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1. Introduction

Let G be a bounded, simply connected region in the complex plane C. For
0< p<oo, let LY(G)={f:f is analytic in G and {|f|PdA <oco (dA is arca
measure)} and H”(G) = {f: f is analytic in G and | f|? has a harmonic major-
ant in G} denote (respectively) the Bergman and Hardy spaces in G. Note that
for 1 < p<o, LP(G) is a Banach space with respect to the norm | f| LE(G)*=
{f|.f|PdA} Ji/p and when p =2, is a Hilbert space with respect to the inner
product {f, g);2)'= §g f8dA. As is known, any function 4 in H?(G) has
well-defined boundary values / belonging to L”(w,), where w,=w(-, G, )
denotes harmonic measure on dG (for G) evaluated at a fixed point « in G.
For 1< p <, this allows us to define a norm on H”(G) by

W= {Sacif'ma}”"

and an inner product on H?(G) by

S riy=|,_J@)da,.

HP(G) is a Banach space with respect to |-|x») and H*(G) is a Hilbert
space with respect to {-,-)y2(sy. By Harnack’s inequality, replacing o with
another point 8 in G leads to an equivalent norm on H”(G). An alternate
perspective on H?(G) is as follows. Let ¢ be a conformal map from the unit
disk D:={z:|z| <1} onto G such that ¢(0)=«a. For 0< p <1, define G, =
o({z:]|z] <p}) and let w,:=w(-, G,, «) be harmonic measure on 3G, eval-
uated at «. Then an analytic function f defined in G belongs to H”(G) if
and only if lim,_, {36, f | dw, <o, that is, if and only if fe¢ belongs to the
Hardy class H”(D). For more detail on Hardy spaces in general domains, we
refer the reader to [Du], [Fi], and [Go]; see also [Kh] and references cited
there.
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Define the shift operator MZG on each of the spaces L2(G) (the Bergman
space) and H*(G) (the Hardy space) by ME(f)=zf. In this paper we study
the following question: For which G is the Bergman (resp., Hardy) shift
ME cyclic?

Recall that an operator 7 on a (complex) Hilbert space JC is said to be
cyclic if there exists h in JC such that {p(T)Ah: p is a polynomial} is dense in
JC. In that case A is called a cyclic vector for T in JC. A basic account on
cyclic vectors for shifts on Hardy and Bergman spaces can be found in [Shi].
A good general reference for this material is [Co]. We remark that the ques-
tion of whether 1 is a cyclic vector for ME on L3(G), that is, whether the
polynomials are dense in L2(G), has been thoroughly studied by a number
of authors (see, e.g., [Br], [CM], [Kel], [Ke2], [Me], [Si]; see also [MS],
[He], and [Shi] for further references). The counterpart of this problem for
H?(G) was treated in [Ak] and [Ro].

The rest of this paper is organized as follows. Section 2 contains some
basic facts about Hardy and Bergman spaces and some auxiliary estimates
which will prove useful later in the paper. In Section 3 we discuss various
examples of simply connected non-Carathéodory domains G (e.g., cres-
cents), some of which have the property that the shift MZG on H?*(G) is cyclic
and yet is without 1 as a cyclic vector, and others such that ML on H*(G) is
not cyclic. In Section 4 we treat the Bergman shift. We note that, surpris-
ingly, for crescents G there is little difference between when the shift MZG on
L2(G) and the shift MC on H?(G) are cylic (cf. Theorems 4.1 and 4.7). Sec-
tion 5 contains some further remarks on the problems discussed here and
some open questions.

ACKNOWLEDGMENT. At the early stages of working on these problems
the authors communicated with the late Professor Allen Shields, whose
death in September of 1989 tragically interrupted our collaboration. We
want to dedicate this article in remembrance of him as a small token of our
love and respect for a close friend, an excellent mathematician, and a kind
man.

2. Preliminaries

Some of the results in this section are well known and so we shall state them
without proofs.

