The Action of S, on the
Components of the Hodge Decomposition
of Hochschild Homology

PHIL HANLON

1. Background

Let k& be a field of characteristic O, let 4 be an associative k-algebra, and let
M be an A-bimodule. Define C,,(A4; M) to be M ®A®" (all tensor products
over k) and define b,,: C,,(A; M) —> C, _(A; M) by

by(m®a,®---®a,) =ma;®a;®---Qa, +(—1)'a,mR®a;® --- ®a,_,
n—1 .
+ 2 (ED)'m®a® - ®a;a;,1® - ®ay.
i=1
It is easy to check that b,°b, . ; =0, so that im b, ., is contained in ker b,,.

The Hochschild homology of A with coefficients in M is defined by

ker b,,

H,(A; = - .
(A M) = g

The symmetric group §,, acts on C, (A4; M) by
0-(MPa1® -+ ®a,) =m@a,-1;Q -+ Qa;-1,.

Define a splitting sequence (f,), - to be a sequence of elements f, € k[S,]
such that

.1) by foa=fn_1byc

for all @ € C,(A4; M), all associative k-algebras 4, and all A-bimodules M.
Given a splitting sequence (f,,) one can define 7, (A; M) and K,,(A; M) to be
the image and kernel of C,(A; M) under f,,. Then both (Z,(A4; M), b,) and
(K« (A4; M), b,) are subcomplexes of (C.(A; M), b,) which then yield new
homology theories.

One can obtain a trivial splitting sequence by letting f,, be the identity in
S,,. In general this is the only splitting sequence. However, under the assump-
tion that A4 is commutative and that M is a symmetric bimodule (a-m=m-a
for all a e A and m € M), there do exist nontrivial splitting sequences.
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Harrison [11] made implicit use of such sequences in his definition of Harri-
son homology for commutative algebras. In that paper he studies the image
complex (I.(A;M),b,) for a certain splitting sequence which we will call
(e{V). In that paper he did not consider the actual splitting sequence itself.
Later, Barr [1] identified the sequence (e!") and showed that each eV is
an idempotent in £[S,]. In particular, Barr showed that the subcomplex
(I.(A; M), b,) splits off as a direct summand from the Hochschild complex
in characteristic 0.

Gerstenhaber and Schack [7] generalized Barr’s result by proving that for
each positive integer j there exists a splitting sequence (e{’), with e{) =0
for n < Jj, such that for fixed n the !/’ are a set of mutually orthogonal idem-
potents in k[S,]. Moreover, they proved that the (e!’?) are universal splitting
sequences in the sense of the following theorem.

THEOREM 1.2 (Gerstenhaber-Schack [7]). There are unique elements e\’ €
k[S,] with e’ =0 for n < j satisfying the following property:
(%) if (fu)n=1is a splitting sequence then, for each n,
n

fr=3 oi(fed.

j=1
Here o;( ) is the linear functional on £[S;] defined by g;(7) =sgn(7).

Because the e{) (j=1,2, ..., n) are orthogonal idempotents in k[S,,], the
complex (C.(A4; M), b,) splits as a direct sum of subcomplexes,

0

(C(A; M), 0:) =D (CP(4; M), b),
=1

where C(A4; M) = el - C,(A; M). Let HY)(A; M) denote the homol-
ogy of the subcomplex C{’(A; M). Then H,(A; M) is a direct sum of the
HY(A; M). Gerstenhaber and Schack refer to this splitting of H,(A4; M)
as a Hodge-type decomposition for commutative algebra homology. This
name is justified by another result of theirs which states that this decompo-
sition coincides with the usual Hodge decomposition for smooth compact
complex varieties (see [8]).

Gerstenhaber and Schack and (independently) Loday (see [14]) suggested
the following problem, which came up in their efforts to better understand
the subcomplexes (C(A4; M), b..).

PROBLEM. For each n and j, determine the structure of el/)k[S,] as a
right S,-module.

