Biholomorphic Transformations That Do Not Extend Continuously to the Boundary

B. L. FRIDMAN

Let $f: D_1 \rightarrow D_2$ be a biholomorphic transformation between bounded domains in a complex manifold. The general question considered by a number of authors (see, e.g., [1-11; 14; 16]) is whether f admits a continuous or even a smooth extension to the boundary ∂D_1 of D_1 . Most of the known results are positive; that is, if D_1, D_2 are some special domains (strictly pseudoconvex, analytic polyhedra, etc.; see [3; 15] for review) then f can be extended to the boundary to provide homeomorphism or diffeomorphism (in case of smooth boundaries) between \bar{D}_1 and \bar{D}_2 . Counterexamples are hard to come by, probably because of the rigidity of biholomorphic mappings. Only a few are known at this time (see [1; 2; 11]).

The purpose of this paper is to present several more negative results in \mathbb{C}^n , n > 1. We provide two constructions based on a new idea.

Both of our theorems below provide counterexamples to the general question of whether a biholomorphism $f: D_1 \to D_2$ can be extended continuously to the boundary. The first theorem gives an example of domains with topologically complicated boundaries, whereas the second theorem deals with a more regular case.

In the theorem below it is assumed that $\mathbb{C}^n \subset \mathbb{C}^{n+1}$ in a natural way: $z = (z_1, ..., z_n) \in \mathbb{C}^n$ is identified with $(z_1, ..., z_n, 0) \in \mathbb{C}^{n+1}$.

THEOREM 1. Let G_1 , G_2 be bounded domains in \mathbb{C}^n . Then there are bounded domains D_1 , $D_2 \subset \mathbb{C}^{n+1}$ such that:

- (1) $G_i \subset \partial D_i$, i = 1, 2.
- (2) There is a biholomorphic transformation $f: D_1 \to D_2$ such that f can be extended as homeomorphism to $F: (\bar{D}_1 \backslash \bar{G}_1) \to (\bar{D}_2 \backslash \bar{G}_2)$. Moreover, f can be extended to a neighborhood of $\bar{D}_1 \backslash \bar{G}_1$ as a biholomorphic transformation.

REMARK 1.1. Clearly, since G_1 , G_2 are arbitrary, f in most cases cannot be extended to the boundary as homeomorphism. From the construction that follows one will see that f cannot be extended continuously to \bar{G}_1 in any case.

Received September 21, 1989. Revision received June 27, 1990. Michigan Math. J. 38 (1991).

The next theorem is a generalization of Theorem 1.

THEOREM 1.1. Let $\{G_k\}_{k=1}^{\infty}$ be a countable number of arbitrary bounded domains in \mathbb{C}^n . Then there exist a bounded domain $D \subset \mathbb{C}^{n+1}$ and bounded biholomorphic imbeddings $f_k \colon D \to \mathbb{C}^{n+1}$ such that

- (1) $\bar{D} \cap \mathbb{C}^n = \bar{G}$ for some domain $G \subset \mathbb{C}^n$;
- (2) $f_k(D) = D_k \subset \mathbb{C}^{n+1}$ and $\bar{D}_k \cap \mathbb{C}^n = \bar{G}_k$ for all $k \ge 1$; and
- (3) f_k can be extended to a homeomorphism F_k : $(\bar{D} \setminus \bar{G}) \to (\bar{D}_k \setminus \bar{G}_k)$. Moreover, f_k can be extended to a neighborhood of $\bar{D} \setminus \bar{G}$ as a biholomorphic transformation.

We introduce now the following notations: $z' = (z_1, ..., z_{n-1}); z = (z', z_n) \in \mathbb{C}^n$. We call a domain $D \subset \mathbb{C}^n$ a disk domain (with respect to z_n) if there is such a domain $D' \subset \mathbb{C}^{n-1}$, a function c(z'), and a nonnegative function R(z'), $z' \in D'$, such that $D = \{z = (z', z_n) | z' \in D', |z_n - c(z')| < R(z')\}$. We denote $R(D) = \inf_{z' \in D'} R(z')$.

The next theorem provides an example of a C^{∞} disk domain in \mathbb{C}^2 containing only large 1-dimensional disks on the boundary, and a biholomorphic map onto an arbitrarily close and similar disk domain (so the map is almost an automorphism) which cannot be extended continuously to the boundary.