2.1. PROPOSITION. Let G be a bounded, simply connected region with
rectifiable boundary. Choose o in G and let w,:=w(-, G, a) be harmonic
measure on 8G evaluated at o. Let  be a conformal map from G onto D :=
{2:|z| <1} such that y(a) =0. Then dw = |y’|ds, where ds is arclength mea-
sure on 8G and ' is understood in the sense of nontangential boundary val-
ues. In particular, if 0G is smooth then w, is boundedly equivalent to arc-
length measure.
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For a simple proof of Proposition 2.1, see for example [Go].

2.2. EXAMPLE. Consider the slit disk D\[0, 1]. In this case, dw|o, =
|¥4|ds+ |y’ |ds, where ¥ and ¢’ are the boundary values of ¥’ on [0,1]
from above and below, respectively.

The next result is due to L. I. Hedberg (unpublished). For an indication of
the proof see [Shi].

2.3. THEOREM. Lef G be a bounded region such that aG is a finite union
of continua. Then the bounded analytic functions in G are dense in L2(G).

2.4. REMARK. The corresponding statement for H*(G), if G is simply
connected, is obvious in view of the conformal invariance of H*(G) (e.g.,
cf. [Fi]).

The following lemma is from [Sha]. For the sake of completeness we shall
give a proof. ‘

2.5. LEMMA. If Gisa bounded, simply connected region and p is a poly-
nomial such that p(z) #0 for all 7 in G, then pL:(G):={pg: g€ L%(G)) is
dense in LX(G).

Proof. 1t will suffice to show that (z —()L2(G) is dense in L2(G) whenever
B¢ G. Fix 8 in C\G. Since G is simply connected, there is a single-valued
analytic branch of log(z— ) in G and hence (z—8)"?, (z—B8)"V?e L(G).
So, if g is a bounded, analytic function in G, then (z —8)~"2g € L2(G). Con-
sequently, g € (z—8)"2L2(G). By Theorem 2.3, (z—8)"?L2(G) is dense in
L%(G). Therefore, (z—B)L2(G) is dense in L2(G). O

The same holds for H%(G).

2.6. LEMMA. If Gis a bounded, simply connected region and p is a poly-
nomial such that p(z) #0 for all z in G, then pH*(G) is dense in H*(G).

Proof. Fix 8 in C\G. Now (z—@) and (z—8)"! are both univalent in G
and hence (see [Du, p. 50]) are both in H?(G) whenever 0 < p < . There-
fore, (z—B)'5, (z—B)~'° e H*(G). Arguing as in Lemma 2.5, we complete
the proof. O

The following lemma relates the Bergman space of a given region G to the
Hardy space of certain subregions in G.

2.7. LEMMA. Let G be a bounded, simply connected region and, for any
zin G, deﬁne r.:=dist(z, dG). Let D be a simply connected region contained
in G and w,:=w(-, D, a) be harmonic measure on oD evaluated at some
fixed point o in D. If jaD(l/rz)dwa(z) <o then, given any fin L:(G), fe
H?*(D) and
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1 1
Salelzdwa: | /1720y =l f132G), where c=— Sa — dwy(2).

T JaD r}

Proof. Let ¢ be a conformal map from D ={z:|z|<1} onto D such that
¢(0)=a. For 0<p<1, let D,=¢({z:|z|<p}) and let w,=w,(-,D,, a) be
harmonic measure on dD, evaluated at . For z in G, let A, ={{:|{—z|<
r.}. If fe L2(G), then

SD |f|2dwp=§ ;

W—rzszdA
A

2
dw,(z)

aD,
Z

< pr }%?GAS |f|2dA> da, (2)

Z

1 1 5

<{— —d .

(71' SaD rzz wp)”f"Lg(G)

Now it is well known that z+~ 1 /rzz is subharmonic in G. Hence,

1 1
SD | /7 dw, = (; SaD 2 dwp)llfll’ig(a)
]

(o)
1 1
= (; SaD g dwa>”f“1,§(0)-
If jaD(l/rzz)dwa(z)<oo then, by letting p — 1, we see that fe H*(D) and

furthermore that

— 1
2dw. .= 2 2 , h —
Saolfl wo=|f 20 —<c"f||L§(G) where ¢ WS

iz dw,. L]
rZ
The next lemma could be called the “edge-of-the-wedge estimate” for har-
monic measure.