In this paper we shall give a solution to this problem in the sense that we
shall write e{’k[S,] as a direct sum of induced characters. The induced char-
acters that appear in this direct sum have a simple description which makes
the whole expression for e{’k[S,,] surprisingly elegant. This induced charac-
ter expression allows one to determine certain things about e{’k[S,], such
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as the dimension of e{’k[S,], the multiplicity of certain irreducibles of S,
in ek [S,], and the exact decomposition of e{’k[S,] for certain values of
j. It also allows one to compute the Euler characteristic of the subcomplex
(CY)(A; M), b,) in the case where A is a graded algebra with nothing in the
0-graded piece (see §7). However, the problem of decomposing this sum of
induced characters for general » and j remains open.

Interestingly enough, the representation e${’k[S,] has been studied for
entirely different reasons by F. Bergeron, N. Bergeron, and A. Garsia. They
independently proved more general versions of some of the results in this

paper (see [2]).

2. The Algebra L,

For each n and k, let S(n; k) denote the set of permutations in S,, with ex-
actly k—1 descents. Following Loday [14], define elements /{* and y{*) in
k[S,] according to the following formulas:

(2.1a) IO ==kt 3  sgn(o)e;
geS(n; k)
k-1 ) . ,
(2.1b) NS (—1)'(”‘1.“)1,2’“').
i=0

The /{¥) are nonzero only for k€{1,2,...,n}. The ¥’ are nonzero for all
positive integers k£ and have the remarkable property that

NRIND = (—1)tk=DU=D\KD)
The following lemma is due to Loday (see [14]).

LEMMA 2.2. Let the idempotents e/’ be as in Section 1. Then, for every

n and k, we have
n

(_1)(k—1))\£1k)= 3 kf'e,Sf’.
Jj=1

Note that the equation in Lemma 2.2 determines the e$/)’s in terms of the
N&)s because the transition matrix (k/), ; is a Vandermonde and hence in-
vertible. Also, equation (2.1b) determines the /s in terms of the M4)’s be-
cause the transition matrix is triangular with unit diagonal. So the algebra
L, can be thought of as the subalgebra of k[S,] with basis {e{: j=1,2,...,
n}, (\N):j=1,2,...,n},or {I{¥:j=1,2,...,n}.

It is remarkable that the elements /{/) span a commutative subalgebra of
k[S,] (neither commutativity nor closure under multiplication is clear given
their definition in terms of descents). This is an example of a much more
general phenomena, true for any Coxeter group, which was proved origi-
nally by Solomon (see [19]).

Define ¥ to be (—1)* "I\, Then Py =y *) and

yWa=kia for ae CY(A4;M).
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So the ¥{¥) are Adams operations and H,(4; M) = @; HY(A; M) is 2
Hodge decomposition for the Hochschild homology of A with coeflicients
in M.

It is worth looking at the idempotents e/ in at least one case. For n =3
we have

e§1) — %(2(a)(b)(€)+(0, b)+(b,c)—(a,b,c)—(a,c,b)—2(a,c)),
ei? =3 ((@)(b)(c)+(a,c)), and
e{¥=1((a)(b)(c)—(a,b)—(a,c)—(b,c)+(a,b,c)+(a,c,b)).

Although these idempotents commute with each other, e{" and e{? are not
central in £[S;]. At first glance it is not at all clear that they are idempotents
or that they are mutually orthogonal.

3. Wreath Products and Cycle Indices

Our main result will express the right S,-module 7) as a sum of characters
induced from wreath product groups. The proof will involve some manipu-
lations of characters of wreath products, so we begin this section with a brief
review of wreath products and linear characters of wreath products. For a
complete discussion of wreath products and their representation theory, the
reader should consult James and Kerber [12, Chap. 4].

Let G be a subgroup S,,, of size g and let H be a subgroup of S; of size 4.
The wreath product, H wr G, is a subgroup of S,,; of size g-h% which as
a set consists of all (m+ I)-tuples (vy, ..., v, 7) wWhere ;€ H for all i and
w € G. We think of Hwr G<8S,,;asactingontheset IXxm={(j,i):1=j=<],
1 <i<mj. The permutation action is given by

(’Yls cees Yms W)(j’i):('YWij’ 7”)

Suppose that « is a linear character of A and that 3 is a linear character
of G. Then there is a linear character o wr 3 of H wr G defined in the fol-
lowing way. For each cycle Y =(yy,..., ;) of w, define A(Y) by

AY) = alyy, - 'yys).
Then define

(@ WE B (Y1s +evs Yo ) = B() {1;1 A(Y)].