THEOREM 2. There exists a bounded convex disk domain $D \subset \mathbb{C}^2$, $\partial D \in \mathbb{C}^\infty$, R(D) = 1 such that for every $\epsilon > 0$ there exists a disk domain $D_{\epsilon} \subset \mathbb{C}^2$ with the following properties:

- (1) $R(D_{\epsilon}) = 1$.
- (2) There exists a biholomorphism $f_{\epsilon} \colon D \to D_{\epsilon}$ that cannot be extended continuously to ∂D .
- (3) There exists a continuous map $\phi_{\epsilon} \colon \bar{D} \to \bar{D}_{\epsilon}$ that is one-to-one and $|\phi_{\epsilon}(z) z| \le \epsilon$ for all $z \in \bar{D}$.

REMARK 2.1. In addition to the properties listed we will see that f is going to be fiber- (disk-) preserving and $\phi_{\epsilon} \in C^{\infty}(D) \cap C(\bar{D})$.

REMARK 2.2. The domain D from Theorem 2 has the following neighborhood basis of disk domains D_{k} :

- (1) $\bar{D}_{k+1} \subset \bar{D}_k$; $\bigcap_{k=1}^{\infty} D_k = D$; $R(D_k) = 1$.
- (2) Every \bar{D}_k is topologically equivalent to \bar{D} ; moreover, there exists a family of homeomorphisms $\{\Phi_k\}$, $\Phi_k: \bar{D} \to \bar{D}_k$, that converges uniformly on \bar{D} to the identity map.
- (3) Every D_k is biholomorphically equivalent to D, and the corresponding biholomorphism does not extend continuously to the boundary.

Proof of Theorem 1

We will use the following notation: $B(a,r) = \{z \mid |z-a| < r\}, B = B^n = B(0,1)$ the unit ball in \mathbb{C}^n ; $p = (0,0,...,1) \in \partial B$; q = -p. $\Delta(a,r) = \{t \mid |t-a| < r\}$ a disk in \mathbb{C} ; $\Delta = \Delta(0,1)$ the unit disk in \mathbb{C} .

If X, Y are sets in a metric space with distance d(x, y), then $d(X, Y) = \inf(\epsilon > 0 \mid \forall x \in X \exists y \in Y, \ d(x, y) < \epsilon \& \forall y \in Y \exists x \in X, \ d(y, x) < \epsilon \}$. We will say that sets $M_s \to M$ as $s \to \infty$ if $d(M_s, M) \to 0$ as $s \to \infty$. We also define

$$F(\mu, z) = \left\{ \sqrt{1 - \mu^2} \, \frac{z'}{1 - z_n \mu}, \, \frac{z_n - \mu}{1 - z_n \mu} \right\}.$$

Note that for a fixed μ , $0 < \mu < 1$, $F(\mu, z) \in \text{Aut}(B)$ the holomorphic automorphism group of B.

- 1. LEMMA. Let G be a bounded domain in \mathbb{C}^n . Then there is a linear fractional transformation $L_G: G \to B$ such that the following two properties hold:
 - (1) L_G^{-1} is defined in a neighborhood of \bar{B} .
 - (2) For any sequence $\lambda_k \to 1$, $0 < \lambda_k < 1$, there exists a subsequence $\{\mu_k\} \subset \{\lambda_k\}$ and a domain $E \subset B$ such that
 - (a) $E \supset B \setminus B(p, \frac{1}{3})$ and
 - (b) $L_G^{-1} \circ F_k[E \cap S] \to \overline{G}$ as sets when $k \to \infty$, where $F_k(z) = F(\mu_k, z)$ is defined above and S is any domain containing $B(p, \frac{1}{2})$.

Proof of this statement can be done by constructing E in a way similar to the constructions of exhausting domains in [12; 13].

