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Introduction

The purpose of this paper is to present a geometrically based algorithm for
deciding whether or not two elements of PSL(2, R) generate a non-elemen-
tary discrete group. There is, however, an obvious difficulty with the word
“algorithm,” for that suggests a procedure that can, at least in principle, be
programmed to run on a computer. The difficulty has to do with elliptic ele-
ments; there is no effective way to decide that an elliptic element does not
have finite order. If we regard an algorithm as a procedure, involving com-
putations in some field, that necessarily ends after finitely many steps, then
we do indeed have such an algorithm, provided our field of computations
includes all standard computations involving real numbers, including arith-
metic operations, computation of the inverse cosine, and computations in-
volving logarithms.

However, if we take the point of view that an algorithm is something that
can, at least in principle, be programmed to run on a computer, then we can
say that we have an algorithm to decide if two matrices in GL(2, Z), with
positive determinant, generate a non-elementary free discrete subgroup of
PSL(2,R).

The problem of finding criteria for discreteness of Fuchsian groups has
been the source of considerable activity; our list of references includes only
those that are specific to 2-generator groups (and not all of them), as opposed
to more general criteria. Jgrgensen’s inequality [J] yields a necessary condi-
tion; sufficient conditions in some cases were given by Lyndon and Ullman
[LU]; and necessary and sufficient conditions for the case of two parabolic
generators were given by Beardon [B1]. Necessary and sufficient conditions,
in the form of an algorithm, were given by Purzitsky ([P1], [P2], [P3]),
Rosenberger ([R1], [R2], [R3], [R4], [R5]), Purzitsky and Rosenberger [PR],
and by Kern-Isberner and Rosenberger [KR]. Their approach is primarily
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algebraic; that is, they show that the problem can be solved in finitely many
steps by “trace minimizing,” but they do not give a geometric explanation
of the meaning of their procedure.

Another, more geometric, approach was started by Matelski, but there are
some difficulties with his procedures. In broad outline, we follow Matelski’s
procedure here, filling in the one difficult case, where both generators are
hyperbolic, with non-intersecting axes. We also explore the relationship be-
tween the algebra and the geometry (see also [GM]).

We remark that there is one case that we do not treat here, and that is
the case of two hyperbolic generators with intersecting axes. The algebraic
treatment has been done by Rosenberger together with Purzitsky and Kern-
Isberner (see [R5] and the references given there). A geometric treatment of
this case can be found in [G].

The authors wish to thank A. Beardon for informative conversations.
Also, the first author wishes to thank G. Rosenberger for helpful conversa-
tions and correspondence during the preparation of this and other related
work.

The structure of our treatment is as follows. We assume that we are given
two nontrivial 2 X 2 matrices, with either real or integer entries, and positive
determinant. Call these matrices g and 4. We give a step-by-step procedure
to determine discreteness of the group G = (g, h) C PGL(2, R)*, the sub-
group of PGL (2, R) with positive determinant. We give geometric interpre-
tations of the results of our procedure, along with the necessary proofs, at
each step.

In the case that g and # are given with integral entries, then we regard the
procedure as having ended as soon as we reach an elliptic element of G, for
then G is either not free or not discrete. The programming necessary for
each step is fairly simple, and is left to the interested reader; a fuller descrip-
tion of the computational algorithm can be found in [GM].

Our general procedure is that we regard parabolic elements as “simpler’
than hyperbolic, and elliptic elements as “simpler” than parabolic. We start
with two hyperbolic generators; this is Case 1. We then go to one hyperbolic
and one parabolic generator (Case II), then two parabolic generators (Case
II1). The last three cases are of interest only for the algorithm with real co-
efficients: one hyperbolic and one elliptic generator (Case 1V); one parabolic
and one elliptic generator (Case V); and two elliptic generators (Case VI).

In the cases that neither of the generators is elliptic (aside from the possi-
bility, which we do not treat, of two hyperbolic generators with intersecting
axes), the procedures are all very similar. We start with g and £, compute
T(g) and T'(h) (these are the traces if the determinant = 1), and make neces-
sary simple adjustments so that 0 < 7(g) <T(h). We show that T(gh) <
T(h), and that G is discrete if T(gh) < —2; we also know that gh is elliptic
if —2 < T(gh)<2. We replace the ordered pair of generators (g, #) by new
generators (g, gh). The only difficulty in showing that the procedure ends
after finitely many steps is in Case I, where both generators are hyperbolic.
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An Algorithm for 2-Generator Fuchsian Groups 15

Before starting our procedure, we make a remark about elementary groups.
If g and /4 have integral entries and are both hyperbolic with the same fixed
points, then it is not clear if there is an effective procedure to determine
whether or not G is discrete. (In the real case, we need to assume we can
take logarithms, and that we can tell if a number is rational.) If they both
have integral entries, and are both parabolic with the same fixed point, then
G is cyclic and discrete. We have already discussed the difficulties with el-
liptic elements.