It is straightforward to check that o wr 8 is a 1-dimensional representation
of Hwr G.

EXAMPLE 3.1. There is one example of the « wr 8 construction that will
be of particular interest to us. This is the case where H =C,;, G=3,,,, B is the
trivial character of S,,, and « is the linear character of H = ((1, 2, ...,[)) de-
fined by a((1, 2, ..., 1)) =™/,
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For each permutation ¢ € S, define Z(o), the cycle indicator of o, by
Z(o) =TI &},
u

where j, (o) is the number of u-cycles of ¢ and where a,, a,, ... is an infinite
family of commuting indeterminants over k. If N is a subgroup of S,, and x
is a k-valued function on N, define Zn(x), the cycle index of x, by

1
1 2 x(0)Z(0).
'NI geN
There are two results about cycle indices that we will find useful in subse-
quent sections. The first involves the composition product on cycle indices.
For A=A(a,;,a,,...) and B=B(a;,a,,...) in k[[a;,a,,...]1], define A[B]
to be

A[B] =A(B(al,a2, ...),B(az,a4, dg, ...),B(a3,a6,ag, ...), ...).

In other words, A[B] is obtained from A by replacing each occurrence of g,
with B(a,, a5,, as,, -...). The next result is well known (see, e.g., [12, formula
4.4.10, p. 160]).

ZIn(x) =

LEMMA 3.2. Let 3 be a linear character of G and let o be a linear charac-
ter of H. Then

Zyweloawr 3)=Zg(B)[Zy(a)].

EXAMPLE 3.3. Return to the set-up in Example 3.1. It is straightforward
to verify that
1
Zu(e) = 3 w(d)al,
d|l
so by Lemma 3.3 we have

1
ZC, wrSm(a wr ) = {"'1—1—" 2 Z(U)} I:T E P‘(d)aé/d]-

' oeS, il

The last fact we state about cycle indices is well known. It can be proved us-
ing the classical formula for the value of an induced character (see Feit [6]).

LEMMA 3.4. Let N be a subgroup of S,, and let x be a class function on
N. Then
Zs (indSr(x)) = Zy(x),

where indf\p(x) denotes the induction of x from N to S,,.

We end this section with a cycle index sum computation. For each permu-
tation o € S, let I'(6) denote the centralizer of ¢ in S,. We will describe a
linear character ¢, of I'(¢). First assume that o has m, u-cycles for each
u. Thus I'(g) is isomorphic to a direct product over « of the wreath prod-
ucts C, wr S, . The linear character ¢, will correspondingly be a product of
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linear characters {{*) of C, wr Sp,,. The character {{* is exactly the charac-
ter o wr 8 of Example 3.1, where 3 is the trivial character of S, and o is the
linear character of C, given by a((l, 2, ..., u))e>™/x.

In view of Example 3.3, we have

(3.5) Zr e =H{Z(smu>[ » u(d)a"/d]}.

u dlu

DEFINITION 3.6. For each n and / with 1 </ <n, define a character " of

S, b
" V= @ indyy, (&)
n - I‘(gp’) g,/

p=n
H(p)=1

where the sum is over all partitions p of n with exactly / parts and o, is an
arbitrarily chosen permutation with cycle type u.

Define the cycle index sum Z(y; \) to be
ZWiN=3 3 NZg ().
n=01/7=1

Note that each character y/{ is determined by the power series Z(y; \). The
next theorem gives an explicit expression for Z(y; \).

THEOREM 3.7. For each s, let E;(\) = (1/5) 3 41s p(d)N/. Then
|
Z(sN) =TT (1 —a) 50,

s

Proof. By (3.5) we have

69 ZN=TI| 3 zs, @)y T e ]
u Um,=0 dlu
where ¢, is the trivial character of S, . It is well known that
> Zsm(em)=exp(2 —.~)
m=0 il

(see Harary and Palmer [10]). Substituting in (3.8) we obtain

=11 exp( l" )[u > (d)a“/d]

dlu
(39) u/d)\: I
-3, )

d|u

Letting r =u/d and s = id, we have

rys/d
VAU >\)=exp( > M>=

r,s,d rs
d|s
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~o(3(2 )5 grevd)

=[T(1—a,) "5, O
5

4. Shuffles and Necklaces

In this section we will discuss two different sets of combinatorial objects and
a bijection between them. Before doing so, it is worth explaining how these
objects and this bijection come into the proof of our main theorem.