2.8. LEMMA. Let G beaJordan domain with rectifiable boundary such that
dG is smooth, except at one point z, where dG forms an angle 0, 0 <0 < .
Let m=w/0 and fix o in G. Then, near zZ,, dw,:=dw(-, G, ) is boundedly
equivalent to |z—zo|" " 'ds, where ds is arclength measure on dG.

Proof. Let ¢(z) = (z — z¢)™. Now ¢ maps a portion of G near z, onto a
smoothly bounded domain G’. By Proposition 2.1 and conformal invari-
ance of harmonic measure,

dw,(z) :=dw(z, G, a) =dw(e(z), G, ()

~d|e(2)|=z—z0|" "' d|z]|
near z. O]

3. The Shift Operator on the Hardy Space

3.1. DEFINITION. A region G in Cis called a crescent if G =D\, where
D and Q are Jordan regions such that 2 € D and QN aD is a single point (the
multiple boundary point of G).
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If G is a crescent then C\ G has two components, one of which is bounded.
Denote the bounded component of C\G by Q.

3.2. THEOREM. Let G be a simply connected region and suppose there is
a crescent G’ such that G'< G and (C\G)NQs # D. Choose ain G’ and
in Qg and let w,=w(-,G’,a) and vg=w(-, ¢, B) be harmonic measures
Jor G’ and Qg, respectively. If there exists a positive constant ¢ such that
vg < cw, on dQ¢, then the shift ME on H*(G) is not cyclic.

Proof. Suppose to the contrary that M on H*(G) is cyclic and that fin
H*(G) is a cyclic vector for MZ. Clearly f #0, and since f€ H*(G), log|f| €
L'(w,), where f denotes the boundary values of f. Since »g < cw, on 49,
f is defined vg-a.e. on 3Q¢- and log|f| € L' (vg).

By our assumption that f is a cyclic vector for ML on H*(G), {pf: p
is a polynomial} is dense in H*(G). Now we may assume that in fact 8¢
(C\G)NQg.. So, by Lemma 2.6, {pf: p is a polynomial and p(8)=0] is
dense in H*(G). In particular, there exists a sequence of polynomials { DPnl
such that p,(8) =0 for all » and | p, f— f|n2G)— 0 as n — . Since G'C G,
it follows that fe H*(G’), and also that | S =S 26y < | PuSf =26
where both norms are taken with respect to harmonic measure evaluated at
o. Therefore,

b

86,

|Pu=1PI P dvg=| | puf~F P dvy
80

F_ Fl2 F_ fl2
SCSaQG,lpnf /] dwaSCSaG,lpnf S deq

=Cnpnf""f"%12(c')—’0 as n — oo,

Applying Szegd’s theorem [Ga, p. 136], we conclude that 2 log| /| & L'(z),
which is a contradiction. So, ME on H?*(G) is not cyclic. O

Let us now introduce some more notation. For 0 <0 <, let V(8) =co({z:
|z| =sin(8/2)}U(1}), that is, the closed convex hull of {z:|z|=<sin(6/2)}U
{1}; see Figure 1. Notice that dV(0) is smooth except at z =1, and there,
dV(0) forms an angle 0. Let G(8) = {z: |z| <1}\ V(8); see Figure 2.

3.3. COROLLARY. If 0<60<m/3, then the shift MSY on H*(G(9)) is
not cyclic.

Proof. If 0 =0 < w/3, then G(w/3) € G(0) and (C\G(9)) N QG(ry3) # 9.
Choose « in G(w/3) and 8 in int(V(n/3)) = Qg(,/3), and let
we=0(,G(7/3),a) and vg=w(-,int(V(x/3)),B).