- 2. By using the above Lemma for i=1,2 we now find $L_i=L_{G_i}$. Fix a sequence $\lambda_k=1-1/(k+1)\to 1$ and by the same lemma (where $G=G_1$) we find $\{\mu_k\}\subset\{\lambda_k\}$ and the set E_1 , and consequently $\{\nu_k\}\subset\{\mu_k\}$ and the set E_2 (for $G=G_2$). $\{\nu_k\}$ form a monotone sequence, $\nu_k\to 1$. Let J be the operator of multiplying by -1, $J:z\to -z$. We set $E=E_1\cap JE_2$. One can check that
- (1) $E'_k = L_1^{-1} \circ F_k[E] \to \overline{G}_1$ and $E''_k = L_2^{-1} \circ F_k[JE] \to \overline{G}_2$ as $k \to \infty$, where $F_k(z) = F(\nu_k, z)$.
- 3. Let g(t) = (t+1)/2. For |t| < 1 we fix a branch of $\sqrt{1-g^2}$ which will be an analytic function. Now for |t| < 1 and $|z_n| < 1$, F(g(t), z) is a well-defined analytic transformation. If we set $\Phi: (z, z_{n+1}) \to (F(g(z_{n+1}), z), z_{n+1} 1)$ one can see that $\Phi: B \times \Delta \to \mathbb{C}^{n+1}$ is a biholomorphic imbedding which can be extended biholomorphically into a neighborhood of $\overline{B} \times (\overline{\Delta} \setminus \{1\})$.
- 4. Let $\epsilon_k' = d(E_k', G_1)$, $\epsilon_k'' = d(E_k'', G_2)$, and $\epsilon_k = \max(\epsilon_k', \epsilon_k'', 1/k)$. (1) means that $\epsilon_k \to 0$ for $k \to \infty$. One can now see that for any k, a number $\delta_k > 0$ can be found such that if $|\nu \nu_k| < \delta_k$ then

$$M_1 = L_1^{-1} \circ F(\nu, [E])$$
 and $M_2 = L_1^{-1} \circ F(\nu, [JE])$

are defined and $d(M_i, G_i) < 2\epsilon_k$ for i = 1, 2.

- 5. One can check from the definition of F that $F(g(t), [B(0, \frac{1}{2})]) \rightarrow q$ when $t \rightarrow 1, |t| < 1$.
- 6. Let $t_0 = 0$ and, for all $k \ge 1$, let $t_k = 2\nu_k 1$ and $\eta_k = \min(\delta_k, (t_{k+1} t_k)/3, (t_k t_{k-1})/3)$. We set $U = \bigcup_{k=1}^{\infty} \Delta(t_k, \eta_k)$, $V = \Delta \setminus U$, and $D = (E \times U) \cup (B(0, \frac{1}{2}) \times V)$. One can see that $U \subset \Delta$ and D is a domain in \mathbb{C}^{n+1} .

7. We introduce consequently

$$J': (z, z_{n+1}) \to (-z, z_{n+1}), \qquad T_i: (z, z_{n+1}) \to (L_i^{-1}(z), z_{n+1}), \quad i = 1, 2;$$

$$\Phi_1 = T_1 \circ \Phi, \qquad \Phi_2 = T_2 \circ \Phi \circ J'.$$

$$D_i = \Phi_i[D], \quad i = 1, 2; \qquad f = \Phi_2 \circ \Phi_1^{-1}: D_1 \to D_2.$$

One can check now that D_1 , D_2 and f satisfy all conditions of Theorem 1.

8. Theorem 1.1 can be proved in a way similar to the proof of Theorem 1. The main difference will be in constructing the set E. Above we constructed the set E by taking some sets out of B near two points p and q. For Theorem 1.1 we will need to take some sets out of B near a countable number of points on ∂B . The subsequence $\{v_k\}$ can be chosen by the usual diagonalization process.

Proof of Theorem 2

- 1. First we choose a real function $\varphi(x) \in C^{\infty}(-1,1) \cap C[-1,1]$ such that
 - (a) $\varphi(0) = 2$, $\varphi(1) = 1$, and φ is decreasing;
 - (b) $\varphi^{(k)}(0) = 0 \ \forall k \ge 1$; and
 - (c) if $\psi = \varphi^{-1}$ then $\psi^{(k)}(1) = 0 \ \forall k \ge 1$.
- 2. Define the domain D as $D = \{(z_1, z_2) \mid |z_1| < 1, |z_2| < \varphi(|z_1|)\}$. From the construction of φ one can see that $\partial D \in C^{\infty}$ and D is a convex disk domain with R(D) = 1.
- 3. Let ν , $\frac{1}{3} > \nu > 0$, be a number that depends on ϵ and will be chosen later. Obviously there exists a $\delta > 0$ such that $\varphi(|t|) 1 < \nu^2$ for $t \in \Delta \cap \Delta(1, \delta)$. We now can find a function $g \in A(\Delta_1) \cap C(\overline{\Delta}_1)$, where $\Delta_1 = \Delta(-1, 2)$, such that:
 - (a) |g(t)| < 1 for $t \in \overline{\Delta}_1 \setminus \{1\}$, and g(1) = 1;
 - (b) $|g(t)| < \nu$ for $t \in \Delta \setminus \Delta(1, \delta)$;
 - (c) $\varphi(|t|) 1 < \nu(1 |g(t)|^2)^2$ for $t \in \Delta \cap \Delta(1, \delta)$; and
 - (d) $|\operatorname{Im} g(t)| < \nu (1 |g(t)|^2)^2$ for |t| < 1.

