Biholomorphic Transformations That Do
Not Extend Continuously to the Boundary

B. L. FRIDMAN

Let f: D;— D, be a biholomorphic transformation between bounded do-
mains in a complex manifold. The general question considered by a number
of authors (see, e.g., [1-11; 14; 16]) is whether f admits a continuous or even
a smooth extension to the boundary D, of D,. Most of the known results
are positive; that is, if D;, D, are some special domains (strictly pseudo-
convex, analytic polyhedra, etc.; see [3; 15] for review) then f can be ex-
tended to the boundary to provide homeomorphism or diffeomorphism (in
case of smooth boundaries) between D, and D,. Counterexamples are hard
to come by, probably because of the rigidity of biholomorphic mappings.
Only a few are known at this time (see [1; 2; 11]).

The purpose of this paper is to present several more negative results in
C", n>1. We provide two constructions based on a new idea.

Both of our theorems below provide counterexamples to the general ques-
tion of whether a biholomorphism f: D, — D, can be extended continuously
to the boundary. The first theorem gives an example of domains with topo-
logically complicated boundaries, whereas the second theorem deals with a
more regular case.

In the theorem below it is assumed that C*C C”*!in a natural way: z=
(21, --.,2,) € C"is identified with (zy, ..., z,,0) e C"*1.

THEOREM 1. Let G4, G, be bounded domains in C". Then there are bound-
ed domains D, D,C C"*! such that:

(1) G;caD;, i=1, 2.

(2) There is a biholomorphic transformation f: Dy— D, such that f can
be extended as homeomorphism to F:(D,\G,)— (D,\G,). More-
over, f can be extended to a neighborhood of D\ G, as a biholomor-
phic transformation.

REMARK 1.1. Clearly, since G, G, are arbitrary, f in most cases cannot
be extended to the boundary as homeomorphism. From the construction
that follows one will see that f cannot be extended continuously to G, in
any case.
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The next theorem is a generalization of Theorem 1.

THEOREM 1.1. Let {G}5= be a countable number of arbitrary bounded
domains in C". Then there exist a bounded domain D CC C"*!and bounded
biholomorphic imbeddings fi: D— C"*! such that
(1) DNC"=G for some domain GCC C";
(2) fi(D)=D,ccC"'and D,NC"= G, for all k=1; and
(3) fi can be extended to a homeomorphism F,:(D\G)— (D;\Gy).
Moreover, f, can be extended to a neighborhood of D\G as a biholo-
morphic transformation.

We introduce now the following notations: z’=(z;,...,2,-1); 2=(2',2,) €
C”. We call a domain DCC" a disk domain (with respect to z,,) if there
is such a domain D’C C"~}, a function c(z’), and a nonnegative function
R(z'), z’e D’, such that D={z=(2",z,)|z’€ D', |z,—c(z')|<R(z’)}. We
denote R(D)=inf,.. p- R(z).

The next theorem provides an example of a C* disk domain in C? contain-
ing only large 1-dimensional disks on the boundary, and a biholomorphic
map onto an arbitrarily close and similar disk domain (so the map is almost
an automorphism) which cannot be extended continuously to the boundary.

THEOREM 2. There exists a bounded convex disk domain DC C?, dD e
C®, R(D)=1such that for every e >0 there exists a disk domain D,CC C?
with the following properties:
(1) R(D,) =1.
(2) There exists a biholomorphism f.: D — D, that cannot be extended
continuously to dD.
(3) There exists a continuous map ¢.: D — D, that is one-to-one and
| (z)—z| <€ forall zeD.

REMARK 2.1. In addition to the properties listed we will see that f is going
to be fiber- (disk-) preserving and ¢,e C®(D)NC(D).

REMARK 2.2. The domain D from Theorem 2 has the following neighbor-
hood basis of disk domains Dy :

(1) Dy1CDy; NZ=1Dx=D; R(DY)=1.

(2) Every D, is topologically equivalent to D; moreover, there exists a
family of homeomorphisms {®;}, ®,: D— D,, that converges uni-
formly on D to the identity map.

(3) Every D, is biholomorphically equivalent to D, and the correspond-
ing biholomorphism does not extend continuously to the boundary.

Proof of Theorem 1

We will use the following notation: B(a, r)={z||z—a|<r}, B=B"=B(0,1)
the unit ball in C*; p=(0,0,...,1)€dB; q=—p. Ala,r)={t||t—a|<r}a
disk in C; A= A(0,1) the unit disk in C.
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If X,Y are sets in a metric space with distance d(x, y), then d(X,Y)=
inf(e>0|vxeX3ayeY, d(x,y)<e& VyeYixe X, d(y,x)<e}. We will
say that sets M;— M as s — o if d(M,, M)— 0 as s — co. We also define

b4 Zn—
F(u,z>={\/1—u2 , =1 ”}.
1—z,p 1=zpp
Note that for a fixed g, 0<u<1, F(u,z)e€ Aut(B) the holomorphic auto-
morphism group of B.

