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Introduction

A function f, analytic in the open unit disk D, is said to belong to a Berg-
man space L, 0< p< oo, if

| 7@ da@) <o,

where dA(z) is area measure on D. (The space L2 is referred to as the Berg-
man space, and L is defined to be H*.)

Axler [1] gives a short introduction to the Bergman spaces with proofs of
the basic facts about these spaces; however, describing the zero sets of the
functions in the Bergman spaces remains an unsolved problem.

This paper presents a condition on a sequence ry,r,,... € [0,1] that is
weaker than the Blaschke condition, namely,

o 1+¢
lim sup 2j=1U=1)) < l,
e—oo log(1/e) 4

that guarantees that a set of points in the disk with moduli ; and random
arguments is almost surely the zero set of a function in L2. An explicit con-
struction of a function with the desired zero set that almost surely belongs
to the Bergman space is provided (using Horowitz’s generalization of the
Blaschke factors).

It is well known (see, e.g., [5, pp. 90-95]) that a countable set S = {z;} of
points (assumed to be ordered by magnitude) in D is a zero set for an H?
function, 0 < p <, if and only if the points satisfy the Blaschke condition:

2 (1=]zj]) <oo.
zjeS

No such simple condition for the zero sets for L# functions is known. Horo-
witz obtained many interesting results about zero sets in the Bergman spaces
in [4]. There are three results in particular that highlight the differences and
similarities between the Hardy spaces and the Bergman spaces:
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. If 0 < p < @ < oo then there is an L? zero set which is not an L7 zero set.

. If 0 < p < oo then the union of two LZ zero sets is an L/?) zero set but
not necessarily an L7 zero set for any g > (p/2).

3. Subsets of LZ zero sets are L¥ zero sets.

Only the third item listed above is similar to the H? case; the other two
items are in sharp contrast to the simple “one condition holds for all p”
Hardy space result.

Shapiro and Shields [7] showed that the zeros of a Bergman function
along any radius do satisfy the Blaschke condition. Since forall 1 < p <o we
have L? D H?, one might expect that a Blaschke-like condition for the zeros
of Bergman space functions exists. The Blaschke condition does generalize
to a necessary (but not sufficient) condition for L? zero sets. For feL?,
not identically zero, let Z be the set of points where f is zero. Then,

1) ve>0, Y (1-]zj])' <00,
€Z

N =

This can be easily proved (see [2] for an outline). Note that this condition
does not involve the argument of the zero points.

The result of Shapiro and Shields shows that no condition on a sequence
{z;}7=1 in D, weaker than the Blaschke condition and expressible solely in
terms of the absolute values |z;|, can guarantee that the sequence is an L}
zero set. This motivated the probabilistic approach that is being presented:
If the growth of the bounds, in the necessary condition (1) above, is not too
fast as e tends to zero then the condition becomes sufficient, almost surely.

The results in this paper are based on work in the author’s doctoral disser-
tation written under the direction of Professor Donald Sarason, whose help
and encouragement are greatly appreciated. The author also thanks the ref-
eree for the detailed critique of the first draft of this paper.

The L2 Norm of a Blaschke-Horowitz Factor

Blaschke factors play an important role in the function theory in the unit
disk.

DEFINITION. For z, a nonzero point of D, let

|20l 20X
20 1—-2oz

B, (2)=

be the usual Blaschke factor for zy. The Blaschke factor for the point zerc
is defined to be By(z) =z.
In the Bergman space the useful analogue of the Blaschke factor is

B, (2)-(2— B, (2)),

which was introduced by Horowitz in [4]. We will refer to such terms as
Blaschke-Horowitz factors.
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In the proof of the main theorem the following proposition, determin-
ing the L? norm of a Blaschke-Horowitz factor as the argument of the zero
varies over the unit circle, will be useful.

PROPOSITION 1. For 0<r<1, ‘
PSS+, (r)s* +p3(r)st+py(r)

51; Sj"[B,e,-a(z)-(2—B,e,-e(z))|2d0= e, ,
where
pi(r)=—4r"+10r®—4r>—4r*+4r3—r2,
Do(r)=—4r8+20r>—26r*—4r3+16r2—4r—1,
p3(ry=—r8—4r>+16r*—16r3+4r*+8r—4,
pa(ry=—r*+4r3—4r?,
and s =|z|.

Proof. Let { =re'® be the zero point of the Blaschke-Horowitz factor. The
restriction that ¢ = 0is necessary since the definition of B, (z) isnot continu-
ous as zo— 0. (Because of this the zeros of a function at the origin are often
dealt with separately when using Blaschke factors; fortunately this is usually
simple since it merely means dividing out by a high enough power of z to
reduce to the case with no zeros at the origin.) Let 7 be the integral we are
interested in evaluating.