For each n and j, let ¢’ be the character of the right S,-module e$’k[S,]
and let Z(x;\) be the cycle index sum for the values of x4,

n
Z(x;N=% L, )y { )y X’xﬁ“(a)}z(a)-
n=0 f*t: ge§,\ j=1
We will show that x$) = ¢ for all # and j, or (equivalently) that Z(x;\) =
Z(y; N). Because so little is known about the e$/’s, it is impossible to verify
this equality directly; we employ the following trick. We define an isomorph-
ism A from the ring of power series in \, a;, @,, ... to the ring of power series
in ¢, ay, a,, ... . It will turn out that AZ(y; \) is the generating function for
one of the two kinds of combinatorial objects above, and that AZ(x; \) is the
generating function for the other. The bijection between the two sets shows
that AZ(y; N\) =AZ(x; \), from which we deduce that Z(y; A\) =Z(x; ).
Let (iy, ..., i,) be an ordered m-partition of n, and for each j let s; be the
partial sum s; =i;+ -+ +i;_;. An (i}, ..., I,,)-shuffle is a permutation 7 € §,
such that, for each j,

w(s;+) <w(s;+2)<--- <w(s;+i;).

Let sh(iy, ..., i,,) be the set of (i, ..., i,)-shufiles. For g n, let sh,(iy, ..., i)
be the subset of sh(ij,...,i,,) consisting of those permutations with cycle
type u.

A necklace is a digraph all of whose connected components are directed
cycles. We will deal exclusively with unlabeled digraphs in which loops are
allowed. Figure 1 shows a necklace 5,y with 14 points.

Figure 1

If 5 is a necklace with n points then the cycle type of n is the partition
whose parts are the lengths of the cycles of 5. For example, the necklace 7,



112 PHIL HANLON

in Figure 1 has cycle type 423 13. A colored necklace is one in which every
point is given a color C; chosen from an infinite set of colors C;, C,,....
When we draw a colored necklace we label each point colored C; by the
number . Figure 2 shows two colored necklaces, 7, and 7,.

1 3
1
3 1
1 2 1 2
T)2"‘
1 2 1 2

Figure 2

Let 5 be a colored necklace and let Y = (y, ..., ¥5) be a cycle of n. We say
Y is periodically colored if there exists some d <s such that y; and y;, ;s have
the same color for all i/ (here i +d is taken mod s). For example, both cycles
in 5, (above) are periodically colored, whereas neither cycle of 7, is period-
ically colored. We say that a colored necklace 7 is aperiodic if no cycle of 5
is periodically colored. In Figure 2, %, is aperiodic but »; is not.

For each partition u+ n and each ordered partition (iy,...,i,) of n, let
Q,(i, ..., i) denote the set of aperiodic necklaces with cycle lengths uy, g5,
... and which have exactly i; points colored C;.

THEOREM 4.1 (Ira Gessel). For each p\ n and each ordered partition (i,
..., im) Of n, we have

Ish, (i1, ooy i) =R, (i1, s i) |

Gessel proves this result by describing a bijection between the two sets. Al-
though his work is unpublished, this bijection is discussed in detail in a re-
cent paper by Désarménien and Wachs [4].

DEFINITION 4.2. Define Z(sh; ¢) and Z(Q;¢) in Q[[¢, ay, a3, ...]] by
Zsh; =Y I E’ |sh, (i), ...,im)lt’"amapz-u

nz=0p=n (iy, .0, ipy)
and

Z@:0)=3 T 3 (9., in)|t"a,a,,

nz0pkn (if, ..., iy)
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An immediate corollary of Theorem 4.1 is

(4.3) Z(sh; £) = Z(Q; 1).

5. The Main Result

For each n and /, let ¢{” be the sum of induced characters given in Defini-
tion 3.6 and let X(I) be the character of the right S,-module e{Pk[S,]. We
can now state the main result.

THEOREM 5.1. For every n and |, we have
XD = sgn * D,

where sgn*y\? is the product of y\ times the linear character sgn.
Proof. For each o€ S, let e{)(o) denote the coefficient of ¢ in e{".