According to Lemma 2.8, dw, restricted to dV(w/3) and dvg are both bound-
edly equivalent to |z —1|*ds, where ds is arclength measure on 8V (x/3). Ap-
plying Theorem 3.2, we complete the proof. ]
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Figure 1

Figure 2

3.4. REMARK. Notice that G(0) is the slit disk D\[0,1]. So, in partic-
ular, Corollary 3.3 implies that the shift on the Hardy space of the slit disk
is not cyclic.
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3.5. LEMMA. Let G and G' be bounded, simply connected regions and
let ¢ be a conformal map from G onto G'. If ¢ is uniformly approximable
by polynomials on G and ¢~ is uniformly approximable by polynomials
on G’, then ME on H*(G) is cyclic if and only if ME on H*(G") is cyclic.

Proof. Suppose ME on H*(G) is cyclic with cyclic vector f; we may as-
sume that | f] 2= 1. It suffices to show that fep~'is cyclic for M on
H?*(G"). Now choose g in H*(G’). Then gep e H*(G). Fix ¢>0. Since f
is a cyclic vector for ME on H*(G), there exists a polynomial p such that
|of — g°¢| n%c) < €. By the uniform continuity of p on G and our hypothe-
sis, we can find a polynomial g such that
|pee ™ = pogle:=max|p(p~'(W)) - p(g(W))| <k,
we G’

where Q:= pegq is a polynomial. A simple application of the triangle inequal-
ity then yields (| /]2y =10~ ln2cH=1):

Q- (fee ™ ) —glureh=I(poe™) (feo Y —glureh +el foe N n2e
=|pf—gee|n2c)te<2e,
and the result follows. ]

3.6. THEOREM. If 7/2=<0<, then ME® on H*(G(9)) is cyclic and yet
1 is not a cyclic vector for ME®,

Proof. In [AK] it was shown that the polynomials are not dense in H*(G(8))
and so 1 is not a cyclic vector for MZ® on H*(G(0)). Note that among those
crescents that narrow “tangentially” at their multiple boundary points, there
are some for which the polynomials are dense in their respective Hardy spaces
and others for which they are not. If G is a crescent bounded by two inter-
nally tangent circles, then the polynomials are dense in H*(G) (see [Ak]).

Now let S(z) =(1—2z)% and E(0) = S(G(0)). E(0) is a crescent with mul-
tiple boundary point 0. Clearly S is a polynomial and S~ }(w) = 1—+/won
E(9) is a uniform limit of polynomials. Therefore, by Lemma 3.5, MZ® on
H?*(G(#)) is cyclic if and only if ME® is cyclic.

Let p:=w(-, £(0), a) be harmonic measure on dE(0) evaluated at some
point « in E(0). Applying Lemma 2.8 we can find a positive constant ¢ such
that in a neighborhood of 0, du <c|z|d|z|. Therefore 1/z € L'(x); in fact,
1/z € LP(n) whenever 0 < p < 2. So, if ¢ is a conformal map from D:= [¢:
|£] <1} onto E(#) and dm denotes normalized arclength measure on 4D,
then h:=exp(—1/|¢|) is in L*(dm) and log(h) € L'(dm). Consequently,

1 2 eit_*_g
27 S eit—¢
is an outer function in H*(D), and if F denotes the nontangential bound-
ary values of F then |F(e")| =|h(e")| a.e. Let f=Fop ' and f=Fog™\.
Since F is an outer function, FH?*(D) is dense in H?(D) and so fH*(E(6))
is dense in H2(E(6)). Hence, in order to show that f is a cyclic vector for

F(S):zeXp( Iog[h(e”)ldt)



198 J. AKEROYD, D. KHAVINSON, & H. S. SHAPIRO

ME® on H?(E(0)), it suffices to show that {pf: p is a polynomial} is dense
in fH?(E(9)).

To this end, choose g in L*(|f|>dp) such that 5, pg|f|*du=0 for all
polynomials p. For { in C\dE(#), consider the Cauchy transform

) ()| f(2)]?
gryi=|  SQIDE

E®O  z2—¢
Notice that there exists A >0 such that A:={{:[¢—N <N} S S(int(V(9))) =
Qr6)s this__is why we are considering F () rather than G(6).