We have , , \
QIs[=-D%s—z|*|¢" —z|
2 B.(z)-(2—B 2= — .
ivf)lere | ;(Z) ( ;—(Z))I ll_g_zl4
o £ 12351/
15 [¢1=@/2)°

(The variable {’ was introduced so that the following argument would be
more symmetric. The presence of the initial factor, (2|¢|—1)?, in equation
(2) above ensures that there is no singularity when |{|=1/2.)

Since the integration is over the argument of { on the entire circle, only
the absolute value s =|z|, not the argument of z, affects the integral, so we
have

2 |ref—s|2|re®—s|? db

0 |1—rsei®|4 27’

where r'=(1—(r/2))/(r—(1/2))=(2—r)/(2r—1). Now, since the integral
is complicated, we split the integrand into two factors which will make the

integration easier.
Let

1=(2r—1)2S

re?—g

1—rse®

2 ,.,eio__s

1—rsef®

2

fi= and f,=

.
?

then
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1 7 21rf f
(2r—1)2 _So P2on
The simplification will arise since f; f,=1—(1—f1))—(1—=/f2)+ A=) 1—-13),
and integrating each part of the right-hand side is straightforward. We are
using Rz to denote the real part of the complex number z in the following.

We have
i0

|| rel=s 2 1+r22—r?—s?  (1-r¥)(1-s?
= | 1=rse®| T |1-rse®2 T [1—rsei|?
and
re—s |2 14r¥s?—r?—s?2=2s(r—r")ne’
1-fo=1—|—-2] = ,
1—rse’ [1—rse|?
_(=r)(A=sY)+r2—r?=2s(r—r")Re"

[1—rse?®|?

We will need the following lemma to simplify the integral.

LEMMA 2.
1 S'Zvr 0 = 1
27 Jo |1— rse"’l2 1—r2s?’
1 SZW 14r2s2
2w Jo |1— rse"9|4 T (U=ris2)3’
Szw Re'? doe S
27 |1—rsei®|? 1—r2s2’
and _
1 Szvr Re' _2rs
2w Jo [I—rse®]4 7 (1—r2s2)3°

These equalities are quite simple to establish, using the Taylor series for
1/(1—x) and the orthonormality of the exponentials in L?[0,27].

Returning to the proof of the proposition, we can now do the computa-
tions.

=§2"1——S ”(l—fl)f—i—jj“(l—fz)%

T do
+H[Ta-ma-no
2(1-r3)(1-s5?) _ (r—r’Y(r+r’)y 2s(r—r)rs
- 1—r2s2 1—r2s2 1—r2s2
(1-r?)?(1-s%)>21+r3s?) N
(1_r252)3
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2.2
+(1=r>)(1-s2)(r*-r?) Ellj—r,‘z:—zv
CA=rY) (=) (r—r)2s —2T5
(1 —r2s2)3
Recalling that r’ = (2 —r)/(2r —1) and combining terms, we obtain the prop-
osition. O

It is possible to verify Lemma 2 and to calculate the 2 norm of the Blaschke-
Horowitz factor directly using the residue theorem. Although the calcula-
tions in the latter case do become tedious, the denominator does factor
which makes things easier.

A Blaschke Type Condition for Probable Zero Sets

After a few necessary definitions the main theorem can now be stated.

DEFINITION. Let @=]J7-,{0,27). Let p; be normalized Lebesgue mea-
sure on the jth factor of Q. Then let u be the probability measure on Q such

that [,l.:H;'o:l Hj.

(See [3, p. 1571, for example, for a proof of the existence of such a probabil-
ity measure.)

For {r;}7=, an ordered sequence (allowing repetition) in (0, 1), consider
the map of Q into H(D) defined by w~ B,(z), where w = (¢4, ¢2, 3, ...) and

(3) B,(z)= _IIl By ¢iej(2) (2= By civj(2)).
j ==
B ,(z) will be called a Blaschke-Horowitz product. Horowitz [4, p. 705]
showed that if ¥ % ,(1—7r;)? < oo then B,,(z) is indeed in H(D). As was stated
in equation (1), this sum is bounded for a Bergman zero set.

THEOREM 3. If

) goz (1—"“)1+€ 1
1 Jj=1 J
oy log(1/¢) <3

and B,(z) is as in equation (3), then B, (z)e L2 a.e. [u].

Proof. Consider
2
SQ SniBw(Z)l dAdp.

Call this integral 7. We claim that this integral is finite; hence the inner
integral is finite, and B (z) e L2, except perhaps for a set of zero measure
with respect to u, that is, a.e. [u] as required. In the following, for simplic-
ity we will write B; for B,jei¢j(z).

