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Introduction

The purpose of this paper is to give a complete classification of all polyno-
mial proper holomorphic maps between balls in complex vector spaces. The
results here are extensions of the author’s results in [D2; D4}, and clarify the
partial results in many other papers [CS2; Fal; Fa2; Fo3; R3; W]. Further-
more, generalizations of these results apply in the rational case. The rational
case is the natural one, because of the result of Forstneric [Fo2] that a suffi-
ciently differentiable proper holomorphic map between balls is necessarily
rational. The author has obtained partial results that he believes will lead to
a complete classification of the rational proper maps. These will appear else-
where. It is probably impossible to give such a classification of the proper
maps that are not smooth at the boundary. See [Dor; H] for the construc-
tion of such proper maps.

The first result of the present paper gives a factorization of a proper poly-
nomial map between balls. The author gave another version of this in [D2],
but the present statement and proof are more transparent. The proof is the
same without regard to the range or domain dimension, including the 1-
dimensional case, or even the degree of the polynomial. The operations in-
volved are either linear transformations, tensor products, or inverses of these.
Analysis of the proof gives a complete description. The tensor product oper-
ation is as follows. Suppose that f is a holomorphic map from C” to CV,
and that A is a linear subspace of C" of dimension k. Let z denote the iden-
tity operation on C”. We form a new holomorphic map

E(A,z)f: Cn—>CN+k(n—l)

as follows. Write f= f,;® f4+ for the orthogonal direct sum decomposition
of fdetermined by that on its range C", and define the tensor product oper-
ation by

Ea,f=(/a®2)®fy+.

See Section I for more details. Let B,, denote the unit ball in C”. If we omit
the dependence on A in the notation, our first result can be stated as follows.
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THEOREM. Let p: B,— By be a proper holomorphic polynomial map of
degree m. Then p admits the finite composition product factorization

p=(E~"Y"LE™(1).

Here the operation E denotes the tensor product, E ! denotes its inverse,
and L is linear. The number 1 denotes the constant map to the point 1 on the
unit circle. Each of the intermediate maps is a proper holomorphic map from
B,, to some By.. The proof of the theorem shows exactly how to choose the
various subspaces. By keeping careful track of this, one obtains a complete
classification of all proper polynomial maps between balls.

Different choices of the subspaces in the above factorization will in gen-
eral lead to inequivalent maps. The author showed in [DI] that polynomial
maps ‘that preserve the origin are spherically equivalent (equivalent up to
automorphisms of both the domain and range balls) only when they are uni-
tarily equivalent. By combining the first result with this, and using some
linear algebra, we determine on precisely how many parameters the family
of proper polynomial maps of degree m from B,, to any larger dlmensmnal
unit ball depends. Let us say that an m—1 jet

Sm—1* C"— CN
is allowable if there is a proper polynomial map
p: Bn - BN

whose m—1 jet is s,,_;. Assuming that N is large enough, the second main
result tells us that there is an open subset in the space of jets of order m—1
consisting of allowable jets. The m—1 jet determines the map up to equiva-
lence. From this we determine the number of parameters. See the statement
of Theorem 18 for more detail.

THEOREM. Let p(z)= Em:o A,z% be a polynomial of degree m that is a
proper holomorphic map from B,, to some By. Suppose also that the m—1
Jjet is generic (see Section 1V'). (This requires N to be sufficiently large.) Then
the m—1 jet of p is otherwise arbitrary except that the numbers (A, Ag) for
||, |B| = m—1 must satisfy the finite number of polynomial inequalities de-
termined by 18.3. These determine p up to unitary equivalence. The set of
allowable CN-valued jets of order m—1 contains an open neighborhood in
that space. The number of independent parameters is

D(D+1) n+m——1>

where D= (
2 n

One very special case of this result is the following result from [D4], where
the number is adjusted to account for the fact that we assume in this corol-
lary that there is no constant term.
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COROLLARY. The set of spherical equivalence classes for proper holo-
morphic quadratic polynomials from B, preserving the origin has dimen-
sion d =n(n+1)/2. These d numbers are the inner products of the column
vectors of the derivative at the origin. (Thus n of them must be real.)