0. First Computations

_(a b
g‘(c d)

with positive determinant, set 7(g) = (a+d)/(ad —bc)/?; it is clear that
T(g) depends only on g as an element of PGL(2, R)™.

0-1. Compute T(g) and T'(h). If T(g) <0, replace g by —g; similarly, if
T(h) <0, replace h by —h.

0-2. If T(g) > T(h), replace the pair (g, h) by (&, g). We now have that
0=<T(g)<T(h).

0-3. If T(g)>2, go to Case I; if T(g)=2 and T(h)> 2, go to Case II;
if T(g)=T(h)=2, goto Case Ill; if T(g) <2 and T(h) > 2, go to Case 1V; if
T(g)<2and T(h)=2, goto Case V; if T(h) <2, go to Case VI.

For any matrix

Case I: Hyperbolic-Hyperbolic

I-0. If T(g) > T(h), replace the pair of generators (g, #) with the pair of
generators (4, g).

I-1. Find a, and r,, the attracting and repelling fixed points (resp.) of g;
also find a; and ry, the attracting and repelling fixed points (resp.) of 4. For
the purpose of our program, we need only check that these are distinct, and
then look at some inequalities involving the cross ratio.

[-2. If ag=a, or ry=r, Or a,=ry or r,=a,;, then G is either not discrete
or elementary. From here on we assume that these four points are distinct.

I-3. Compute the cross ratio

(rg—rp)(ag—ap)
(rg—ah)(ag_rh) -

I-4. If C=0 or «, then g and 4 have a common fixed point. It is well
known that, in this case, G is not discrete.

I-5. If C>1, then replace 4 by h~!; this replaces C by 1/C, so from here

on, in the case C >0, we can assume 0 < C < 1.
I-6. Compute the Jgrgensen number

n(g, h)=|T([g, h])—2|+|T*(g)—4|.

C=(rg,agry,ay)=
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If u(g, h) <1, then G is not discrete [J].

I-7. Compute 7(gh); if T(gh) < —2, then G is free and discrete.

The statement above needs proof. We say that the hyperbolic elements g
and /4 bound if the axes of g, h, and gh bound a common region (in the up-
per half-plane). If g, &, and gh are all hyperbolic, where the axes of g and A
are disjoint, and they do not bound, then we say that they separate; that is,
in this case, one of the three axes (and it can be any one of the three) sepa-
rates the other two.

If g and A bound, then G is free and discrete. An easy proof of this fact is
to consider the three common orthogonals to the axes of g, A, and gh. (One
possible configuration of these hyperbolic lines, where, e.g., the axis of g is
labelled as A4,, is given in Figure 1.) It is clear that g and / bound if and only

Figure 1

if these three hyperbolic lines also bound a common region. By Poincaré’s
polygon theorem (see [Mal]), the group generated by the reflections in these
three common orthogonals is discrete, and has no relations other than the
fact that the three generators are involutions. The desired result now fol-
lows from the fact that G is the orientation-preserving half of this group.
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THEOREM. Let g and h be hyperbolic elements of SL(2,R), where g and
h have no fixed points in common, the axes of g and h do not intersect, and
gh is also hyperbolic.

@) If C(g,h)>1then T(g)T(h)T(gh)>8.
(b) If C(g,h)<1then T(g)T(h)T(gh) < —8 if and only if g and h bound.

Before going on to the proof of this theorem, we remark on its meaning.
The condition C(g, #) > 1 means that g and 4 are not oriented correctly with
respect to one another; if we replace either g or # (but not both) by its in-
verse, then we go from C(g, h) >1to C(g, h) <1. With this in mind, the the-
orem says the following. If the product of the traces is negative, then g and
h are correctly oriented and their axes bound; if the product of the traces is
positive, then either g and 4 are not correctly oriented, or their axes sepa-
rate, or both.

Proof. We replace g and 4 by their corresponding matrices in SL(2, R); that
is, we find g’ and A’ in SL(2,R) so that g and g’, and 4 and 4’, represent
the same element of PGL(2,R). Then T(g’)=T(g) and T(h')=T(h); we
then write g for g’ and A for A’. With this notation, g is simultaneously a
matrix, or an equivalence class of matrices, and a Mobius transformation;
this should cause no confusion.