Since u is a product measure we have
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I= Un'B (2)[2dudA

2

HB, (2-B;)| dudA

L,
L,
|

D

ﬁ|B (2—B;)|*dudA

ﬁs |B;-(2—B;)|? d; dA
j=170

=TI ftj,9)da,
j=1

where f(r;,s) is the rational function described in Proposition 1 (we are us-
ing s for |z|, as before). Thus,

=[ T 10;,5) aa

j=1

=S exp(logﬁ f(rj,s)) dA
D j=1

=S exp( § log f(rj,s)) dA.
D j=1

Now, by Proposition 4 (below) we have
log f(r,s)<4(1—r)%"*

for r and s sufficiently close to 1, so, by the assumption on the growth in the
theorem, :

exp(4 § (I—rj)z”s>sexp((1-6)log —1—->
Ji=Jo 1-s
_ 1
C (1=s)10

for some j, large enough, some 6 € (0, 1), and s close to 1. This gives us our
result, since

1 1
somds<m. 4

The next proposition describes the limiting behavior of the rational function
from Proposition 1, which we will call f(r,s).

PROPOSITION 4. For f(r,s) as in Proposition 1,
log f(r,s)<4(1—r)>"S

for r and s sufficiently close to and less than 1.
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Proof. We claim that (f(r,s)—1) <4(1—r)?~*, which gives the proposition
since log(x) < (x—1) for all positive x. In order to prove the claim we will
define a new function g(r,s) as follows:

f(r,S)—l

In order to prove the proposition we will show that g(r,s)=<1 for all
(r,s) close to (1,1) in the unit square ([0, 1] X [0, 1]). It is easy to check that
g(r,1)=1for re[0,1) (and for r =1 in the limit), so we will show that g is a
nondecreasing function of s near (1,1). We have

(1—-r)*(p(r,s)log(1—r)+q(r,s))
A(rs —=D4(rs +1)* ’

gr,s)=

3—§(r,5)=—
where

p(r,s)=(rs—1)(rs+1)
X (4r3s0—ris®—2r3sS+r2s®4+4rist—12r3s*—5r2s4
+6rs*+5*+ris2+6r3s2—5r2s2+4s>+r2=2r—1),
and
q(r,s)=—4(r—-1D2(r+1)%s2r2s*+ r2s2+6rs*+s>+2).

We claim that p(r,s)log(1—r)+q(r,s) is negative, which gives the re-
sult. Clearly g(r, s) is always negative, as is log(1—r), so if p(r,s) =0 then
we are done. We will analyze the behavior of p(r, s) in the unit square quite
explicitly in order to show that the claim is still true even when p(r,s) is
negative.

The polynomial p(r,s) is zero in the unit square only when r=s=1 or
when (r, s) is a root of the third factor of p(r,s). Upon examining this third
factor more closely, one notices that it is a cubic equation in s with coeffi-
cients which are functions of 7. In fact, the leading coefficient of the cubic in
s2is r2(4r®—r2—2r+1), which is always positive for r € (0, 1). So for each
fixed r, there are at most three roots of the equation for s € [0, 1]. Actually,
there is exactly one root in this interval for this factor. To see this note that
p(r,0)=—(r?—=2r—1) is positive, p(r,1) =4(r—1)3(r+1)* is negative (or
zero when r=1), and p(r, ) is + oo (the leading coefficient of the factor is
positive). So, there is at least one root in [1, o] and since it is not possible
for there to be two roots in the interval [0, 1], given the values at the end-
points, there must be exactly one root. For points in the unit square above
this path (i.e., for fixed r, values of s greater than the value of the root),
p(r,s) is always negative; below, p(r, s) is always positive. It is only in this
negative region for p(r,s) that the claim that dg/ds is positive is left to be
checked.

Figure 1 shows this important negative region (the curve I', indicated in
the figure, is defined below).
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N': negative region for p(r, s)
Z: zero set of p(r,s)/((rs — 1)(rs + 1))

I': approximation curve
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Figure 1

Now consider the curve I' defined by
(1-s)P=(1-r)
in the unit square. Along I, p is positive near (1, 1). To see this write p as a
function of ((1—r), (1—s)) (call it p(x, y) where x=(1—r) and y = (1—s)):
Px,p)=—(x—1)*(4x’ —11x*+8x—2)y"

+8(x—1)*(4x3—11x%+8x—2)y’
—8(x—1)*(14x* —53x> +66x>—32x +6)y°
+16(x—1)>(14x* - 54x3 + 65x2—26x +4)y° —
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—(280x7—1951x 4 5452x° —7796x* + 6016x > — 2416x > + 448x — 32) *
+4(x—2)x(56x° —287x*+542x3 - 456x% +160x —16) y*
—2(x—2)*x2(8x —13) (Tx%—12x+4)y?