Now |f(§)|2=exp(—2/|z|)dy—a.e. on dE(#). Thus, it is easily seen that
1/z"e L*(| f|*dp) for all positive integers n, and in fact 1/z"€ P*(| f]*dp)
(=the closure of the polynomials in L?(| f|?du)) since

1 (P,
Grijky " zr MU Fd) as ke
and, by Runge’s theorem, 1/(z+1/k)” is uniformly approximable by poly-
nomials in E£(#). Moreover, since harmonic measure has total mass 1 and
the maximum of x ~2"exp(—2/x) on (0, ) is (n/e)",

- ) 1/2
e lar={{ o 2P

for all positive integers n. Therefore, 3°_,|z |7 "" = .
For z in E(0)\ {0}, ¢ in A, and any positive integer #,
1 1 f”_] f”

—— =t + :

z2—§¢ z z" 2"(z—¢)
As z~ £¥=Y/z%e P2(| f|*dy) for any positive integer k, and g L P2(| f|®dy),
it follows that - 1

£(2)| f(z)|

aE®) 2Mz—F)

Now there exists a positive constant ¢ such that |z—{|=c|z|* for any z in
E(6) and ¢ in A. Applying the Cauchy-Schwarz inequality, we obtain that,
for all {in A,

du(z).

8(5) = s“S du(z).

|&(5)| =const|¢|"]glalz™" %2
<const|{|"M,,

where |- |, denotes the norm in L2(| f|*dy) and I, M, /" = co. Moreover,
applying the Cauchy-Schwarz inequality and rescaling if necessary, we may
assume that the sequence {M,} is log-convex (cf. [CM]). From a classical re-
sult of Carleman [Cal], it follows that g|, =0. Thus, the polynomials are
dense in R2(E(0), | f|*du) (=the closure in L2(| f|*dp) of the rational func-
tions with poles off E(@)). Since the rational functions with poles off E(0) are
dense in H*(E(0)), we have that, given any function k in H*(E(0)), there
exists a sequence of polynomials {p,} such that

||Pnf—kf||'}12(5(0))=s |Pnf—/€f|2d#=§ |Pn“1€|2lf|2dﬂ—’0

3E(0) JE(6)
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as n — o. Therefore, {pf: p is a polynomial} is dense in fH?*(E(0)) and so,
by previous observations, ME® on H*(G(6)) is cyclic. O

The following corollary is just a restatement of Theorem 3.6.

3.7. COROLLARY. Ifwn/2=<60<mwand ¢isaconformal map fromD:={z:
|z| <1} onto G(0), then the analytic Toeplitz operator T,, on H*(D) defined
by T,(f)=ef is cyclic and yet 1 is not a cyclic vector for T,.

3.8. REMARK. For any crescent G, the geometry of G near its multiple
boundary point is primarily what determines whether or not MZG on H*G)
is cyclic. One can therefore easily generalize Theorem 3.6 by replacing G(0)
with any crescent which has the same geometry as G(0) near z =1.

4. The Shift Operator on the Bergman Space

For which G does ML on L2(G) (resp., on H?(G)) have 1 as a cyclic vector?
The answer to this question in the context of Bergman spaces differs consid-
erably from that of Hardy spaces (cf. [Br], [CM], [Kel], [Ke2], and [Ak]).
However, at least for crescents, the answer to the related question —For which
G is ME on L%(G) (resp., on H*(G)) cyclic?—turns out to be surprisingly
similar in both cases.

Given 0<0 <, let V() and G(8) be as in Section 3.

4.1. THEOREM. If G is a bounded, simply connected domain and there
exists 0 (0 <0< 7T) such that G(0) € G and (C\G) N\ Qg # 0, then ME on
L2(G) is not cyclic.