Such a function g can be constructed as a conformal map from the disk Δ_1 onto an appropriate region Ω in C. Below is a detailed construction of g.

(1) First we introduce sequences $u_k = 1 - \delta/(k+1)$ for all integers $k \ge 0$,

$$X_k = \{t = u + iv \mid u \in [u_{k-1}, u_k]\}\} \cap \Delta, \qquad m_k = \sup_{X_k} (\varphi(|t|) - 1) \text{ for } k \ge 1,$$

$$s_k = \left(1 - \left(\frac{2m_k}{\nu}\right)^{1/2}\right)^{1/\sqrt{2}} \quad \text{for } k \ge 2, \qquad s_1 = \min\left(\nu^{\sqrt{2}}, \left(1 - \left(\frac{2m_1}{\nu}\right)^{1/2}\right)^{1/\sqrt{2}}\right),$$

and $s_0 = -s_1$.

(2) One can see that $m_k \downarrow 0$ and $s_k \uparrow 1$ when $k \to \infty$. Also

$$(s_0, 1) = \bigcup_{0}^{\infty} (s_k, s_{k+1}].$$

- (3) We consider below sequences of real numbers $\Lambda = \{v_k\}_{k=1}^{\infty}$ with $0 < \infty$ $v_k \to 0$ for $k \to \infty$. For such a sequence we introduce a domain $\Omega(\Lambda)$ and a function g_{Λ} . $\Omega(\Lambda)$ is the interior of the set $\bigcup_{1}^{\infty} \{[s_{k-1}, s_k] \times [-v_k, v_k]\}$. g_{Λ} is a conformal map from Δ_1 onto $\Omega(\Lambda)$ such that $g_{\Lambda}(0) = 0$, $g_{\Lambda}(1) = 1$. This last condition is appropriate since any conformal map from Δ_1 onto $\Omega(\Lambda)$ is continuously extendible to the boundary. Our goal is to produce a sequence $\Lambda =$ $\{v_k\}$ such that $g = g_\Lambda$ satisfies the above conditions (a)-(d).
- (4) In order to construct the needed sequence $\Lambda = \{v_k\}$ we start first with a sequence $\Lambda_0 = \{y_k\}$ such that:
 - (A) $\bigcup_{1}^{n}\{[s_{k-1},s_{k}]\times[-y_{k},y_{k}]\}\subset\Delta(0,s_{n}^{1/\sqrt{2}}), \forall n\geq 1;$
 - (B) $g_{\Lambda_0}(\Delta \setminus \Delta(1, \delta)) \subset [s_0, s_1] \times [-y_1, y_1];$

 - (C) $0 < y_{k+1} < \frac{1}{2}y_k$, $\forall k \ge 1$; and (D) $|\text{Im } t| < \nu(1-|t|^2)^2$, $\forall t \in \Omega(\Lambda_0)$.

One can find such a sequence Λ_0 by initially constructing a sequence satisfying (A), (C), and (D). Then one can fix y_1 and choose y_2 to be so small that if y_k ($k \ge 3$) are chosen to satisfy (C) and are smaller than the initial choice, the new sequence will satisfy all (A)-(D).

(5) We will construct the sequence $\Lambda = \{v_k\}$ by induction. We require that $\forall k \ge 1, \ 0 < v_k \le y_k$ and $v_{k+1} \le \frac{1}{2}v_k$. We also require that the following property hold for $k \ge 2$:

Let $\Lambda_k = \{\alpha_n\}$ be any sequence where $\alpha_n = v_n$ for $n \le k$, and, for all $n \ge k$, let $0 < \alpha_{n+1} \le \min(\frac{1}{2}\alpha_n, y_{n+1})$. Then, for all $n \le k-1$, $g_{\Lambda_{\nu}}(X_n) \subset \bigcup_{1}^{n} \{ [s_{n-1}, s_n] \times [-v_n, v_n] \}.$

For k = 1 we take $v_1 = y_1$. If $v_1, ..., v_k$ have been chosen and the above property holds, then one can see that if $0 < v_{k+1} \le \min(v_k/2, y_{k+1})$ is chosen to be small enough the required property will also hold for any Λ_{k+1} .