LEMMA 5.2. For every partition p\- n, let C(p) denote the conjugacy class
consisting of all permutations with cycle type u. Then

1
— ¥ xP= X elXo.
n: secCp) o€ C(p)
Note: It is not true that (1/n!)x$(¢) = e{’(o) for each ¢ € S,,. This is clear
because x(”(a) is a character and hence is constant on conjugacy classes.
However, for n=3 and / < n, the functions e{ are not constant on conju-

gacy classes.

Proof of lemma. Write k[S,]=@® un M, where M), is the matrix ring cor-
responding to the irreducible character w" of §,. Then ePk(S,] splits as a
direct sum of right submodules

e k(S 1=@D el'M,.
®
Moreover, e{’M, as a right S,-module is isomorphic to some number of

copies of the irreducible character w#. Thus the multiplicity of the irreduc-
ible character w* in x!" is

()]
(5.3) mult,. (e k[S,]) = dlm(e( i")f 2.
Let D, denote the identity matrix in M,; that is, let
d 14
(5.4) D=2 o koo
n! ges,

Let EM=e{’D,. We have

! e
EONM = el’'M, if n=p,
poon 0 otherwise.
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By (5.3), the multiplicity of S* in e{"k[S,] is rank(E{")/deg(w"), where
rank(E") is the rank of E{ as a linear transformation of k[S,,].

Also observe that E{) is an idempotent in k[S,], since D, is a central
idempotent. So (as a llnear transformation of k[S,,]) E(’ )is dlagonallzable
and all its eigenvalues are 0 or 1. It follows that

(5.5) rank(E{") = trace(E{").

Also, trace(E") is n! times the coefficient of the identity. Thus by (5.4)
we have

rank(E") =dim S* 2 e (oY (o)

(here we use that w*(c ~!) = w#(0)). So the multiplicity of S* in e{Pk[S,] is
3 elXadwH(a).

g

On the other hand, the multiplicity of w* in el k[S,] is equal to

E xP(o)w*(0).

Since the w#(0) span the space of linear functions on k[S,,] that are constant
on conjugacy classes, it follows that

(5.6) — ¥ xPo)y= 3 e

! 068 oe@

for all 5, which proves Lemma 5.2.
Define Z(E; \) by
n
Z(EsN=Y X% {E e,ﬁ”<a>x’}2(o).

n oeS, /=1
By (5.6) we have Z(E; N\) =Z(x; \); thus, to prove Theorem 5.1, it suffices
to show that Z(E;N)=Z(y; \).

For each m and /, let S,, ; denote the number of surjections from an /-
element set onto an m-element set. Also, for each m and each u+ n, define
SH by
(5.7) SH"= Y 3 sgn(o)o;

(il, cery lm) UESh#(il, veey Im)
define SH{™ to be the sum of the SH{"™. As observed by J. L. Loday, equa-
tions (2.1a,b) imply that

n(m
(5.8) SHY=(-1)""'3 N
K=\ K
Combining (5.8) with Lemma 2.2, we have

(5.9) SH’({")=(—-1)m—1 § i( )( l)k lkl (1)_

k=11=1
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1 m
= el 3 ()t
I=1 k
n
= E Sm,leigl)-
I=1
Define A: k[[\, ay,a5,...11 = k[[¢, ay,a,,...1] by
(5.10) AWNNahaf2---alny=3, S, t"aj\ajz - aln.
m=<|

It is clear that A is an isomorphism. From (5.9) we have that
(5.11) A(Z(E;N))=Z(sh; t,a,, —a,, az, —ay,...).

Note that the substitution of —a,, for a,, accounts for the factor sgn(o)
which appears on the right-hand side of (5.7).
We now consider what happens to Z(y; \) under the mapping A.

LEMMA 5.12. AZ(Y;\)=Z(Q; 7).

This lemma follows from standard Polya theory arguments (see, e.g., Ker-
ber and Thurlings [13]). We will not repeat the proof here.
Now let Z(sgn*y; \) be

Z(sgn*y;N) =3 i, p) {E sgn(a)sb,‘,”(o)x’}Z(o).

n=0 N: ges,(i=1
Then
Z(sgn*xy;\)=Z(Y; N\, ay, —a,, a3, —ay, ...)