We normalize our transformations g and # as follows. Normalize so that
the repelling fixed point r, of g is at 0 and the attracting fixed point «, is at
oo, Then either both fixed points of /4 are positive, or they are both negative.
If necessary, conjugate by z — —z, so that the fixed points of g are still at 0
and oo, and the fixed points of % are both positive. Normalize further so that
ry is at 1. Notice that with this normalization C(g, #) =a,=a <1 (this also
shows that we need not consider the case C(g, #) =1, for that occurs pre-
cisely when 4 has only one fixed point). Since g has determinant 1, there is
a number R > 1 such that

(R O
g"(o R*)’

and there is a number K > 1 such that
1 (aK—K“‘ a(K‘l——K)>

h=

T a—1\ K—-K' aK'-K

We will make use of the following remark. If g and 4 are hyperbolic trans-
formations of the hyperbolic plane, and if the axes of g and 4 intersect at a
point, then so do the axes of g and g# (this is an easy computation once one
normalizes the fixed points of g to be at 0 and ). It follows that if the axes
of g and A intersect, then, for any Nielsen transformation «, the axes of a(g)
and «(h) also intersect. Hence, if the axes of g and /# do not intersect and gh
is hyperbolic, then the axis of gh intersects neither the axis of g nor that of A.

With the normalization above, we have T(g)=R+R'>2 and T(h) =
K+K71>2.
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We prove part (a) by keeping the normalization as it is, with 0 < C(g, h) =
a <1, and considering the transformation gh ~'instead of gh. It is easy to see
that, with this normalization, the desired result follows from the statement

T(gh~')>2. Compute
R(@K'-K)+R YaK—-K™

T(gh™") =

a—1
_a(RK'+R7'K)—(RK+R7'K™)
B a—1
RK+RIK'—-RK'-R7K
=RK'+R 'K+ + )

1—a

Since R2K?+1>R?+K?, we have RK+R 'K '—RK~'-R7'K >0. Thus
T(gh™)Y>RK'+R'K>2.

We now turn to part (b). We continue with our assumption that g and 4
are normalized as above, and that 0< C(g, h) =a <1 (see Figure 2).

-

-

S
0]

Figure 2

Since 0 is the repelling fixed point of g and « is the attracting fixed point
of i, we have 0 < x < gh(x) for every point x with 0 < x <a. Hence gh can
have no fixed point in the interval (0, @). Since the axes of g and 4 are dis-
joint, g and 4 separate if the fixed points of g/ are negative, or if they lie
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between « and 1; hence g and 4 bound if and only if the average of the fixed
points of gh is greater than 1. Write

3 L( R(@K—-K™") Ra(K™'-K) )_ L(a 5)
" a—1I\RNK-KY) R YWaK'=K)) a—-1\«y &)
The fixed points of gh satisfy
vz22+(6—a)z—B=0.
Hence the average of the fixed points is greater than 1 if and only if
0<a—06—-2y=a+6—2(y+6) (notethaty>0),
or, equivalently,

a+6—2(y+8) 2(R7IK—R'K'4+aR"K'—R7K)
a—1 =T(gh)~ a—1

=T(gh)—2R'K~\.
We have shown that g and 4 bound if and only if 7(gh) <2R 'K ~!. Since

R and K are both greater than 1, 2R !X ~! < 2. Since either 7T(gh) < —2 or
T(gh)>2, we can have T(gh) <2R~'K ~'if and only if T(gh) < —2. O

0>

I-8. If T(gh)= +2, then gh is parabolic; replace the generators (g, #)
with the generators (g, gh), and go to Case II.

I-9. If —2<T(gh) <2, then gh is elliptic; replace the generators (g, /)
with the generators (g, gh), and go to Case IV.

1-10. If T(gh) > 2, then replace the generators (g, #) with the generators
(gh, g) or (—gh, g), so that T(gh) > 0, and iterate the procedure above, start-
ing with step I-0. .

We need to show that this procedure terminates after finitely many steps.
We start with an inequality.

PROPOSITION. If g and h are hyperbolic with distinct fixed points and non-
intersecting axes, where T(h)y=T(g)>2 and 0< C(g, h) <1, then T(gh)<
T(h).

Proof. Normalize g and 4 as in step 1-7, write g and 4 as above, and compute
aKR—RK'+aR™'K'-R7K
a—1 )
Then, using the fact that T(h) = (aK—K ~'+aK ~'—K)/(a—1), we obtain
aK+aK '-K— K '-aqKR+RK'—aK"'R™'+ KR!
T(h)—T(gh) = —

a(K—KR+K '-K ' R"HW4+ K 'R—K'+KR'-K

a—1

T(gh)=
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_aK(1—-R)+aK'1-R™H)+KR'-1)+ K (R-1)

a—1
_a(K—K'R")(1-R)+(KR™'-K")(1-R)
B a—1

>0,

where we have used the fact that X = R in the last inequality.

This proposition shows that, if we follow the outlined procedure, then
max(7(g), T(h)) keeps decreasing as long as we keep 7(g) and T'(h) posi-
tive. Our next goal is to bound the decrease from below. There are two cases
to consider.