The theorem is the analog of this corollary for polynomials of higher de-
gree m, where one must consider the m—1 jet at the origin, and allows the
possibility of a constant term.

The paper is organized so that those formal identities that apply in the ra-
tional case are proved in that generality. The ideas in the rational case are
similar, but there one must consider Hermitian forms of mixed signature.
The polynomial case is easier because of positive semidefiniteness.

I. Preliminaries

Recall that B, denotes the unit ball in C”. A holomorphic map f: B,, — By is
called proper if f ~(K) is a compact subset of the domain ball whenever X
is a compact subset of the range ball. Equivalently, f is proper if and only
if, whenever a sequence tends to the boundary of the domain ball, the image
sequence tends to the boundary of the range ball. If f extends continuously
to the boundary, this condition is implied by the statement that | f(z)|=1
whenever ||z]| =1, together with the assumption that f: B, —» By. It follows
from the implicit function theorem that, for N < n, there can be no exam-
ples. In case n =N =2, the proper maps of the unit ball are the automaorph-
isms of the ball [A]. They are linear fractional transformations of the form

a—L,z
1—¢z,a)’
Here U is unitary, {, ) denotes the usual Hermitian inner product, a is a
point in B,,, and L, is the linear map defined by the formula
_ (g, ma
s+l

L,z

In this formula, s is the positive number satisfying |s|>=1—|a]> In case
n=N =1, the proper maps are the finite Blaschke products

eiﬁ H

Each a; is a (not necessarily distinct) point in the disk and the product is fi-
nite. Thus in this case the only proper polynomial maps are monomials. It
depends on n and N whether there are polynomial maps that are not equiva-
lent to monomial maps. For example, for each n there is a proper polynomial
map p: B, — B4,_, that is not equivalent to a monomial. We discuss this
briefly in Section V. Here is the precise definition of (spherical) equivalence.

a;,—2
l—a,-z
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1. DEFINITION. Suppose f, g: B,— By are proper holomorphic maps.
They are called spherically equivalent if there are automorphisms ¢, £ of the
respective balls so that f=£g¢.

As noted above, the author [D1] has proved that proper polynomial maps
that preserve the origin are spherically equivalent only when they are uni-
tarily equivalent.

We review some additional considerations from linear algebra. Let H(n, m)
denote the vector space of homogeneous (holomorphic) complex-valued poly-
nomials of degree m in n variables, and let d(n, m) denote its dimension. Let
V(n, m) denote the vector space of (holomorphic) complex-valued polyno-
mials of degree at most # in n variables, and let D(n, m) denote its dimen-
sion. Thus D(n, m) =X d(n, k). We also wish to consider polynomials that
take values in C". Suppose p(z) = 2,”';, —0A,2¥=20"ps is such a polynomial
map. Its squared norm | p(z)|?is of course a real-valued polynomial in the
variables z and Z on C". For any real-valued polynomial function of degree
at most m in each of these variables, say X' cagz“Z'B, we have the Hermitian
form on V(n, m) corresponding to the matrix (c,g). Thus to the polynomial
p we assign the form Q,, that arises from its squared norm.

m m
2. Qp= 2 capz"2’ = Bl Az =P ()"

Notice that if we replace p by Up, for U unitary, the form Q,, is unchanged.
Conversely, if two such forms Q, and Q, are the same, then p=Ug for
some unitary U. This is because |p|=|g| for vector-valued holomorphic
maps if and only if there is a unitary map such that p = Ug [D3]. From 2 it
follows that the matrix of Q, depends on D real numbers and D(D—1)/2
additional complex parameters. These parameters are the inner products of
the coefficients of p, namely (A4, Ag).

Consider also a real-valued polynomial w on C” that is homogeneous of
degree m in both z and Z. As above one can think of w as a Hermitian form
on H(n,m). It is then trivial to verify that w is positive semidefinite if and
only if w(z,Z) can be written as Y| fk(z)lz for holomorphic homogeneous
polynomials f} of degree m. Thus positive semidefiniteness for such a form
is equivalent to the form coming from a norm squared of a holomorphic
vector -valued polynomial. It is also easy to see that this condition is not im-
plied simply by the nonnegativity of the values of w(z,Z).