Proof. Let o= %(3—0), define D(6) = (int V(7 —0))\ V(8 + o), choose « in
D(60), and let w,:=w(-, D(0), ) be the harmonic measure on dD(0) evalu-
ated at «. Since the angle between the outer and inner boundaries of D(8) at
the multiple boundary point 1 is precisely 7, we can apply Lemma 2.8 and
conclude that dw is boundedly equivalent to [z —1|?>d|z| in a neighborhood
of 1. Therefore, if r, =dist(z, dG) for z in G (as in §2), then

c= lx -15 dw(z) <o
T JaD(6) 7

(r;=|z—1|sino for z in 3aD(#)). So, by Lemma 2.7, if fe L3(G) then fe

H?*(D(9)) and

2 2 2
d = 2 =< 2 .
Saz)(o)[fl w=|fr2pen=clfli2e
Suppose that M on L2(G) is cyclic and that f is a cyclic vector for ME.
Fix 8 in (C\ G)N Qg It follows from Lemma 2.5 that (z—g8)*f is also a
cyclic vector for MZG on L2(G) for any positive integer k. Therefore, for any
positive integer k, there exists a sequence of polynomials {p,} such that
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I(Z _ﬁ)kfp”— 1 ,zdwoz = "(Z —3)kfpn—1”%12(0(6))
= C"(Z —B)kfprz_"lﬂig(G) -0

as n— 0. Since (z—B) ¥ is bounded on D(#), evidently

S()D(G)

§8D(0)'fpn_ (Z_B)_klzdwa -0

as n— o. Because the rational functions with poles off D(6) are dense in
H?(D(6)), Runge’s theorem implies that f is a cyclic vector for M2® on
H?*(D(9)). However, 0+ = §+ ¢ <3 and so, if vg:=w(-, p),B) is har-
monic measure on 3y, = V(6 + o) evaluated at 8, then (by Lemma 2.8)
dvg <const|z—1|**¢d|z| for some >0 in a neighborhood of z=1. Since
dw, is boundedly equivalent to |z —1|?d|z]| in a neighborhood of z =1, it fol-
lows from Theorem 3.2 that MP® on H?*(D(0)) cannot be cyclic. There-
fore, we conclude that MZG on L2(G) is not cyclic. L]

A slight modification of the above argument yields the following (cf. Corol-
lary 3.3 and Remark 3.4).

4.2. COROLLARY. If G is a disk with finitely many radial slits, then MS
on L%(G) is not cyclic.

As in the proof of Theorem 4.1, one can use Lemma 2.7 to show that, if
MPE on L(G) is cyclic, then there exist subregions D of G such that (aD)N
(dG) # @ for which MP on H*(D) is cyclic. Conversely, it turns out that if
the boundary of G is rectifiable then M being cyclic on H?*(G) implies that
it is cyclic on L2(G). In order to show this, we must recall the concept of
Smirnov classes.

4.3. DEFINITION. An analytic function f in a simply connected domain
G with rectifiable boundary is said to belong to the Smirnov class E,(G) if
there exists a system of rectifiable Jordan curves {I';} in G such that I'; - dG
and sup; || f(2)|°d|z] <0, 0 < p <co.

Let ¢: D — G be a conformal map of the unit disk onto G and let Yy =¢ ™!

be its inverse. For 0< p <1, let I', = ¢({z: |z| < p}). The following result of
Keldys and Lavrent’ev (see [Du, Cor. to Thm. 10.1]) provides a link between
Smirnov and Hardy classes.

4.4. THEOREM. For 0< p<oo, the following are equivalent:

(i) feE,(G);
(ii) supo<,<ifr,|f(2)|"d|z| <eo;
(iii) f-[¥']1"YPe H?(G).

4.5. COROLLARY. A function fin E,(G) has well-defined nontangential
boundary values f a.e. on 3G, and
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N 1/p
Flear={{ J@paizl] <.

Moreover, for 1 = p < o, E,(G) is a Banach space with respect to the
norm |-|g,), and the mapping f~ f-[¥'1~ VP is an isometry of E,(G) onto
HP(G).

The following “isoperimetric inequality” is due to Carleman [Ca2]. For a
different proof see [Ar].

4.6. THEOREM. Let G be asimply connected region with rectifiable bound-

ary. Then : 5
[Jirpaa= (1, l7@ai)

Jorall fin E\(G).
With these preliminaries we can prove the following.