We keep g and 4 normalized as above; that is, g and 4 are as in step 1-7,
with 0 <a = C(g, h) <1, where a is the attracting fixed point of # and 1is the
repelling fixed point of 4. Let L be the common orthogonal to the axes of g
and A (see Figure 2 for one of the possible configurations). Then there are
(hyperbolic) lines L, and L,, where L, is orthogonal to the axis of g and L,
is orthogonal to the axis of A, so that the following holds. If we denote the
reflection in L by r, the reflection in L, by r,, and the reflection in L, by r,
then g =r,r and h=rr;. It follows that gh=r,r,. It is easy to see that L, is
the common orthogonal to the axes of g and gh, and that L, is the common
orthogonal to the axes of # and gh. By assumption, g and 4 do not bound,
so L, L,, and L, do not bound a common region. Let p, be the (hyperbolic)
distance, measured along the axis of g, between the point of intersection
with L and the point of intersection with L,. Similarly, let p,, be the distance,
measured along the axis of A, between the point of intersection with L and
the point of intersection with L,,.

We denote the translation length of the element f by 7,; then 2p,=7,. It
is well known that 7= 7, and T =T are related by the formula

T =2 cosh(r/2) =2 cosh(p).

In particular, since 7(h) 2 T(g), pp=p,.

There are now several different cases to consider. Observe first that if L,
and L, meet at a point z in the disc, then gh = r,r, is elliptic with fixed point
z. Similarly, if L, and L, meet at the circle at infinity, then gh is parabolic;
we can ascume that these cases do not occur. We have also assumed that the
three lines L, L,, and L, do not bound a common region. The only other
possibility is that L, and L, do not meet, even at the circle at infinity, and do
not bound a common region. In this case, one of these lines separates the
other two. In particular, either L, crosses the axis of A, or L, crosses the axis
of g, or both.

If L, lies between L and L,, then the distance along the axis of g between
L and L, is less than p,. The axis of 4 is the common orthogonal to L and
L, so p, (which is the distance between L and L, measured along the axis
of h)is less than the distance between these two lines measured along the axis
of g. Since p, < p,, we cannot have that L, lies between L and L.
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We conclude that L, lies between L and L,; in particular L, crosses the
axis of h. There are now two cases to consider.

We first take up the case that L, does not cross the axis of g; that is, one
endpoint of L, lies between @ and 1, and the other is greater than 1 (see Fig-
ure 2). We draw a sequence of hyperbolic lines L,,,, m=2, 3, ..., so that if r,,
denotes reflection about L,, then g”=r,,r. Since 7(g")=m7(g), the lines
L,,, which are all orthogonal to the axis of g, are (hyperbolically) equally
spaced along the axis of g, and the distance between successive lines is p,.
Also, since o is the attracting fixed point of g, and hence of g, the lines
L,, accumulate to «. Since L; does not intersect the imaginary axis, either
some L, intersects L, or there is a first m so that L,,, L,, and L bound a
common region (=2 in Figure 2, and m =3 in Figure 3). In either case,

W

Figure 3

we can replace the generators (g, /) by the pair of generators (g"”'h, g); note
that for these new generators, either their axes meet at the circle at infinity
or they bound, since L,,_,,L,,, and L,, the common orthogonals to their
axes, bound a common region (in Figure 2, m=2 and L,=L,;). Note that
these two axes cannot intersect, for the axes of any two hyperbolic genera-
tors of G do not intersect.

We return now to our algorithm. The instruction is to replace the pair
of generators (g, #) with either (gh, g) or (g, gh), depending on whether
T(gh)<T(g)or T(gh)>T(g).If m=1in the argument above, then gh and
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g bound, so we need not further consider this case. If m>1, we need to
show that T(gh) > T(g), for then the next step in our iteration will yield
(g%h, h) (or (g, g2h)). We have shown that, for some m, either g”h is ellip-
tic, or parabolic, or g and g™/ bound. Hence once we show that T(gh) >
T(g) when m > 1, then we will have shown that this part of our procedure
necessarily ends after at most m steps.

Observe that both endpoints of the axis of gh must lie between a and 1,
for L, has one endpoint between @ and 1 and the other endpoint is greater
than 1. Since L, crosses the axis of /4 between L, and L, and does not inter-
sect Ly, L, also crosses the axis of gh between L, and L,. Since p, (the dis-
tance between L, and L, measured along the axis of g) is less than the dis-
tance between L, and L, measured along the axis of gk, which in turn is less
than p,;, (see Figure 3), we conclude that if m>1 then 7(g) <T(gh).

We next take up the case that L, crosses the axis of g. We renormalize so
that O is the attracting fixed point of g and o the repelling fixed point of g,
so that the fixed points of /# are both positive, and so that L, the common
orthogonal to g and A, is the unit circle. We compute that the endpoints of
L, are symmetric with respect to the origin, and label them as = y. We label
the endpoints of L, as w <0 and z > 0. We now have these points in the fol-
lowing order (see Figure 4):

—lI<—y<w<i<z<y<l.