3.1. EXAMPLE. (|z,|>—|2%|?)*is nonnegative as a function, but the corre-
sponding form has a negative eigenvalue on H(2, 2).

3.2. ELEMENTARY WARNING. The form corresponding to the real-valued
polynomial ¢’ c,32°Z A is positive definite if and only if all the principal mi-
nor determinants are positive; in the semidefinite case one has the analogous
statement if one remembers to take all possible principal minor determi-
nants. For example, with the 3 X 3 matrix
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0 0 O
C=(Cij)= 0 0 1
01 0

it is not enough to note that ¢;;=0, ¢;;¢2;—|cp2|*=0, and det(C) =0. The
matrix has in fact a negative eigenvalue. One must consider all the principal
minors, as ¢,,¢33—|cy3/* <O0.

As remarked above, the condition of positive semidefiniteness can be given
as a finite number of inequalities on the complex numbers c,z. In the theo-
rems on proper maps, we take as elementary the tedious process of deciding
whether given Hermitian forms are in fact positive semidefinite.

Suppose that p =3 c,z%=2 p is a vector-valued polynomial. We often
use orthogonality conditions on the coefficients. Note that the statement
{P«, P;> =0 means (as it must) that {c,, cg) =0 whenever |a|=k and || =.

Finally, we need to describe the tensor product operation used in this pa-
per. If g and A are two vector-valued maps with the same domain and with
components g; and 4, then the tensor product g&®# is the map whose com-
ponents are all possible g; ;. Suppose that we write CN=A®@A" as an or-
thogonal sum of linear subspaces. If f is a map that takes values in C* then
we can write f = (fy, fp) = 1P f4+ for the corresponding decomposition of
/. Suppose now that g is a map with the same domain as f and with range
yet another complex vector space. We define a new mapping E 4 ) f (or Ef,
if g and A are understood) as follows.

4. DEFINITION. The tensor product of f by g on the subspace A is given
by E(A,g)f= (1R g)D Syt

We have the following simple fact.

5. LEMMA. If Q is a domain in C", and if f:Q— By and g:Q — By are
proper maps, then, for any choice of subspace A, E 4 . f is a proper map
Jrom  to some B;.

Proof. Note that |Eq g /12 = g ® ful? + LI = lg LA + L 1 we
choose a sequence of points in £ tending to its boundary, then | g|? tends to 1

on this sequence, as g is a proper map to a ball. Thus |E, 4 .f |* tends to
| fal*+[£a2]*>=]f)?* which tends to 1 since f is proper. Thus E, ,) f is also
proper. ]

II. Identities Satisfied by Rational Proper Maps
between Balls

Suppose that f = p/q is a rational proper holomorphic map from B, to By.
We can write p=3 p,z*and g = q,z° where each p,, is a point in C" and
each g, is a complex number. We assume without loss of generality that
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gdo=q(0)=1, and that p and g have no nontrivial common factors. Con-
sider the following identity.

6. lp(z)|?=|q(z)|> whenever |z[*>=]1.

If we substitute z = re’? (this is multi-index notation, so that r=(ry, ..., )
and 6= (60,,...,0,)) into 6, we obtain

7. Y ({Pas PaY— ol p)r* Pe’” =P =0 whenever |r|*=1.

Our goal is to describe all choices of the vectors p, and scalars g, that are so-
lutions to 7. The first simplication arises from observing that we may equate
Fourier coeflicients in 7. Write o — 8 =+. We obtain

8. X ({DptyDPg)— q,3+7675)r7+26 =0 on |r|>=1 for each multi-index v.
Since this holds for each v, we can write this as

9. S ({Dgsys P> —Ap44Gs)r*?=0 on [r|*=1 forally.

There is another version of 9 that arises if we write p=Y p, and g =3 qy,
where now the summands stand for homogeneous polynomials. In this case,
we replace z by ze’? in 6 and equate Fourier coefficients again. The result is
the set of identities 10, which hold on |z|=1.