4

1. LEMMA. Let G bea bounded domain in C". Then there is a linear frac-
tional transformation Ls: G — B such that the following two properties hold:

(1) Lg!is defined in a neighborhood of B.
(2) For any sequence \,— 1, 0 < N\ <1, there exists a subsequence {u;}C
{\i} and a domain E C B such that
(@) EDB\B(p,}) and
(b) LgleF,[ENS]— G as sets when k — oo, where Fi(z) = F(p, 2) is
defined above and S is any domain containing B(p, %).

Proof of this statement can be done by constructing £ in a way similar to
the constructions of exhausting domains in [12; 13].

2. By using the above Lemma for i=1,2 we now find L;=Lg,. Fix a se-
quence A\, =1—1/(k+1) — 1 and by the same lemma (where G = G,) we find
{me} C Nt} and the set E,, and consequently {»;) C {u,} and the set E, (for
G =G,). {r,} form a monotone sequence, v, — 1. Let J be the operator of
multiplying by —1, J:z— —z. We set E = E,NJE,. One can check that

(1) E(=L7%F,J[E]-> G, and E{=L;%FJE]->G, as k- oo,
where F(z) = F(vg, 2).

3. Let g(¢)=(t+1)/2. For |¢t|] <1 we fix a branch of +/1—g?2 which will be
an analytic function. Now for |¢|<1and |z,| <1, F(g(f), z) is a well-defined
analytic transformation. If we set ®:(z,2,41) = (F(8(Z,41)52)sZns1—1)

one can see that ®: BX A —» C"*1is a biholomorphic imbedding which can
be extended biholomorphically into a neighborhood of B x (A\{1)}).

4. Let e, =d(Et, Gy), ex=d(Ef, G,), and e, =max(e, €;, 1/k). (1) means
that e, — 0 for k — . One can now see that for any &, a number 6; > 0 can
be found such that if |»—v;| < §; then

M=L7F(»,[E]) and M,=Li'F(»,[JE])
are defined and d(M;, G;) <2¢, for i=1, 2.

5.  One can check from the definition of F that F(g(¢), [B(0, $)]) — g when
-1, |t <1.

6. Letfy=0and, forall k=1, let t;, =2v;—1and y; =min(8y, (4 41— 1x)/3,
(tk_tk—l)/3)' We set U= U‘;(o:lA(tk,’f]k), V=A\U, and D=(EXU}U
(B(0, 1) X V). One can see that UC A and D is a domain in C"*,
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7. We introduce consequently
J' 2, 204) 2 (=2 Zns1)s T3 (2 Z0s) = (L7 (2), 20sn)s i=1,2;
b, =TP, b,y =ThodoJ’,
D;=®,[D], i=1,2; f=®,087: D, D,.

One can check now that D,, D, and f satisfy all conditions of Theorem 1.

]
8. Theorem 1.1 can be proved in a way similar to the proof of Theorem 1.
The main difference will be in constructing the set £. Above we constructed
the set E by taking some sets out of B near two points p and g. For Theorem
1.1 we will need to take some sets out of B near a countable number of points
on dB. The subsequence {r,} can be chosen by the usual diagonalization
process.

Proof of Theorem 2

1. First we choose a real function ¢(x)e C®°(—1,1)NC[—1, 1] such that

(@) ¢(0)=2, o(1)=1, and ¢ is decreasing;
(b) ¢%¥(0)=0 vk=1; and
() if y=¢ Tthen y®P(1)=0 vk =1.

2. Define the domain D as D={(zy, z,) ||z1| <1, |z2] < ¢(|z4|)}. From the
construction of ¢ one can see that D e C* and D is a convex disk domain
with R(D)=1.

3. Lety, % > p >0, be a number that depends on e and will be chosen later.
Obviously there exists a 6> 0 such that ¢(|f])—1< v2for te ANA(1, 8). We
now can find a function ge A(A,)NC(A,), where A;=A(—1, 2), such that:

(@) |g(8)| <1 for re A\{1}, and g(1)=1;
(b) |g(t)|< v for teA\A(l 8);
© e([th)—1<pv(1—|g(2)|?)?for te ANA(L, 6), and
(d) |Im g(#)| < »(1—|g(2)|?)* for || <1.
Such a function g can be constructed as a conformal map from the disk A,
onto an appropriate region 2 in C. Below is a detailed construction of g.
(1) First we introduce sequences u,=1—4§/(k+1) for all integers k=0,

Xi={t=u+iviuelu,_i,u 1})NA, me=sup(e(|t])—1) for k=1,
Xk

) 1/2\1/V2 2 1/2\1/v2
skz(l_( m) ) for k=2, Sl=min(yﬁ,<1_(ﬂ) ) )
v : v

and so= —s.
(2) One can see that m; | 0 and s, 11 when k£ — . Also

]

(s0,1)= L()J(Skask-i-l]-
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(3) We consider below sequences of real numbers A={v,}7_; with 0<
v, — 0 for k— . For such a sequence we introduce a domain Q(A) and a
function g,. Q(A) is the interior of the set UT{[Sx—1, Skl X [— Uk, Ur]}. gpisa
conformal map from A; onto Q(A) such that g,(0) =0, g,(1)=1. This last
condition is appropriate since any conformal map from A, onto 2(A) is con-
tinuously extendible to the boundary. Our goal is to produce a sequence A =
{ve] such that g = g, satisfies the above conditions (a)-(d).