Using the canonical isomorphism between PGL (2, R) (including matrices
with negative determinant) and the group of all isometries of the hyperbolic

~T-y wO z yl

Figure 4
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plane (including the orientation-reversing isometries; see [Ma2]), we write:
0 1 0 y? —z—w  2zw
r= ’ rg = ’ rh = ’
1 0 1 0 -2 Z+w

and compute:
2
yo 0 —2 Z+w
= d h= .
& (O 1) an (—(z+w) 2zw)

We next use Jgrgensen’s inequality, and compute the Jgrgensen number
p=|T(lg, h])=2|+|T?(g) -4
=z+wW) -y N @-w) 2+ (r-y7
=2(z>+wh)(y—y ) (z—w) %

2

If u <1then, by Jgrgensen’s inequality, G is not discrete; we now assume
that p=>1. Note that since w<0 and z>0, (z>+ wz)/(z_ w)?2 < 1. Hence
Jprgensen’s inequality [J] yields: (y—y~1)2=1/2. Since y <1, one easily
translates this into the inequality y <2712,

It is easy to see geometrically that 7(gh) < T(h). The axis of gh is the com-
mon orthogonal to L, and L (see Figure 4). It does not matter where this
line is located with respect to A, and A, (it could be in any one of three
places). In any case, pj, is the distance between L, and L measured along the
common orthogonal A;, and is clearly greater than the distance along A4,
between L, and L, which in turn is greater than p, the distance between
L, and L, measured along the common orthogonal.

Now repeat the same analysis as above for the generators g and j = hg.
Only the last case, where L, crosses the axis of j and L; crosses the axis of g,
is of concern, for in all the other cases, we either have that j is a simpler gen-
erator, or we conclude that G is discrete, or we conclude that G is not dis-
crete, or we are in the case where we know the process ends after finitely
many steps. Working with positive traces, an easy computation yields

2(y*—zw) 2(1—2zw)

We bound the difference 7(h)— T(gh) from below as follows:

2(1=y)(zw+y)
Y(z—w)
S 2(1-y)(y—»?)
Y(z—w)
(1-y)?
y
- (V2—1)? S
V2

T(h)—T(gh)=

=

0,
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where we have used the facts that —y <w <0<z <y<1and y <1/V2. Since
T(gh) < T(h), and the difference has a positive lower bound, we can remain
in this last case for only finitely many steps. Hence, this part of our proce-
dure ends after finitely many steps.

We remark that one could easily use the above inequality to bound the
number of steps required in this case. However, bounds in the other cases
are not easily obtained.

I-11. We turn now to the case that C <0, that is, when the axes of g
and # intersect. An easy computation shows that this occurs if and only
if T([g, h]) <2. There are several proofs in the literature that G = (g, h) is
discrete and free if and only if 7([g, #]) < —2 (see, e.g., [M] or [P1]).

If |T([g, h])| <2, then the commutator [g, /#] is necessarily elliptic, so G
is either not free or not discrete. The question in this case as to when G is dis-
crete is fully answered by the algorithm given by Theorem 4 of [P3], taken
together with the corrections of [M]. This is also summarized in [RS].

Case II: Hyperbolic-Parabolic

I1-0. If T(g) > T(h), replace the generators (g, #) by the generators (4, g);
after this step, 4 is hyperbolic and g is parabolic.

II-1. Compute the fixed points of g and 4. If they have a common fixed
point, then G is not discrete. From here on we assume these points are distinct.

II-2. Normalize so that the fixed point of g is at o; then g(z)=z+ 7. If
7 <0, replace g by g~!; from here on, we can assume 7> 0.

I1-3. If the attracting fixed point of A is larger than the repelling fixed
point, replace 4 by #~!. Now normalize further so that the fixed points of
h are at +1. Note that —1 is the attracting fixed point and +1 is repelling.

Write
1 7 a b
g”‘(o 1) and h_<b a)’

where a®?—b%?=1, a>0, and (since +1 is the repelling fixed point) b < 0.

II-4. It is well known that, if the discrete group contains the parabolic
element z — z+1, then the radius of the isometric circle of any element of
the group is at most 1 (this is sometimes known as the Shimizu-Leutbecher
theorem; a proof can be found in [B2, p. 106]). Hence G is not discrete if
|b7| < 1.

II-5. Compute T(gh); if T(gh) < —2, then G is free and discrete.

This statement needs proof. An easy computation shows that 7(gh) < —2
if and only if 7/2 = (a+1)/(—b).