10.1. 2 (Prs P4 k> —4xQ,4+4) =0 for each j>O0.
10.2. 2 (Ipl*—lael®) =0.

In the particular case that f is a polynomial, we have ¢ = q, =1, and the
identities 10 and 7 simplify. Assuming that p is of degree m, we have the
following.

11.1. On the sphere,

<p0s pm) =0
<p0’ pf?’l—l> + <p]’ p,n) = 0
(Po> Pin—22+<P1, Pru—1> +<{P2, P> =0

Ylpcl?=1.

These identities hold on the sphere, but by homogenizing them we obtain
identities that hold everywhere. The resulting identities are

11.2. (Pos P =0
(P> Pru—|Z]*+ <Py, Pm) =0
(pOs pm—2>"z"4+ <pl’ pm-—l>”z"2+ <p21 pm) = 0

11.3. ZlpelPlzl = =]z
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The formulas for polynomials corresponding to identity 7 are
11.4. E(pa,pﬁ)r“w:o whenever l}r||2=1 and o #3;
11.5. S1prl?r**=1 whenever |r|>=1.

II1. Proof of the Factorization Theorem

The idea of the factorization result is that every polynomial proper map can
be made homogeneous by applying enough tensor products. The homoge-
neous case is then easy to understand. The following result of Rudin [R3]
(see also [D2]) follows almost immediately from 11.3. We include our very
simple proof because the result plays an important part in the classification
problem.

12. THEOREM. Suppose that p: B,— By is a homogeneous proper poly-
nomial mapping of degree m with linearly independent components. Then
there is a unitary map on C" such that p = Uf, where f is the monomial map-
ping f(2) =(...,caz%...). Here |c,|* is the multinomial coefficient (), end
N is the dimension of the vector space H(n, m) of homogeneous monomials
of degree m in n variables.

Proof. Note that the last identity in 11.1 follows immediately from the hy-
potheses, as p maps the sphere to the sphere. Then 11.3 holds, as it is just
the homogenized version of 11.1. But, by the homogeneity, the left side is
just | p(z)|%. Expand the right side of 11.3 according to the multinomial the~
orem. The result is

lp@ P =1/ @ =](..,caz® .. ).

Now we have two vector-valued holomorphic functions with the same num-
ber of components and whose norms are the same. Then (see [D3]) thereis a
unitary matrix of constants so that p = Uf. L]

We now show how to reduce the classification of proper polynomial maps to
the homogeneous case. Suppose now that p is a proper polynomial map of
degree m from B, to some By. According to 11.1, we have that p, is orthog-
onal to p,,,. If py is zero, go to pl If pg is not zero, let A be the subspace gen-
erated by po. Write p,, =¥ P,z“ where |a| = m. By choosing specific points
on the sphere, we see that each P, is orthogonal to A. We write CV=A® A%,
and con51der the proper map E; 4,p. Accordmg to Lemma 5, 1t is a proper
map p* from B, to some BN, . Furthermore p # satisfies p#(0) = pl =0, and is
still of degree m. We now see from 11.1 that {p?, p? = 0. Again we can write
CNi=A"® A", for the subspace A spanned by the vectors in pf. We now
form E, 4t,p" = p". The map p™ is now a proper map from B, to Bw, that
satisfies p#¥ = p{* = 0. Proceeding by induction, we obtain a finite number of
intermediate maps p, p*, p*, etc. and subspaces A, A", A™ etc., so that
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p*=E, 4r«-1,p"*=D, The resulting map p*” is homogeneous of degree
m. After a linear transformation L that perhaps decreases dimensions, we
obtain a map Lp*™ that satisfies the hypotheses of Theorem 12. According
to that result, we can write, after replacing L by UL if necessary, Lp*"= f,
where f is the map in that theorem. Next, we observe that this map f can be
built up from the identity by iterating the tensor product operation, where the
tensor product is taken on the full range. In fact we can write f = ®"(1) =
E™(1), where 1 denotes the constant map from B, to the point 1in C.
We have proved the following theorem.

