Commutativity Theorems
for Banach Algebras

BERTRAM YOOD

1. Introduction

A number of theorems in ring theory, mostly due to Herstein, are devoted
to showing that certain rings must be commutative as a consequence of con-
ditions which are seemingly too weak to imply commutativity. For surveys
of work in this area see [7, Chap. 3] and [10, Chap. X]. Our first aim is to
show that in the special case of a Banach algebra some of these results may
be sharpened.

Consider the following theorem of Herstein [4, p. 411]. A ring R is com-
mutative if (a) there are no nonzero nil ideals and (b) for each x and y in R
there is a positive integer n(x, y) such that x"*?) permutes with y.

Let A be a Banach algebra which satisfies the following weakening of (b).
Suppose (c) there exists a nonvoid open subset G of A, where for each x
and y in G there are positive integers m = m(x, y) and n= n(x, y) such that
x"y"=y"x™ If Ahas atwo-sided approximate identity then A4 is commuia-
tive. In general, A need not be commutative but there must exist a positive
integer r such that x” lies in the center of A4 for all xe A. If A has no non-
zero nilpotent ideals, then A is commutative.

Consider also the theorem of Herstein [4, p. 412] which states that a ring R
is commutative if for each x and y in R there is a positive integer n(x, y) >1
such that x"*:¥) — x permutes with y. For a Banach algebra 4 we show that
a € A lies in the center if there is a nonvoid open set G where, for each x e G,
we have a positive integer n(x) > 1 so that x"*) —x permutes with a.

In Section 3 we present theorems in this spirit for Banach *-algebras. Let
A be a Banach *-algebra with continuous involution and no nonzero nil-
potent ideals (as when A is semi-simple). It is shown that either A4 is commu-
tative or the set of xe A, where x” is normal for no positive integer n, is
dense in A. If A is unital then the requirement on nilpotent ideals can be
dropped. Other related results are obtained.

The author thanks the referee for his helpful suggestions and for pointing
out relevant references in ring theory.
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2. Commuting Properties of Banach Algebras

For notation we let 4 denote a real or complex Banach algebra, Z the cen-
ter of A, and E a closed linear subspace of A. As usual [x, y]=xy — yx.
We shall use several times the following readily established fact. Let p(¢) =
Y_ob,t" be a polynomial in the real variable ¢ with coefficients in A4. If
p(t) e E for all ¢ in an infinite subset of the reals, then every b, lies in E.

LEMMA 2.1. Let we A and let n be a positive integer. If (w,x"| e E for all
x €A then [w",x] e E for all x e A.

Proof. Take x€ A. Let B, denote the sum of the terms in the expansion
of (w+x)" for which the sum of the exponents of the x/ factors is . Thus
Bo=w"and
n—1
Bi= Y wkxw17%,
k=0

Inasmuch as [w, (w+tx)"] e E for all real ¢ we see that

n
2 [W,Bk]tk
k=0

lies in E for each real ¢. Therefore [w, B;] € E. However,
(w, B]=[w", x]. [

LEMMA 2.2. Suppose that there is a nonvoid open set G in A, where for
each x and y in G there are positive integers m=m(x, y) and n=n(x,y) so
that [x",y"1 e E. Then there is a positive integer r where [x',y] € E for all
x,yinA.

Proof. Fix we G. For each ordered pair (m, n) of positive integers let

Qm,n: {yeA:[w", y "¢ E}.

Each Q,, , is open. Suppose that every Q,, , is dense in A. Then, by the Baire
category theorem,

V= ﬂ Qm, n

m,n

is dense in A. But Vis the set of y € A such that [w'’, y"] ¢ E for all m and n.
This contradicts the existence of the set G.

Hence there are positive integers p and g so that Q,, , is not dense. Let I’
be a nonvoid open set in the complement of Q,, .. Let zeI" and x € A. Then
z+tx eI for all real ¢ sufficiently small. For these values of ¢,

wP(z+tx)!—(z+tx)IwPeE.