Let L be the line orthogonal to the axis of # and ending at the fixed point
of g. Let r denote the reflection in L. Then there are lines L, and L,, where
Ly is orthogonal to the axis of 4 and L, ends at the fixed point of g, so that
(denoting reflection in L, by r, and reflection in L, by r;) we can write g =
reer and h=rory,.
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Observe that L, is a Euclidean line segment parallel to the imaginary axis
and that L, ends at 7/2 > 0. Also, L, is orthogonal to the axis of A, which is
the unit circle, and both its endpoints are positive; call these endpoints \;
and \,, where \; <)\,. Notice that the (Euclidean) circle on which L, lies is
the isometric circle of 4. Hence we can compute \, =(a+1)/(—b). We have
shown that 7(gh) < —2 if and only if the three lines L, L,, and L, are dis-
joint and bound a common region. As we observed in the previous case, the
fact that these three lines bound a common region implies that the group G
is free and discrete.

I1-6. If —2<T(gh) <2, then gh is elliptic. Replace the generators (g, /)
by the generators (g, gh); these are parabolic and elliptic, respectively.

I1-7. If T(gh) =2 then gh is parabolic. Replace the generators (g, #) by
(g, gh), which are both parabolic.

II-8. If none of the above cases occur, then replace /4 by gh and return to
step II-0. With g and 4 normalized as above, T(gh) =2a+br=T(h)+ br7.
Since b <0 and |b7|=1, we can remain in this case for only finitely many
steps.

Case III: Parabolic-Parabolic

III-1. If T(g) <0, replace g by —g; also, if T(h) <0, replace h by —A.

III-2. Let x be the fixed point of g and let y be the fixed point of A. If g
and A both have the same fixed point, then G is elementary. (In the case that
g and h are given by integral matrices, then G is discrete and cyclic.)

III-3. Compute the cross ratio C=(x, y; h(x), g(y)). If C>0, replace
h by k71 (see step V-3).

I11-4. If —2 <T(gh) <2, then gh is elliptic; replace the generators (g, h)
by the generators (g, gi) and go to case V.

II1-5. If T(gh) < —2 then G is free and discrete. It never happens that
T(gh)=2.

In order to prove the above statements, normalize so that g(z) =z +1,
and so that 4 has its fixed point at 0. Then A(z) =z/(7z+1). One easily sees
that C <0 if and only if 7 <0. Compute T(gh)=2+71. As 7<0, T(gh) <2.
Also, gh is elliptic if and only if —2 < T{gh) < 2. It remains to show that G
is free and discrete if and only if T(gh) < —2.

Construct the line L with fixed points at 0 and oo, and construct the line
L, with fixed points at 1/2 and co. Then g =r,r, where r is the reflection in L
and r, is the reflection in L,. Similarly, construct the line L, with endpoints
at 0 and some point A, so that A=rr,. It is easy to see that the Euclidean
circle containing L, is the isometric circle for A, so \ is the point 2/(—7).

The lines L, and L, intersect if and only if —2/7>1/2, in which case gh
is elliptic; otherwise, they bound a common region, in which case G is free
and discrete.

We remark that the question of when two parabolic elements of PSL(2, R)
generate a discrete subgroup has been completely solved by Beardon [B1].
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Case IV: Elliptic-Hyperbolic

IV-1. If g is elliptic and not of finite order, then G is not discrete. If g
is of finite order then, for some positive o, g* is a minimal rotation (i.e.,
[tr(g®)| is maximal); replace g by g%

IV-2. If g has order 2, then g and g ~! are indistinguishable. If the order
of g is greater than 2, then we distinguish positive and negative rotations as
follows. The transformation z — ez has positive rotation about the origin,
for 0 <t <=, and has negative rotation about the origin for = < f <2=. For
an arbitrary elliptic transformation, we define positive and negative rotation
about a fixed point by conjugation. It is clear that if g has negative rotation
about a fixed point x, then g ~! has positive rotation about x.

If g has negative rotation about its fixed point in the upper half-plane,
then replace g by g~ L.

IV-3. Let x be the fixed point of g, and let A be the axis of 4. If x does
not lie on A4, let L’ be the line segment from x to A, orthogonal to 4. L’ di-
vides A into two parts, the positive part having the attracting fixed point
of h on it, and the negative part having the repelling fixed point of 4 on it.
If x lies on A, then it divides A into the same two parts. If the order of g is
greater than 2, then g(L’) lies in one of the two half-planes cut out by the
full line L on which L’ lies. If this half-plane does not also contain the nega-
tive half of A, replace 4 by h~!. After this replacement, g(L) and the nega-
tive half of A both lie in the same half-plane.

IV-4. If T(g) <0, replace g by —g; likewise, if 7(h) <0, replace 4 by —h.

IV-5. If T(gh) < —2 then G is discrete, and G is the free product G =
(g)*<h).

This assertion needs proof; we state it formally.

THEOREM. If T(gh)< —2 then G is discrete and G=(g)*(h). Let L be
the line through the fixed point of g orthogonal to the axis of h. Then there
are unique lines L, and Ly, so that g=r,r and h=rr,, where r, ry, and ry,
are (resp.) the reflections in L, L,, and L. If these three lines bound a con-
vex polygon, where L, does not intersect either L or L,, then T(gh) < —2.