=A"1Z2Q;¢, ay, —a,, a3, —ay,...)
=A—IZ(Sh; t,ay, —a,, a3, —ay, ...) by (4.3)
=Z(E;\N) by (5.11)
=Z(x;N).

It follows that x{? =sgn*y{" for all » and /. O

COROLLARY 5.13. For each n and I, the dimension of e\’k[S,] equals the
number of permutations in S,, with exactly I cycles. Equivalently, for fixed n
we have

n

Y, dim(e{"k[S,Da'=q(g+1)(g+2)---(g+n—1).
=1

6. Decomposing x\"

In this section we consider what can be said about the decomposition of the
characters x{” into irreducibles. By Theorem 5.1 we have that

(6.1) Z(x;N) = [T+ (=1 a))~ /D Zay mdN/
!



116 PHIL HANLON

This equation can be used to efficiently compute the values of the characters
x'9 which, in turn, gives a simple means to decompose x '’ for every n and /
when the character table of §,, is available. We begin with Table 1, listing the
decompositions of x(” for small values of n.

A
n\ 1 2 3 4
1 o
a
2 oo o
oo
o
ao + oo [a]
3 O a]
ooo oopoo
3] ooo
+ goo a
4 + Oog a g
o og a
a + 2 o0 oo @]
oo g .
+ a
[a]

Table 1

For fixed n, the sum of the characters x4 is the character of the regular
representation of S,.. So, for u + n, the multiplicity of the irreducible char-
acter w*in 3, x'? is the number of standard Young tableau of shape x. We
would like a combinatorial rule that assigns to each standard Young tab-
leau 7 a number /(T') so that the multiplicity of w* in x Y0 is the number of
standard Young tableau T of shape u with /(T") =/,. At present, the author
knows of no such rule, although certain things can be said about the decom-
position of x! for special values of /, and about the multiplicity of w*in x{’
for special partitions p. In what follows we list some of these facts.

PROPOSITION 6.2. x!{M=!",

This fact can be derived from the original definition of the e{/”’s and hence
was known to Gerstenhaber and Schack and to Loday. It can also be de-
rived from (6.1) by observing that
ZO M a < (D% 1=3 <, w0MxN,
n,l
In view of this observation and (6.1), we see that Proposition 6.2 is equiva-

lent to the identity

1
6.2 14x!)y~ D BaumdN e
(6.22) I1(1+x) —
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a well-known result that comes up in the enumeration of necklaces [13] and
the theory of Witt vectors [5].
The next result is due to Gerstenhaber, who proved it by different methods.

PROPOSITION 6.3. The multiplicity of the trivial character ¢, in x\ is 1 if
I=|(n+1)/2] and O if I #|(n+1)/2].

This is an interesting result because of the case A =M =tk|[t]/ (¢?). In this
case A is the 1-dimensional algebra with zero multiplication, so H,(A; A) is
1-dimensional (with representative t®@¢&®---&®¢) for all n=0. Clearly the
action of S,, on H,(A; A) is the trivial representation, so by Proposition 6.3
we have that H,(A;A) € H{"(4; A), where I =| (n+1)/2]. We will return
to this example in Section 7.

At present we are unaware of how Gerstenhaber proved this result. We
give a separate proof based on equation (6.1).

Proof. Let M{") denote the multiplicity of ¢, in x. Then

2(21: Mz‘,'L)%')X”'—E — {E x(”(a))\llx”

n ! geS,

=10+ (_l)le)*(l/l) Sy w(dN/d
/

s di

( 1)(1 l)s Is
=exp< (E = > u(d)k’/")
X

__1\ym— 1 m
=exp( =3 L2 3 ()OS )

l|m dill

_qym—1,m
=exp<—2 !-—x— SN u(d)(—l)’"/"’).

m m tim d|(m/t)
For each N let Fy =3 4 5 p(d) (=) 1t is straightforward to check that
-1 if N=1,
Fy= 2 if N=2,
0 if N>2.
Thus
—1 m—1 mym —1 m—1,.m AT 2N\P
EM,(’;)}\’x"=exp(+ S (=D" x + 3 D7 x )>
n,l ’ m odd m m=2p m
(_1)171~1(x>\)n1) ( _(XZ)\)[J>
=€Xp exp( =) ————
(% ; 2
1+xx
—_ 2)\ E )\r(x2r I+x2r)’

which proves the result. O

In general, for u a partition of # let M denote the multiplicity of w*in x /.
K l,n n

The method employed in the previous proof can be pushed further.
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PROPOSITION 6.4. For n=2, the multiplicity M ,(";‘1’ Y is given by

1 ifi=1, I={(n+1)/2], or I=n/2+1 (neven),
MU =22 if 1<i<|[(n+1)/2],
0 otherwise.