13. THEOREM. Let p be a proper holomorphic map from B, to By of de-
gree m. Then p admits a finite composition product factorization

13.1. p=(E HY'LE™(1).

Here 1 is the constant mapping to the point 1 in C, and L is linear. Every
intermediate composition is a proper map to the unit ball in some CX. Each
application of FE is the full tensor product (the corresponding subspace A4
is the whole space), with Ef =z®.f. Each application of E ~!is defined by
E N (z®g)®h)=g®h. The map p is completely determined by the linear
map L and the choices of subspaces on which the operation E ~! is applied.

It is perhaps useful to remark that one can choose a 0-dimensional sub-
space when applying E ~!. Thus E ~!((z ®0)@ ) = h. This tactic enables one
to use the same notation for all cases. The homogeneous polynomial maps
of Theorem 12, for example, do not require the applications of E ~! used in
Theorem 13, but still admit the factorization 13.1 if one uses this approach.

14. EXAMPLE (see [D4]). We describe all quadratic polynomials that map
0 to 0 and are proper maps between balls. Suppose that f(z) = A(z,z) + Bz.
Start with the constant map 1. Apply the tensor product to get the identity
map z — z. We must have B*B < I, where B* is the usual adjoint of B. Apply
a linear map to get «/(/—B*B)z@® Bz. It doesn’t matter which square root
we take, as the resulting maps will be unitarily equivalent. Apply the tensor
product on the first slot to get (z&®+/(/ —B*B)z)@® Bz. This is the map f.
Alternatively, start with the map z®z, and write the second z as

JUI—B*B)z®Bz.
We then have
1 goestoz®1=z
goestozQ®z
goes t0 2R (~/(I —B*B)z®Bz) = (z V(I —B*B)z) ®z® Bz
goes to (z®~/(I —B*B)z)®Bz = A(z, z) + Bz.

This shows that the general quadratic without constant term can be written
as E-!LEE(1). It is easy to see that two maps of the form A(z, z)+ Bz and
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A*(z,z)+B"z are equivalent if and only if B* and B are unitarily equiva-
lent. This shows that the number of independent parameters for maps of the
form A(z, z)+ Bz equals n(n+1)/2, as this is the number of independent
inner products of the column vectors of B, and these are the only unitary
invariants.

1V. Allowable Jets and Number of Parameters

In this section we determine exactly how many parameters it takes to de-
scribe all proper polynomial maps of degree m from B,, to By. According to
Example 14, there are n(n+1)/2 equivalence classes of quadratic polyno-
mial maps from the n-ball that preserve the origin. The parameters are inner
products of vectors in C™.

Suppose first that p: C*— C" is a polynomial map of degree m. Then the
number of parameters on which p depends is

15.1. ND(n, m)=N({1+d(n,1)+---+d(n, m)).

Here d(n, k) is the dimension of the vector space of homogeneous polyno-
mials of degree k in v variables, and D(n, m) is the dimension of the vector
space V(n, m) of complex-valued polynomials of degree at most m in » vari-
ables. We prefer to think of the coefficients as elements in CN, so that we
can say that the coefficients of a polynomial map of degree m are D(n, mn)
vectors in C¥. Suppose p(z) = E[’Z;:oAaZa is such a polynomial map. Recall
that we associate to p the Hermitian form Q,, defined by

m

2. Qp= Il Ae A2 =PI

The matrix of Q, depends on D real numbers and D(D—1)/2 additional
complex parameters. These parameters are the inner products of the coeffi-
cients of p, namely (A4,, Ag).

