ and Ω would be a separated subsequence of Λ with a density at least $D^f(\Lambda) + \epsilon$, which is impossible. Thus $D^-(\Theta^1) \leq 2k\epsilon$, and there exists an interval I_1 large enough such that the number of θ_n^1 in I_1 is less than $3k\epsilon |I_1|$.

Let $A_1 = \sup I_1$ if I_1 does not intersect E_1 ; otherwise, let p be the largest integer such that

$$I_1 \cap [\omega_p - 1, \omega_p + 1] \neq 0;$$

then $A_1 = \omega_p + 1$. The beginning of the construction of Θ is as follows: $\theta_n = \theta_n^1$ if $\theta_n^1 \le A_1$.

The induction now works as follows. We suppose that Θ is constructed for $\theta_n \leq A_{m-1}$. We now define the set

$$E_m = \bigcup_{\omega_n \ge A_{m-1}} \left[\omega_n - \frac{1}{m}, \omega_n + \frac{1}{m} \right],$$

and the sequence Θ^m which is composed of the λ_n larger than A_{m-1} that are not in E_m . We can find by the same argument as above an interval I_m included in $[A_{m-1}, +\infty)$, of length at least m and such that the number of elements of the sequence Θ^m in I_m is less than $3k\epsilon |I_m|$. Let $A_m = \sup I_m$ if I_m does not intersect E_m ; otherwise, let p be the largest integer such that

$$I_m \cap \left[\omega_p - \frac{1}{m}, \omega_p + \frac{1}{m}\right] \neq 0;$$

then $A_1 = \omega_p + 1/m$. The sequence Θ for $A_m < \theta_n \le A_{m+1}$ is composed of the elements of Θ^m in the same interval.

Once the construction of Θ is achieved, we have finally split Λ into a sequence Ω of uniform density $A - \epsilon$, a sequence Θ of lower density less than $3k\epsilon$ (because the number of elements of Θ in I_N is at most $3k\epsilon |I_N|$), and a remaining sequence included in a set

$$E = \bigcup [\mu_n - \alpha_n, \mu_n + \alpha_n],$$

where the α_n are certain 1/m, and are such that $\alpha_n \to 0$; this sequence can obviously be written as a finite union of sequences Γ_i , each of which tends to Ω or a subsequence of Ω . The requested splitting is thus performed and Theorem 3 is proved.

ACKNOWLEDGMENT. The author wishes to thank Douglas G. Dickson for many helpful suggestions about the redaction of this paper, and Robert M. Young for his encouragement.

References

- 1. R. J. Duffin and A. C. Schaeffer, *A class of nonharmonic Fourier series*, Trans. Amer. Math. Soc. 72 (1952), 341–366.
- 2. H. J. Landau, Necessary density conditions for sampling and interpolation of certain entire functions, Acta Math. 117 (1967), 37-52.
- 3. R. M. Young, An introduction to nonharmonic Fourier series, Academic Press, New York, 1980.

L.A.M.M. (C.E.R.M.A.) Ecole Nationale des Ponts et Chaussées La Courtine, 93167 Noisy-le-grand France