Proof. 1t is well known that «”~1(g) is the number of fixed points of ¢
minus 1. Thus

)y EIJ(M,‘,’}} + ML DYN
n
=y — O 22z

* o€S, 1

= (m {H(l +(—1)!a)=0/ Edu#(d)"'/dD ’
aye<Xx

day (7]
AR I+xA
—(l—x><1——x2)\>'
Therefore,

AXx 1+x\ 1+x\
M(n—l,l) lyn_ _ .
E, LN 1—x J\ 1=x2\ 1—x2\

It is a tedious (though straightforward) exercise to verify Proposition 6.4
from this equation. O

In a similar manner, one can show that

_ 1 ifl<n
M2 1m72) )
ln 0 otherwise.

We now consider the characters x\”) for particular values of /. We already
know that x{” = @™, It turns out that the other extreme x ‘" has an explicit
decomposition. Let 7 be a standard Young tableau. An ascent of T is a
number i such that i +1 appears to the right of i in 7. We let a(T') denote the
sum of the ascents of 7. The following theorem of Josefiak and Weyman
gives the decomposition of x!V in combinatorial terms.

THEOREM 6.5 (Josefiak and Weyman). Lef p be a partition of n. Then
the multiplicity of w* in x\V is the number of standard Young tableaux T of
shape p. with a(T)=1 (mod n).

For example, Xf;l)=w3‘+w2‘2 because the only standard Young tableau 7
with a(T) =1 (mod 4) are

134 12
2 and 3
4

a(T)=5 a(T)=1.
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Using the description of x{? as a sum of induced characters, it is possible
to compute an explicit decomposition for some other values of /. For ex-
ample, x{"~V can be written as

D = DR 1"
= w2 1"“2)@w(3. 1n=3)
Similarly,

Xy 2= (xP @@ (Indf ()@Y,
where the ¢ on the right has cycle type 22. By explicit computation we have

i, (6) =)+ o

Thus
(n-2) _ {w(zln—2)@w(221"—4)®w(31n—3)®w(321n—5)}

Xn
2in—4 _5 2{n—6 n—4 -5
@1 V@ IN@CTTN@ [ V@,

At the other extreme, we have for n odd that

(6.6) x=" 2 OO

Using Theorem 6.5 and the thtlewood—Rlchardson rule, we can obtain a
combinatorial decomposition of sorts for x‘® from (6.6).

7. Euler Characteristics

In this section we will assume that A4 is an N-graded k-algebra, that is, asa
vector space A with a direct sum decomposition

A=@ A4,

r=0
(with A, finite-dimensional over k) such that A, A; € A4, ;. We also assume
that M is a graded A-bimodule, that is,

M= M,

r=0
(with M, finite-dimensional over k) and M, A; = A, M, <M, , ;. In addition,
we will assume that 45=0.

We define a grading w on C,,(A4; M) by

(M, @A, @ @A, )= (ro+++++1,),

and we let Cn,,,(A; M) denote the span of all « = m®a;® --- Qa, with
w(a) = wq. It is easy to see that b,(Cr,wy(A; M)) S (Cn-1,0y(A; M)), and so
(C«(A; M), b,) decomposes as a direct sum of finite-dimensional subcom-
plexes

(7.1) (Cu(A; M), by) =@D(Cs o, (A5 M), by).
wo
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Note that the finite-dimensionality of the subcomplexes on the right comes
from the fact that 4,=0.
Let 0 € S,,. It is easy to see that

O'Cn,wO(A;M) = Cn,wO(A;M)s
so that the direct sum decomposition (7.1) has the refinement

(7.2) (Ci(A; M), b.) = D (CY), (A; M), by),

wo,j

where C{J), (A; M) =C, , (A; M)NC(A; M).
DEFINITION 7.3.  Define the Euler characteristic 7{/)(4; M) by
7$(A; M) =3 (=1)" dim(C{), (4; M))
n

=X (=1)" dim(H,7), (A; M)).