Proof. Normalize G so that x, the fixed point of g, is at i; so that L’, the line
segment between the fixed point of g and the axis of A, lies on the imaginary
axis; and so that A, the axis of A, lies inside the (closed) unit disc. Let L be
the full hyperbolic line defined by the imaginary axis. Then there are lines
L, and L, where L, passes through the point i, so that g =r,r and h=rry,
where r, 4, and r;, denote (resp.) reflection in L, L,, and L;. Denote the end-
points of L, by b <0 and a > 0. Note that, since L, passes through i, ab=
—1. Similarly, let ¢ <d be the endpoints of L,; note that, since A lies in the
closed unit disc, cd <1 (see Figures 5 and 6).

It is easy to see that, since g is a minimal rotation, the angle between L’
and L, in the right half-plane is 7/, where « is the order of g. It follows
that |b|> a.
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Figure 6

If the order of g is greater than 2, then the image of L’ under g lies in the
right half-plane. We have normalized so that the repelling fixed point of A
lies in this same right half-plane; hence ¢ and d are both positive. If the order
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of g equals 2, then L, lies on the unit circle. If necessary in this case, we fur-
ther normalize by conjugation by reflection in the imaginary axis; this leaves
g unchanged and replaces # by A~!. Hence, in this case as well, we can as-
sume that ¢ and d are both positive.

We now write

__(a+b 2 /=10 _fc+d —2cd
g‘< 2 —(a+b))’ ’—(0 1)’ ”'"( 2 —(c+a’))’

and compute (multiplying the matrices by —1 where necessary)

_(—(a+b) 2 _(ct+d —2cd
g—( —2 —(a+b)) and hﬂ( -2 c+d)'

We fixed the sign of these matrices so that 7(g)=—2(a+b)/(a—b)=0
and 7(h)=2(c+d)/(d—c)>0.
Using the fact that ab =—1, we now compute

—2(a+b)(c+d)—4(1—cd)
(a—b)(d—c) |

We solve T(gh) < —2, and substitute b = —1/a to get ca’+a(l—cd)—d=
0. Since a > 0, this is equivalent to a =d.

Observe that a = d if and only if the entire hyperbolic line L, lies in the sec-
tor between that part of L, between a and /, and that part of the imaginary
axis between 0 and i (the case @ = d is shown in Figure 5, where the three line
segments needed for Poincaré’s theorem are heavier than the others). Since
the angle between these two line segments at i is m/«, where 2« is the order
of g, Poincaré’s theorem (see [Mal}) tells us that the group generated by r,
re, and ry is discrete; further, the only relations are that the generators are
involutions, and that g*=1 (see Figure 6 for the case that a <d). O

T(gh)=

IV-6. If T(gh) =2 then replace & by gh, and go to Case V.

IV-7. If —2<T(gh) <2 then replace k& by gh, and go to Case VI.

IV-8. If T(gh) > 2 then return to step IV-1 with the generators (g, gh).

It remains only to show that the iteration ends after finitely many steps.
To this end, we consider the hyperbolic lines L,,, through the point i, so that
g™ =r,r, where r,, is reflection in L,,. Either there is a first such line which
intersects L, in which case g"”h is elliptic, or L, intersects L at the circle at
infinity, in which case g”h is parabolic, or there is a first such m so that L,,
lies to the right of L,, while L,,_, lies to the left of L,.

In this last case, observe that the lines L,,_ and L, meet at an angle of 7/«
at i; also note that L, lies entirely inside the sector with this angle between
them. It follows that G = (g™h, g) is discrete and that G = (g"h) * {g).

In order to make use of these observations, it suffices to show that 7(gh) <
T(h) (since g has finite order «, the process must then end after at most o —1
steps). We compute
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2(c+d) _ —2(a+b)(c+d)—4(1—cd)

T(h)—T(gh)=

d—c (a—b)(d—c)
_4a(c+d)+4(1—cd)
~ (a=b)(d-c)
> 0.

Case V: Elliptic-Parabolic

V-1. If g is elliptic and not of finite order, then G is not discrete. If g isof
finite order then, for some positive o, g is a minimal rotation (i.e., |tr(g®)]
is maximal); replace g by g*.

V-2. If g has negative rotation about its fixed point in the upper half-
plane, then replace g by g~ \.

V-3. Define the rotation of the parabolic element 4 (about its fixed point
in the upper half-plane) as follows. If the fixed point of 4 is at oo, then 4 has
positive rotation if #(0) > 0, and has negative rotation otherwise. If the fixed
point is not at oo, then use conjugation in PSL(2, R) to define positive and
negative rotation. If 4 has negative rotation about its fixed point, replace #
by A~ L.

V-4. If T(g) <0, replace g by —g; similarly, if T(h) <0, replace /# by —h.