+4(x—2)3x2(8x2—13x+2)y

—4(x—2)*3

=—(xy—y—x)(xy—y—x+2)

X (4x3y8—19x4y®+34x3y6—29x 20+ 12xy0—2y®—24x°y"
+114x4y> —204x3y° +174x%y° — 72xy° +12y° + 60xy*
—289x*y*+514x3y* —418x2y* +156xy* —24y* — 80x >y
+396x*y3 —696x3y3 +512x2y3 —144xy° +16y° + 60x3y?
—310x*y2+544x3y? —352x2y2 +48xy2 —~24x7y +132x "y
~240x3y +144x%y +4x> —24x* +48x3 —32x?).

Now we are interested in showing that p(y8, y°) is positive for y near 0.
As it happens p(»8, y°) is a complicated, but not intractable, single-variable
high-degree polynomial:

=2 =y -nP-rt-r"+2)

X (4y>°—24y>° —19y47+ 60y +114y*2 —80y** +34y3? — 289y
4+ 60y —204y344396y32 —29y3 —24y3° + 514y2° — 3107
+174y% 4+ 4y% - 696y + 12y B + 132y 22— 418y + 544y 1
—72y8 24y £ 51216 -2y~ 240y +156y13 - 352y 11
+12y19448y° —144y® 4+ 144y6—24y° +48y3 - 32y + 16).
Examining this formula we have that, for y near 0, it is positive.

Consider any point (r, s) in the negative region for p described above and
close to (1, 1). Since this point is above T, (1—r)° > (1—s)3, or in terms of x
and y, y < x3/8, Now p(r,s) = p(x, y) so using the expression for p to deter-
mine the behavior for small x (i.e. for r near 1), we obtain

—p(r,s)=—p(x,y)
=k X3+ ko x2y+ ks xy kot +000°)
<k X3+ kx84 kyx PB4 kyx2 +O(x*)
<ksx*x'? 4 kox*

for some strictly positive constants k;, k,, k3, k4, k5, and kg. Also, as is
obvious from its definition, —g(r, s) = k;x? for k; >0, so we have that

—p(r,s)log(1=r)—q(r,s) = (ksx*xV2 + kgx*) log x + k, x?
=x2[(ks+kex¥?) (xV?) log x + k7]
=0

1/2

for small x, since the function x '/ log x tends to zero as x tends to zero. [
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An Example of the New Condition

A simple example of an increasing sequence of moduli, which is not a
Blaschke sequence but which satisfies the condition given in the corollary
to the main theorem, can be given.

For xe[1, o) let

1 ¢x e’
f(x)=ES1 70’}’,

where k is any constant greater than 4. Then f:[1, o) — [0, o) is onto and
has a positive derivative. Hence f has a differentiable increasing inverse
function, which we will call g. Now g: [0, ) — [1, ), and the r; will be

defined by:
ri=1—e"80),

Clearly the r; increase mdnotonically to 1.
Now

[+ ¢] o0
S (=) o= 3, ems+

< S""e —g(X)(1+6) gy
0

Making the substitution y = g(x) gives

o © ey
E (1__ r: )1+GSS e—-y(l+f)__ dy
=1 I Jl 1 ky

15“ e

dy.
klyy

Now make the substitution w=ey:

—dw
W €

) 0 t 14
Z(l—lrjl)”ES 1 S €e 1
Jj=1

(15 awe] o]

N
i L

S: ;lv— dw+S:°e'“wa'w]

log{ — }+—|.
| € e
;0=1(1_rj)1+6 1

log(/)+(1/e) " %

SRad—r)ite 1 <%.

So,

and hence

lim su < —
P T log(lfe) |k
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This shows that the {r;e’%};>, will be an L3 zero set for almost all choices
of the arguments 6;.

All that remains is to check that the sequence of r;’s defined above is not a
Blaschke sequence. This is quite similar to the first part. We have

T (1-r)=3 etV
j=1 Jj=1

o0
_>_S e 8%) gx.
{

As above, using the substitution y = g(x) gives

© e’

> 1—r;)= e”’—d
j§=:l( ) ng ky

1 = 1
=—|\ —d
ksg(l)y

= 00,

Thus the set {r;e’%};>, is not a Blaschke sequence for any choice of the ar-
guments 6;.

Conclusion

One might ask whether the hypotheses in Theorem 3 are best possible. Prov-
ing that a constant greater than 1/4 can be used in the theorem would en-
large the zero sets considered. There are many obvious extensions of this
result that come to mind. Are there easy generalizations to other Bergman
spaces L?? What are the corresponding results for the weighfed Bergman
spaces: those analytic functions f, defined for 0 < p < o0 and a > —1, such
that

gnlf(z)|p(1 —|z])*dA(z) < 007

Of course, the fundamental question is: What are necessary and sufficient
conditions for LY zero sets? That will require a new method since the argu-
ments of the zeros enter in an essential manner. There have been very few
results in this area. Korenblum [6] has managed to describe the zero sets
of some spaces related to the Bergman spaces, and perhaps his methods
will apply.
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