4.7. THEOREM. Let G be a simply connected region with rectifiable bound-
ary. If ME is cyclic on HX(G), then it is also cyclic on L3(G).

For the proof we need two simple lemmas.

4.8. LEMMA. Let G be as above and let Y be a conformal map of G onto
the unit disk. Then {f-\¥': fe H®(G)} is dense in E»(G).

Proof. 1t suffices to observe that H*(G) is dense in H*(G) and then apply
Corollary 4.5. O

4.9. LEMMA. [f fis a cyclic vector for ME on H*(G), then f-\{' isa
cyclic vector for MZG on E>,(G) (G and  are as in Lemma 4.8).

Proof. Choose g in H*(G). By our hypothesis there exists a sequence of
polynomials §{p,} such that | p, f—g| 2 — 0 as n— c. By Corollary 4.5,

l]g‘\/?""panHEz(G) = "g—‘pnf"Hz(G) -0

as n — co. Applying Lemma 4.8, we complete the proof. 0

Proof of Theorem 4.7. Let f be a cyclic vector for M€ on H?(G) and choose
g in H*(G). By Lemma 4.9, there is a sequence of polynomials {p,} such
that | p,fV¢'— g|| E,(Gy— 0 as n— o. Then, by applying Theorem 4.6 and
the Cauchy-Schwarz inequality, we obtain

| SNV —2li26y < ‘—G Ipnf\/_—gldlZI)

1 .
< 7 1Pn SN — gl ) [Perimeter(G)]* 0

as n— co. By Theorem 2.3 the proof is now complete. U
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4.10. COROLLARY. If n/2=<60<m, then MY on L:(G(9)) is cyclic and
yet 1 is not a cyclic vector for MEL®),

Proof. By Theorems 4.7 and 3.6, MF® on L2(G(8)) is cyclic. To see that |
is not a cyclic vector for ML on L2(G) (i.e., that the polynomials are not
dense in L2(G)), one may combine Corollary 3.7 with [Bo, Cor. 3.4]. ]

4.11. REMARK. If G is a crescent bounded by two internally tangent cir-
cles, then 1 is a cyclic vector for M on H*(G) (see [Ak]). On the other
hand, polynomials are not dense in L2(G) (see, e.g., [CM], [Ke2], or [Si])
and therefore 1 is not a cyclic vector for M on L2(G). However, by Corol-
lary 4.10, ME on L%(G) is cyclic.

5. Concluding Remarks

1. Corollary 4.2 has an independent proof based on a totally different idea
which we think is worth sketching here. To fix the ideas, we assume that G =
D\ [0, 1]. The following statement is obvious.

5.1. LEMMA. For z in G let r,=dist(z,0G). If fe LX(G) then | f(z)| =
27 fl 26

5.2. LEMMA. Let f be in L2(G) such that f has no zeros in G. Then there
are positive constants ¢, and ¢, such that, near the slit (0,1),

c —c
(5.2.1) |f(z)| = —lexp( 22).

r, r;
Proof (sketch). First we note that if /# is bounded in the disk of radius R
(0<R<1), thatis, if 0<|h(z)| <M in Dgp:={z:|z| <R}, then

M
v(z):=log(————|h(z)l)

is a positive harmonic function in Dg. Therefore, by Harnack’s inequality,
v(z) <2Rv(0)/(R—|z]|) and so

(5.2.2) |h(z)|2Mexp<— L),

R—|z]
where o = 2R log(M/|h(0)|).

For h in L2(Dy) we apply (5.2.2) to h,(z):=h(rz), where 0 <r <1and M
is estimated by Lemma 5.1. This will give 5.2.1 for Dg. To obtain the esti-
mate in G near (0, 1) it suffices to use a conformal map from Dg onto a half-
disk whose “diameter” is a segment in [0, 1]. ]

The following lemma is one of many versions of a celebrated Beurling-Lev-
inson theorem (see, e.g., [Le]; see also [Do] and [Sj06]).
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5.3. LEMMA. Let F(y) be a monotone decreasing function on {y:0<
Y<R} with F(y)—>oasy—0. Let §={f: fisanalyticin Dg:={z:|z| <R}
such that | f(z)|<F(|ly|); z=x+iy}. If

R
So log*tlogt F(y)dy <,

then ¥ is a normal family in Dy,.