Now suppose also that p=3 A,z*=3% p, is a proper map between balls.
Recall the identities

11.4. S{ Ay, Agdr®*P=0 whenever |r|*=1 and a=8;
11.5. S 1AL?r?**=1 whenever |r|*=1;
m—j
11.2. foreachj>0, 3 (P, pjr)]2]*" 2*=0 on C*
k=0
m
11.3. forj=0, X|pllz]*""*=]z|*" on C".
0

The identities 11.2 place conditions on the inner products of the vectors in
each homogeneous part. One way to get around this difficulty is to assume
that these ranges are orthogonal, so that these conditions are automatically
satisfied. A weaker assumption is the following.
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16. DEFINITION. A vector-valued polynomial }; A,z%is called generic if
the collection {A,} is linearly independent.

17. DEFINITION. A vector-valued m—1 jet s: C"— C/is called allowable
if there is a proper holomorphic map p: B, — By whose m—1 jet is s.

18. THEOREM. Suppose that p: B,,— By is a proper polynomial map of
degree at most m. Suppose also that p is generic. Write p=po+ - +p,, for
its expansion in terms of homogeneous polynomials. The following hold:

18.1. pg is arbitrary except for | po|*<1.

18.2. For each k with 0 <k <m—1, we have the statement that p; is arbi-
trary except that the form W, defined on H(n, m) by 18.3 must be positive
semidefinite.

18.3. W=zl =Izl*"|pol®— 12"~ *Ipil*—--- — [z~ |psl®.

18.4. The highest-order part p,, is determined (up to a unitary map) by
equations 11.2 and 11.3. Hence,

{(Po, P> =0,
(pl, pm) = _'(pO’ pm—f>"z"2’
(P25 Pm) = —<{Pos Pm—-2z|* = <P1s Pm_z]%

m—1

[Pl =12~ 2 Ipel?l2 "=

18.5. A generic m—1 jet s =3 A,z is allowable if the numbers (A, Ag)
satisfy the finite number of polynomial inequalities determined by 18.2. If
N is sufficiently large, there is an open subset in the space of C™-valued jets
of order m—1 consisting of allowable jets.

18.6. Therefore the number of independent parameters is

%1—) where D=("+':_1)=D(n,m—1).

Of these numbers, D are (nonnegative) real and the other D(D—1)/2 are
complex.

Proof. Statement 18.1 is obvious as py= p(0) lies in By. To prove 18.2, we
assume inductively that we have found py, p;, ..., Px—1, and that k <m. Ac-
cording to identity 11.4, 3 |z|*"~%|p«|? = |z|*" holds for all z in C". Thus,
by subtracting the first £ terms from both sides of 11.2, we see that 18.3 is
expressed as a sum of absolute values squared of holomorphic functions.
According to the remarks in Section I, this holds if and only if the corre-
sponding form is positive and semidefinite. The term |p,,|* is determined by
the last equality in 18.4. As long as k& < m, the other equations determine the
projections of p,,, onto the subspaces spanned by the coefficients of {pg, pi,
..., Pm—1}. Since the jet is generic, we have no compatibility conditions on
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Px. We now determine p,, up to a unitary. All the inner products {pj, P>
(including k = m) are determined by the equations 11.3 and 11.4. These inner
products actually determine (A,, Ag) for || =k and |8|=m, by equating
coefficients of the real analytic function | p|*. Thus, to define the map p,
we must give the Hermitian form W for k=0, ..., m—1. When k£ =0,
this amounts to selecting p(0). For other k, we select a Hermitian form on
H(n, k). According to 11.2, we need only concern ourselves with forms de-
fined by |p]>.

To analyze this more fully, notice that the homogeneous polynomial map
of degree m given by Theorem 12 has corresponding Hermitian form |p,,|*=
|z|*". The matrix corresponding to this form is diagonal and strictly positive
definite, with eigenvalues given by the squares (’;’ 2 of the multinomial co-
efficients. Thus, the minimum eigenvalue is 1. This shows that we can achieve
all possible py, ..., p,,—; allowed by 18.3, in particular, if all these forms are
close to 0 and if the jet is generic. Since the genericity condition is also open,
there is an allowable open subset (whose closure contains the origin) in the
space of m—1 jets in n variables. Thus the parameters can be chosen to be
precisely

({Ay, Agdt|al, |8l =m—1].