Expanding this expression we get a polynomial in z. The coefficient of 9 in
this polynomial must be in E or [w”, x?] € E for all x e A. By Lemma 2.1 we
see that [w”9 x] e E for all x e A.
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For each positive integer #n, let R, be the complement of the set of xe A
where [x", y] e E for all ye A. We show first the conclusion holds for the
integer n if some R, is not dense. For then there is a nonvoid open set I' in A
such that [x”, y]e E for all xeI" and y € A. Select zeI" and we A. For all
real ¢ sufficiently small we have [(z+¢w)”, y] € E for all ye A. We write

n
(z+w)'=3 apth,
k=0
where each a; € 4 and a,=w". Then 37 _,la;, y1t* € E for all ¢ sufficiently
small, so that [w”, y]e E for all ye A and w e A.

Suppose that every R, is dense. Clearly R, is open. By the Baire category
theorem, M R,,, the complement of the set x € A for which there is a positive
integer n where [x”, y] e E for all y € 4, is dense. This is impossible by the
existence of the set G. Therefore some R, is not dense. L

THEOREM 2.3. Suppose that there is a nonvoid open set G in A, where
Jor each x,y in G we have positive integers m = m(x,y) and n= n(x,y)
so that [x™,y"]1=0. Then there is a positive integer r so that x"e Z for all
x € A. If A has no nonzero nilpotent ideals it is sufficient to have [x",y"1e Z
and x,y € G, with m and n as above. Then A is commutative.

Proof. The first conclusion follows from Lemma 2.2 with E = (0). Suppose
E=Z7. By Lemma 2.2 there is a positive integer r so that [x’, y] e Z for all
x,y in A. Therefore x” permutes with [x’, y] for all y € A. If 4 has no non-
zero nilpotent ideals then a “sublemma” of Herstein [8, p. 5] tells us that
x"e Z for all x € A.

Under these conditions A is commutative if 4 has no nonzero nilpotent
ideals. This follows from the theorem in [11]. Without such an algebraic as-
sumption, A4 is commutative if A has a two-sided approximate identity, as
the following lemma shows. (For the notion of a two-sided approximate
identity, see [2].)

LEMMA 2.4. Suppose that A has a two-sided approximate identity {e,].
If there is a positive integer r such that x" e E for all x e A, then E = A.

Proof. Let xe A and let ¢ be real. We may suppose that » > 1. Consider, for
a fixed index \, the polynomial (x +7e,)". The coefficient of ¢ for this paly-
nomial lies in E, or 2;;}) xfe)\x’_l“f is in E. Taking lim, we see that x" e

E. Continuing in this way we find that x e E. ]

THEOREM 2.5. Let ae A. Suppose that there is a nonempty open set G
such that, for each x € G, we have a positive integer n(x)>1 such that

n(x)

[x —x,alekFE.

For E=(0) we have ae Z. If A has no nonzero nilpotent ideals and E = Z,
then we have ae Z.
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Proof. Foreachn=2,3,... let
W,={xeA:[x"—x,al ¢ E}.

From the Baire category theorem and the existence of G we see that some
W,, (m>1) is not dense. Let I" be a nonvoid open set in the complement of
W,,. Take zeI" and w e A. For each ¢ real, consider

m
[(z+twW)"—(z+1tw),al=Y b,t*
r=0
This polynomial lies in E for all ¢ sufficiently small. Thus b,,€ E or [w", a] e
E for all we A. Inasmuch as [z ~2z,a] € E, we have [z,a] e E forall zeT.
As I' is open we see that [y, a] € E for all y € A. For the case E = Z we again
use Herstein’s result [8, p. 5]. O

Herstein [5; 6] has shown that a ring R is commutative if it has no nonzero
nil ideals and there is a fixed integer »> 1 such that (xy)"=x"y" for all x, y
in R (see also [1]). In the case of a Banach algebra A we can say more.