V-5. If gh is elliptic, replace 4 by gh and go to Case VI.

V-6. If gh is not elliptic, then G is discrete.

THEOREM. If gh is not elliptic then T(gh) < —2, G is discrete, and G =
(g)*<h).

Proof. Normalize so that g has its fixed point (in the upper half-plane) at i,
and so that 4 has its fixed point at 0. Then, as in Case IV, we can write

_[—(a+b) 2 /10
g"( —2 —(a+b)> and ""(T 1)’

where ab=—1, 0<a=<1, and 7<0.

Compute T(gh)=[27—2(a+b)]/(a—b), and observe that T(gh) <T(g) <
2. Hence, either T(gh) < —2 or gh is elliptic.

One observes that 7(gh) < —2 if and only if —2/7 <a. This last condition
is easily seen to be equivalent to the following. We know that the imaginary
axis intersects the isometric circle of g~! at the point / and meets the iso-
metric circle of 4 on the sphere at infinity. The isometric circle of /4 has its
endpoints at 0 and —2 /7, and the isometric circle of g ! has its endpoints at
a and b= —1/a. Hence —2 /7 < a if and only if these three hyperbolic lines
(the imaginary axis, the isometric circle of g !, and the isometric circle of /)
form a triangle to which we can apply Poincaré’s polygon theorem, where
the identifications of the sides are the three reflections. The result now fol-
lows. O
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Case VI. Elliptic-Elliptic

VI-1. If g and 4 have the same fixed point in the upper half-plane, then G
is either elementary or not discrete. From here on, we assume that g and 4
have distinct fixed points.

VI-2. If g is elliptic and not of finite order, then G is not discrete. If g
is of finite order then, for some positive «, g% is a minimal rotation (i.e.,
|tr(g®)| is maximal); replace g by g“

VI-3. If A is elliptic and not of finite order, then G is not discrete. If A
is of finite order then, for some positive 8, #” is a minimal rotation (i.e.,
|tr(hP)| is maximal); replace 4 by h”.

VI-4. If g has negative rotation about its fixed point in the upper half-
plane, then replace g by gL

VI-5. If A has negative rotation about its fixed point in the upper half-
plane, then replace # by A7,

VI-6. If gh is either hyperbolic or parabolic, then G is discrete and G =
(g)*<(h).

To prove this statement, normalize so that the fixed point of g is at /, and
so that the fixed point of 4 is at #i, 0 <¢<1. Let L denote the hyperbolic
line formed by the positive imaginary axis; let L, and L, be hyperbolic lines
chosen so that g=r,r and h=rr,, where r, r,, and r;, denote (resp.) reflec-
tionin L, L,, and L. Note that L, is the isometric circle of g 'and that L,
is the isometric circle of A.

Let L’ be the segment of L between i and ¢i. We have chosen g and 4 so
that the angle from L’ to L,, measured inside the right half-plane, is 7/a,
where « is the order of g. Similarly, the angle from L, to L’, also measured
inside the right half-plane, is /3, where 3 is the order of A.

If L, and L, do not meet in the right half-plane (except perhaps at the
circle at infinity), then gh is either hyperbolic or parabolic. By Poincaré’s
polygon theorem, G is discrete and G = {g) * (h).

If L, and L, do meet in the right half-plane, then g# is elliptic. From here
on, we assume that this occurs.

VI-7. Compute the area of the triangle formed by L, L., and L,; if it is
less than w/42, G is not discrete.

VI-8. If gh is elliptic and not of finite order, then G is not discrete.

VI-9. If ghis elliptic and geometrically primitive (i.e., a rotation through
an angle of 27/n, n an integer), then G is discrete.

The proof of this fact is again by Poincaré’s polygon theorem; observe
that the angle between L, and L, is half the rotation angle of gh.

VI-10. We now assume that g# is elliptic of finite order v, but not geo-
metrically primitive. Let T be the triangle formed by L, L,, and L,. Let x be
the vertex between L and L,, let y be the vertex between L and L, and let z
be the vertex between L, and L. Let T be the triangle inside 7, with vertices
at x and z, where the angle at z is 7/~. Similarly, let 7, be the triangle inside
7, with vertices at y and z, where the angle at z is «/. It is clear that T; and
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T, have disjoint interiors, so either the area of 7 is less than half the area of
T, or the area of T is less than half the area of 7. In the former case, replace
h by gh; in the latter case, replace g by gh, and return to VI-1.

It is clear that this process terminates after finitely many steps.

We remark that instead of the iteration procedure of step VI-10, we could
refer to Knapp’s list of all possibilities for the reflections in the sides of 7 to
generate a discrete group [K].

[Bl]
[B2]
[DJ]
[G]
[GM]
[J]

[KR]

[K]
[LU]
[Mal]

[Ma2]
(M]

[P1]
[P2]

[P3]
[PR]

[R1]

[R2]

[R3]
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