- (6) $\Lambda = \{v_k\}$ constructed in the previous paragraph satisfies $v_1 = y_1$ and $v_k \le y_k \ \forall k \ge 2$. One can check now that (A)-(D) imply the properties (a), (b), and (d) for $g = g_{\Lambda}$. Property (c) follows from the property of all Λ_k described in the preceding paragraph. To verify this one should take into account the definitions of s_k . This completes the construction of g.
- The map $f_{\epsilon}: D \to \mathbb{C}^2$ and D_{ϵ} are defined as follows: 4.

$$f_{\epsilon} : \begin{cases} w_{1} = z_{1}, \\ w_{2} = \frac{z_{2} - g(z_{1})}{1 - z_{2}g(z_{1})}; \end{cases} D_{\epsilon} = f_{\epsilon}(D).$$

(1) We now estimate

$$|1-z_2g(z_1)| \ge 1-|z_2||g(z_1)| \ge 1-\varphi(|z_1|)|g(z_1)| > 0$$

for $z_1 \in \Delta \setminus \Delta(1, \delta)$, since $1 \le \varphi \le 2$ and $|g| < \nu$ for these values of z_1 . For $z_1 \in \Delta \cap \Delta(1, \delta)$ we use the above described properties (c) and (a) of the function g to obtain

$$|1-z_2g(z_1)| \ge 1-\varphi|g| = (1-|g|)\left(1-\frac{\varphi-1}{1-|g|}|g|\right) > (1-|g|)(1-2\nu) > 0.$$

This shows that f_{ϵ} is defined on D. One can also see that f_{ϵ} is a biholomorphic transformation of the domain D onto D_{ϵ} that extends as a biholomorphic imbedding at every boundary point of D except the disk $\tilde{\Delta} = \{z_1 = 1, |z_2| \le 1\} \subset \partial D$.

(2) Since f_{ϵ} preserves fibers of the disk domain D and since, for every fixed z_1 , f_{ϵ} is a linear fractional transformation, one can calculate that D_{ϵ} has the following structure:

$$D_{\epsilon} = \{(w_1, w_2) \mid |w_1| < 1, |w_2 - c(w_1)| < R(w_1)\},$$

where

$$c(w_1) = \frac{\varphi^2 \overline{g} - g}{1 - \varphi^2 |g|^2}, \qquad R(w_1) = \varphi \frac{|1 - g^2|}{1 - \varphi^2 |g|^2}; \qquad \varphi = \varphi(|w_1|), \quad g = g(w_1).$$

By using inequalities (c) and (d) of the function g one can estimate that $c(w_1) \to 0$ and $R(w_1) \to 1$ for $w_1 \to 1$. This limiting disk is $\tilde{\Delta} = \{w_1 = 1, |w_2| \le 1\}$. Also, $R(w_1) \ge \varphi(|w_1|) \ge 1$ for $|w_1| < 1$. Therefore D_{ϵ} is a disk domain and $R(D_{\epsilon}) = 1$. If $z^{\circ} \in \tilde{\Delta} \setminus (1, 1)$ and $z' \in D$, $z' \to z^{\circ}$, then $f_{\epsilon}(z') \to (1, -1)$. One can also see that the limit set for limit points of $f_{\epsilon}(z')$ when $z' \to (1, 1)$ is the whole disk $\tilde{\Delta} \subset \partial D_{\epsilon}$. So, f_{ϵ} cannot be extended continuously to the boundary.

(3) Let $h: D \to \mathbb{C}^2$ be the following map:

$$h: \begin{cases} z_1 \mapsto z_1, \\ z_2 \mapsto \frac{(z_2 + g(z_1)\varphi(|z_1|))\varphi(|z_1|)}{\varphi(|z_1|) + z_2 \overline{g}(z_1)}. \end{cases}$$

One can check that h is a C^{∞} automorphism of D. We introduce now $\phi_{\epsilon} = f_{\epsilon} \circ h : D \to D_{\epsilon}$. One can determine that

$$\phi_{\epsilon} : \begin{cases} w_{1} = z_{1}, \\ w_{2} = \psi_{\epsilon}(z) = \frac{z_{2}(\varphi - |g|^{2}) + \varphi g(\varphi - 1)}{z_{2}(\overline{g} - \varphi g) + \varphi(1 - \varphi g^{2})}, \end{cases}$$

where $\varphi = \varphi(|z_1|)$ and $g = g(z_1)$.