THEOREM 2.6. Suppose that there are two nonvoid open subsets G, and
G, of A such that for each w € G, and x € G, we have a positive integer n =
n(w,x)>1, where (wx)"=w"x". Then there is a fixed integer r > 1 such that
(xyY =x"y" forall x,y in A.

Proof. This can be shown by the arguments used above. We omit the de-
tails. J

3. On Banach *-Algebras

Henceforth A will be a Banach *-algebra over the complexes with a contin-
uous involution x — x*. We retain our earlier notation, where E is a closed
linear subspace of A and Z is the center of A.

Considerable attention has been paid to commutativity theorems for rings
with an involution. See [9, Chap. 3], where further references can also be
found. Our results on commutativity for 4 seem to be rather different.

LEMMA 3.1. Let n be a positive integer. Suppose that h" € E for all self-
adjoint elements h. Then x"e E for all x in A.

Proof. Let h and k be self-adjoint in 4. We let B, denote the sum of the
terms in the expansion of (/4+ k)" for which the sum of the exponents of the
k’ factors is r (see the proof of Lemma 2.1). For any real number ¢,

n
(h+tk)'=3 Bt
r=0

lies in E. Therefore each B, is in E. Now consider x = £+ ik. We have
n
x"=Y i'B,
r=0

in E. ]
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DEFINITION. We say that y € A is normal modulo E if [y,y*]1€E.

LEMMA 3.2. Suppose that the set of x € A for which there is a positive
integer n(x) so that x"*) is normal modulo E has nonvoid interior. Then
there is a positive integer n such that x" is normal modulo E for all x € A.

Proof. For each positive integer &, let
W, = {x € A: x* is not normal modulo E}.

As the involution is continuous, W} is open. We rule out the possibility that
every W, is dense. For suppose every W, is dense. By the Baire category the-
orem, the intersection W of all the W}, is dense. But this is contrary to our
hypothesis on normality. Hence there is a positive integer » and a nonvoid
open subset I" of A4 so that x” is normal modulo E for all x in T".
Let z eI and let y be an arbitrary element in A. For all real ¢ sufficiently
small,
(Z+y)"(*+ty*)'—(2*+ty*)"(z+ ty)"eE.

The coefficient of #2” in this polynomial lies in E, or y” is normal modulo E
for all y in A. O
We recall the notation of Lemma 3.1. Let /4 and k& be self-adjoint. Then
By=h" and

n—1

Bi=3 hkh" 1,
j=0

LEMMA 3.3. Suppose that x" is normal modulo E for all xe A. Let h,k
be self-adjoint. Then, in the notation of Lemma 3.1,

[Bg, Bl €E.

Proof. Let t #0 be real and consider
n
(h+itk)'= ), i'B,t".
r=0

Let «(#) be the sum of the terms of this expansion for r even and () be the
sum for r odd. Then

(h+itk)'=a(t)+B(t);

(h—itk)"=a(t)—B(2).
As (hA+itk)" is normal modulo E, we see that

a(t)B()—B(t)a(t)eE

for all real 7. The expression here is a polynomial in ¢ with coefficients in A4.
Therefore the coefficient of # must lie in E, or

BoBl—BlB()EE. O

We are now ready for the following dichotomy.
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THEOREM 3.4. Let A be unital. Then either [x,y]leE forall x,y in A
or the set S of x € A, for which x" is normal modulo E for no positive inte-
gerr, is dense in A.

Proof. Let e be the identity of A. Suppose that the set S is not dense. Then,
by Lemma 3.2, there is a positive integer # such that x” is normal modulo E
for all xe A. Let 4 and k be self-adjoint in A. For ¢#0, ¢ real, set

u=t"[(e+th)"—el;
n—1
v="Y (e+thyk(e+th)" '~/
=0
By Lemma 3.3 we see that [u, v]e E. Now let £ —» 0 to see that [h, k] e E.
Since A and k are arbitrary self-adjoint elements in A4, we have that every
[x,y]eE. L]

COROLLARY 3.5. Let A be unital. Either A is commutative or the set of
x, where x” is normal for no positive integer r, is dense. If also A has no
nonzero nilpotent ideals then either A is commutative or the set of x, where
x" is normal modulo Z for no positive integer r, is dense.