(4) In order to construct the needed sequence A = {v;} we start first with
a sequence Ay={y,} such that:

(&) UitIsk—1, 5] X [y vl C A0, sY2), vn=1;
(B) g4,(A\A(1, 6)) Clsg, 511X [—y1, ¥1];

(C) 0<yr41<iyi, Vk=1;and

(D) |Im¢|<w»(1—]£]%)?, vie Q(Ay).

One can find such a sequence A, by initially constructing a sequence satis-
fying (A), (C), and (D). Then one can fix y, and choose y, to be so small that
if y; (k=3) are chosen to satisfy (C) and are smaller than the initial choice,
the new sequence will satisfy all (A)-(D).

(5) We will construct the sequence A = {v;} by induction. We require that
Vk=1, 0<y<yrand v, 1< %vk. We also require that the following prop-
erty hold for k= 2:

Let A, ={«,} be any sequence where «,, = v, for n<k, and, for
all n=k, let 0 < e,y <min(ia,,y,.,). Then, for all n<k—1,
gAk(Xn) C Uf{[sp—l’ Sp] X ['—vp} vp]}-

For k=1 we take v, = y,. If vy, ..., v} have been chosen and the above prop-
erty holds, then one can see that if 0 < v, ,<min(v,/2, ;) is chosen to
be small enough the required property will also hold for any A, ;.

(6) A={v,} constructed in the previous paragraph satisfies v; = y; and
Uy <y, Yk=2. One can check now that (A)-(D) imply the properties (a),
(b), and (d) for g=g,. Property (c) follows from the property of all A,
described in the preceding paragraph. To verify this one should take into
account the definitions of s;. This completes the construction of g.

4. The map f,: D— C?and D, are defined as follows:

Wi=21
St o — 22— 8(zy) D .= f (D).
2 1—328(11)’

(1) We now estimate
[1—2z,8(z)| = 1|z, |g(z)| = 1= 0(]z4]) | (1) >0

for z;€ A\ A(1,6), since 1=¢p =<2 and |g|<v for these values of z;. For
Z1€ ANA(1, 6) we use the above described properties (c) and (a) of the func-
tion g to obtain
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o lel)> (- eh(1=20)>0
el )> a-leba-20>0
This shows that f, is defined on D. One can also see that f, is a biholomor-
phic transformation of the domain D onto D, that extends as a biholomor-
phic imbedding at every boundary point of D except the disk A= {z,=1,
|z,] <1} CaD.

(2) Since f, preserves fibers of the disk domain D and since, for every
fixed z;, f,is a linear fractional transformation, one can calculate that D,
has the following structure:

D, = {(wy, wy) [|wy| <1, [wy—c(w))| < R(wy)},

ll—zzg(zl)lzl—solgl=(1—|g|)(1—

0’Z—g [1-g? |
1—g02]g|2’ R(wl)_gol_sozlglz’
By using inequalities (c) and (d) of the function g one can estimate that
c(wy) - 0and R(w;) - 1 for w;— 1. This limiting disk is A = {w; =1, |w,|<1].
Also, R(w;) = ¢(|w;|) =1 for |w,|<1. Therefore D, is a disk domain and
R(D,)=1.1fz°eA\(1,1)and z’e D, 7’ - z°, then f,(z’) —» (1, —1). One can
also see that the limit set for limit points of f,(z’) when z’ — (1, 1) is the whole
disk AcaD.. So, J. cannot be extended continuously to the boundary.

(3) Let 4: D — C? be the following map:

c(wy) = e=p(w), g=g(w).

2121,
h: . (z2+8(z1) o(|24])) 0(|24])
2 o(|z1]) +228(zy)

One can check that 4 is a C* automorphism of D. We introduce now ¢, =
f.oh: D— D,. One can determine that

W1=Zl,
z2(p—|g|?) + pg(p—1)
22(8—08)+o(1—pg?)’

¢

W2= ¢e(z) =

where ¢ = ¢(|z]) and g = g(zy).

We will now describe the way to choose v > 0. Using property (b) of the
function g one can see that |y,(z) —z,| <e for z,€ A\ A(1, 8) if » is chosen
to be small enough. This is the first restriction on p. By calculating explicitly
we get

_ AOZ1+B(12
velR) == Bagt1’
where
lai(z)|<6 (1=i<4)
and
—1 I
A=Y B= 18

1-|g?’ C1-g]?
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Now by using properties (c) and (d) of the function g we get

O(1)v

Ve (2)—2,= 1500

for z,e ANA(1, 8), and estimates on O(1) do not depend on ». Therefore,
if » is small enough one can make |¥.(z)—z,|<e for z;€ ANA(L, 8). So,
by choosing » to be appropriately small, one can make |y.(z) —2,] <e for
|z;| <1 and therefore |¢.(z) —z| < e for ze€ D. This concludes the proof of
Theorem 2. O
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