We will now describe the way to choose $\nu > 0$. Using property (b) of the function g one can see that $|\psi_{\epsilon}(z) - z_2| < \epsilon$ for $z_1 \in \Delta \setminus \Delta(1, \delta)$ if ν is chosen to be small enough. This is the first restriction on ν . By calculating explicitly we get

$$\psi_{\epsilon}(z)-z_2=\frac{A\alpha_1+B\alpha_2}{A\alpha_3+B\alpha_4+1},$$

where

$$|\alpha_i(z)| < 6 \ (1 \le i \le 4)$$

and

$$A = \frac{\varphi - 1}{1 - |g|^2}, \qquad B = \frac{\operatorname{Im} g}{1 - |g|^2}.$$

Now by using properties (c) and (d) of the function g we get

$$\psi_{\epsilon}(z) - z_2 = \frac{O(1)\nu}{1 + O(1)\nu}$$

for $z_1 \in \Delta \cap \Delta(1, \delta)$, and estimates on O(1) do not depend on ν . Therefore, if ν is small enough one can make $|\psi_{\epsilon}(z) - z_2| < \epsilon$ for $z_1 \in \Delta \cap \Delta(1, \delta)$. So, by choosing ν to be appropriately small, one can make $|\psi_{\epsilon}(z) - z_2| < \epsilon$ for $|z_1| < 1$ and therefore $|\phi_{\epsilon}(z) - z| < \epsilon$ for $z \in D$. This concludes the proof of Theorem 2.

References

- 1. D. Barrett, *Biholomorphic domains with inequivalent boundaries*, Invent. Math. 85 (1986), 373–377.
- 2. ——, *Boundary singularities of biholomorphic maps*, Lecture Notes in Math., 1268, pp. 24–28, Springer, Berlin, 1987.
- 3. E. Bedford, *Proper holomorphic mappings*, Bull. Amer. Math. Soc. (N.S.) 10 (1984), 157–175.
- 4. S. Bell, *Mapping problems in complex analysis and the* $\bar{\partial}$ -*problem*, Bull. Amer. Math. Soc. (N.S.) 22 (1990), 233–259.
- 5. S. Bell and D. Catlin, *Boundary regularity of proper holomorphic mappings*, Duke Math. J. 49 (1982), 385-396.
- 6. S. Bell and E. Ligocka, A simplification and extension of Fefferman's theorem on biholomorphic mappings, Invent. Math. 57 (1980), 283–289.
- 7. S. Bell and S. Krantz, *Smoothness to the boundary of conformal maps*, Rocky Mountain J. Math. 17, (1987), 23-40.
- 8. K. Diederich and J. E. Fornaess, *Boundary regularity of proper holomorphic mappings*, Invent. Math. 67 (1982), 363–384.
- 9. C. Fefferman, *The Bergman kernel and biholomorphic mappings of pseudoconvex domains*, Invent. Math. 26 (1974), 1–65.
- 10. B. Fridman, On a class of analytic polyhedra, Soviet Math. Dokl. 19 (1979), 1258–1261.
- 11. ——, One example of the boundary behaviour of biholomorphic transformations, Proc. Amer. Math. Soc. (2) 89 (1983), 226–228.
- 12. ——, *A universal exhausting domain*, Proc. Amer. Math. Soc. (2) 98 (1986), 267–270.
- 13. —, An approximate Riemann mapping theorem in \mathbb{C}^n , Math. Ann. 275 (1986), 49–55.
- 14. G. Henkin, An analytic polyhedron is not holomorphically equivalent to a strictly pseudoconvex domain, Soviet Math. Dokl. 14 (1973), 858–862.
- 15. S. Krantz, Function theory of several complex variables, Wiley, New York, 1982.
- 16. S. Pinčuk, *On proper holomorphic mappings of strictly pseudoconvex domains*, Siberian Math. J. 15 (1974), 644–649.

Department of Mathematics Wichita State University Wichita, KS 67208