Proof. The first conclusion follows from Theorem 3.5 with E = (0). Sup-
pose A has no nonzero nilpotent ideals. We employ Theorem 3.5 with E = Z.
If every [x, y] € Z it follows from [8, p. 5] that 4 is commutative. L]

THEOREM 3.6. Suppose that A has no nonzero nilpotent ideals. Either A
is commutative or the set S of x, where x* is normal for no positive integer
k, is dense in A.

Proof. Suppose S is not dense. Then, by Lemma 3.2, there is a positive in-
teger n so that x” is normal for all x in A.

Let /2 and k be self-adjoint. By Lemma 3.3, 4" permutes with B, and there-
fore 2" permutes with 2B, — B;h. However,

hBl—B]h=[hn, k]

As k is an arbitrary self-adjoint element of A4, we see that #” permutes with
[A",x] for all x in A. Herstein’s sublemma [8, p. 5] then tells us that 4" Z.
In view of Lemma 3.1, we see that x"”e Z for all xe 4. Then A is commuta-
tive by the theorem of [11]. 1

LEMMA 3.7. (@) If (xx*)"=(x*x)" for all x € A then x*"e Z for all x € A.
(b) If A has no nonzero nilpotent ideals and (xx*)" permutes with (x*x)"
forall xe A, then A is commutative.

Proof. Let h and k be self-adjoint and let ## 0 be real. Form x = h+itk.
Then

xx*=y+tz and x*x=y-—1z,
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where y =h%+1%k*and z =i[k, h]. Let W, be the sum of those terms in the
expansion of (y+z)", where r is the sum of the exponents of the z/ factors.
Then
n n
(xx*)'=3 W,t" and (x*x)"'=> (—1)W,t'.
r=0 r=0
Let X’ indicate summation over r=0,1,...,n for r odd and Y” the sum-
mation for r even. It is true that each W, depends on ¢, but lim W, exists as
t—0.
Under the hypothesis of statement (a) we must have

IS WL T =0.
If we let £ > 0, we see that lim W, =0 or

n—1 . .
V=3 h¥[k,hn*""1= =0,
Jj=0

A tedious but straightforward calculation shows that
hV+Vh=[k,h*"]=0.

Therefore h*"e Z for all self-adjoint elements #. By Lemma 3.1 we see that
w?"e Z for all we A.

Consider next the statement (b). There, '3’ W, t" must permute with
" W, t" for each ¢ #0. Let £ — 0 to see that lim W= A" permutes with V.
Therefore 42" permutes with [#%", w] for every w e A. As A has no nonzero
nilpotent ideals, #2” € Z by Herstein’s sublemma [8, p. 5]. We use Lemma 3.1
and [11] to complete the proof. ]

THEOREM 3.8. If there exists no positive integer r such that x" e Z for all
x € A then the set T of x, where (xx*)"# (x*x)" for all positive integers n,
is dense in A.

Proof. Suppose that T is not dense. By the arguments of Lemma 3.2 there
is a positive integer » such that (xx*)" = (x*x)" for all x € A. Then, by Lem-
ma 3.7, x*"e Z for all x in A.

In the same way we see that if .4 has no nonzero nilpotent ideals and if no
positive integer r exists where x"e Z for all x € A, then the set W of x, where
(xx*)" does not permute with (x*x)" for all n=1, 2, ..., is dense. O

In particular, for any semi-simple Banach *-algebra A which is not commu-
tative, the sets S and 7 of Theorems 3.6 and 3.8 are dense.
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