Proof of Corollary 4.2. Suppose to the contrary that M on L2(G) has a
cyclic vector f. Then f(z)# 0 for any z in G and there exists a sequence of
polynomials {p,} such that p, f — 1in L3(G). Hence, | p,f12() = ¢ <o for
all n, and, by Lemma 5.1, we have

(5.3.1) | Du(R)| < c(x'Pr| f(2)) 7.

Then Lemma 5.3, together with estimates (5.2.1) and (5.3.1) on a sufficiently
small disk A centered on (0, 1), imply that {p,} forms a normal family in A.
Also, p,(z)—1/f(z) for all z in G. So, the sequence {p,(z)} converges for
all z in A; therefore 1/f and also f extend analytically to A. By increasing
the radius of A, we obtain that f must be analytic in D. This contradicts our
assumption that f is a cyclic vector for MF on L2(G), since, for example,
vz € L3(G). The result now follows. O

2. We have not been able to produce an example of a domain G for which
MPE on L2(G) is cyclic and yet, on H*(G), MC is not cyclic. Lemma 2.7 and
Theorem 4.7 seem to suggest a “wild” conjecture that ML on H?*(G) is cyclic
if and only if it is cyclic on L2(G), but this appears highly unlikely.

Another interesting problem would be to construct a non-Carathéodory
domain G for which ML on L%(G) has a cyclic vector which is not in the
Nevanlinna class in G. All cyclic vectors produced in this paper are in the
Nevanlinna class.

3. Itis not hard to see that, in all examples of regions G considered in this
paper, the operator MZG is two-cyclic; that is, there exist two vectors fand g
in H*(G) (resp., in L2(G)) such that {pf+qgg: p and g are polynomials] is
dense in H*(G) (resp., in L2(G)). Is this true for any simply connected do-
main G? The closest analogy which may be relevant here is the well-known
fact that the algebra R(K) on any compact set K in C always has two gen-
erators. ’

ADDED IN PROOF.

1. Professor P. Bourdon has kindly pointed out to us that the rectifiability
hypothesis in Theorem 4.7 can be omitted and the proof significantly simpli-
fied by means of the following argument.

Let o: D — G, ¥ = ¢! be as in Section 4. If f is a cyclic vector in H%(G),
then {p(z)f:p is a polynomial} is dense in H*(G) and hence {p(¢)f(¢):
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p is a polynomial} is dense in H2(D). Since H2(D) C L2(D) is dense in L2(D),
{p()f(e): p is a polynomial} is dense in L2(D). Changing variables, one
can readily see that {p(z)[fy’]: p is a polynomial} is dense in L2(G). So,
Sy’ is a cyclic vector for M, on L2(G).

We also note that the fact that £y’ (instead of f\/¥’) is cyclic in L2(G) can
be extracted from the argument in the paper if we replace fv¢’ by fy’ and
E,(G) by E{(G) in Lemma 4.9, and then use the full strength of Carleman’s
estimate 4.6.

2. After this paper was submitted, the authors learned of the recent work
by B. M. Solomyak and A. L. Vol’berg (Multiplicity of analytic Toeplitz
operators, Oper. Theory: Adv. Appl., 42, pp. 87-192, Birkhiduser, Basel,
1989), which provides an affirmative answer to our Question 3 in Section 5
and also contains far-reaching generalizations concerning multi-cyclicity of
the shift on the Hardy space.

The relation between cyclicity of the shift on the Hardy space (but not on
the Bergman space) on crescents and size of angles at the double point has
already been noted by N. K. Nikol’skii (Outlines for the computation of the
multiplicities of the spectra of orthogonal sums, J. Soviet Math. 27 (1984),
2521-2526), although his arguments are fairly different from ours. The au-
thors are grateful to Professor A. L. Vol’berg for bringing these references
to our attention.
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