These determine p,, up to a unitary, and hence p up to unitary equivalence.
Thus the number of parameters is given exactly by 18.6. The last statement
follows because those inner products that are squared norms must be posi-
tive. L]

19. REMARK. The conditionsin Theorem 18.5 depend only on inner prod-
ucts, so are unitarily invariant. Using the fact that polynomial maps pre-
serving the origin are spherically equivalent only when they are unitarily
equivalent, we obtain spherical equivalence with this assumption. Without
this assumption, one must be careful. The map f: B, — B, ,; defined by
S(z) = (cos b, sin(f)z) is spherically equivalent to the map f(z)=(0,z) by
composition with an automorphism that sends (cos(#), 0) to (0, 0). On the
other hand, it is not unitarily equivalent. Thus, counting parameters under
unitary equivalence gives the same value as counting them under spherical
equivalence only when we consider polynomials preserving the origin. Other-
wise the counts can differ. If we assume that f(0) = 0, we must subtract from
the number D(D+1)/2 in Theorem 16 the number of inner products with
the constant term. The result is (D—1)(D—2)/2.

V. Examples

Let us first give some examples of the factorization result. Consider the
mapping p defined by ELE. For simplicity we assume n=2. We start with
(z, w) — (z, zw, w?), where the subspace A is the span of (0, 1). Now apply a
(specific) unitary linear map L to obtain ((z —zw)/V2, (z+2zw)/N2, w?). Now
apply E on the subspace generated by (1,0, 0) to get the map ELE given by
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2 2 2
2°—Z°W ZIw—2Iw Z+zw
% ran =S5 2 S w)

As the map p includes six distinct monomials, but maps into By, it is not
unitarily equivalent to any monomial map into B,. By the result in [D1], it is
not spherically equivalent to any monomial map either. Note that the proof
of Theorem 13 gives a different factorization, namely (£ ~!)3LE?; as the last
subspace is trivial, one could write (E ~!)2LE?3. Of course the proof of that
result must work for all polynomials and hence does not always yield the
simplest factorization. Generalizations of this example hold for any #.

Because the ideas are independent of the domain dimension #, it is worth-
while to look at Theorem 18 in case n =1. The polynomial map of degree m
defined by f(z) =X A4 ,—zf will be proper if the vectors A4; are orthogonal and
also satisfy ¥ |4;|?>= 1. If we wish to make f map into a specific ball of di-
mension less than m + 1, equations 18.4 require that some of the A4; be zero.
This phenomenon is completely general. Given m and n, we can choose N
large enough so that we can get a maximal-dimensional family of dimen-
sion D(D+1)/2. If we wish to lower N, we must begin specifying some of
the parameters.

Recall that we considered generic jets. The next example shows why we
must do this.

21. EXAMPLE. Put n =1 for simplicity, and put s(z) = (¢ + 6z, wz, 0),
where the parameters are small and (say) real. Suppose we wish to find a
proper quadratic polynomial mapping whose.1-jet is s. In the notation of
Theorem 18,

Po=(60,0) and p,=(f,w,0).

Letting p, =(a, b, c), we see immediately from {py, p,) =0 that a =0. The
second equation that {py, p;)|z|*>+ {(p;, p2) = O tells us that ed+ wb = 0. The
third equation tells us that €2+ 8%+ w?+|b|?+|c|> = 1. If » vanishes then the
second equation cannot be satisfied unless one of ¢ or § vanishes. Thus not
every 1-jet is allowable. The condition that w 5 0 is precisely the generic con-
dition used in Theorem 18. The precise condition here is as follows:

{€,0,w}: 2+ 82+ wl<1l, w0, or
{€,0,0}: 2 <1, or
{0,6,0}:6%2<1.

Of course, the set of allowable 1-jets contains an open set.

22. EXAMPLE. For a general n, consider the quadratic polynomial maps
Po+p;+p,. The independent parameters are all the inner products of the
vectors in the constant and linear terms. There are N=1+n+[n(n+1)1/2
of these. This means that the most general quadratic proper map from B,
fits into By. To fit it into a lower-dimensional ball, one must specify some
of these parameters.
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