The latter sum is over the homology groups H,\Y)(A; M) of the complex
CY) (A;M).
Let IT(A, M; \, z) be the generating function for these Euler characteristics,
(7.3) (A, M;\,z) = 3 ©i)(A; M)Nz“°.

j’ wo
Also, let P4(z) and P,,(z) be the Poincaré series for A and M, that is,

Py(z)=2(dimA,)z",  Py(z)=X(dimM,)z".

THEOREM 7.4. Let A be a graded k-algebra with Ay;=0, and let M be a
symmetric, graded A-bimodule. Then

II(A,M;\, 2) =PM(Z){H(1 +PA(Z[)) -/ Xap ﬂ(d))\”d} .
/

Proof. By orthogonality of the idempotents e{/) we have

—1)" , :
A, M;\2)= 3 < ,) Y x(0) tr(o: Cp oy (A; M)NZ,
jwgn M ges,
where tr(o: Cpn,v,(A; M)) denotes the trace of ¢ as a linear transformation
of Cn,w,(A; M). Recall that S, acts on C,, ,(A4; M) = M® A®" by permuta-
tion of the tensor positions in A®”. It follows easily that

(=1)" X tr(o: Cp ) (A; M))z°0=Pyp(2) {Z(0) [a; « (—1)'P4(2")]}.

wo

Thus
II(A, M3\, 2) = Py () Z(x; M) [a; < (= 1) Py(z)]).

Theorem 7.4 follows immediately from the last equation by using the ex-
pression for Z(x; \) given in (6.1). O



Action of S, on Components of the Hodge Decomposition 121

Consider the following application of Theorem 7.4 to a case of particular
interest to this author, namely when A is the truncated polynomial ring with-
out constants, A = tk[¢]/(¢**"). This is a graded ring whose i th graded piece
is the span of #’. Note that A,=0 as required by Theorem 7.4.

First consider the case M =k (trivial A bimodule). One can check (see,
e.g., [9, p. 139]) that H,(A; M) is 1-dimensional for every value of n. The
weight of the unique homology class of degree n is (#+1)e if n=2e and
(u+1)e+1if n=2e+1. Using Theorem 7.4, we will show that the homol-
ogy classes of degrees 2e and 2e+1 are in H{¢(4; M) and H{¢V(A4; M), re-
spectively. To do so we first compute IT(A, M; N\, 2). Py (z) =1and Py(z) =
(z—z"*")/(1-2), so

A, M; N\, z)=1]

i 1-z!

( ] — gl )—0/1) Say md/d

( Zl_zl(u+l))-—(I/I)Ed',,u(d))\’/d
I+ ——F

=11

/ l—ZI

1—2z\

— — er_ (u+l)e—-1+1 (u+1e
= {=Z@y 22)\( b4 +z ).

As this is an Euler characteristic equation, it follows that
dim(H,s,ezu_*.l)(e_l)_'_l(A;M))Zl for all e
and
dim(H), 1 1e(A;M)) =1 for all e.
It follows that
1 if n=2e—1, wog=(@w+1)(e—1)+1,
dim(H,) (A;M)) =14 1 if n=2e, wo=(u+1)e,
0 otherwise.
Next consider the case M =k[¢]/(¢t**'), so that H,.(A; M) = H . (M; M)
(note that M is a ring and that A is just M/k). Again one can check that

H,,(A; M) has dimension u in every degree except dimension (u#+1) in de-
gree 0. Moreover, the # homology classes of degree » have weights

(u+D|n/2|+s (s=1,2,...,u),

with an extra homology class of weight 0 in degree 0. Let N, ¢ denote the
homology class of degree n and weight (#+1)|n/2|+s. We will show that

(7.5) Ny, s HGD 0 s forall n,s.
To see this we again compute I1(A4, M; \, z). We have
[—z@+D z—z WD
Py(z)=——— and Py(z)=
11—z 1—-z

Hence
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1—z@*D 12\
1—z  1—z@+D)

=1+Z+"'+Zu+2 )\S{__z(u+l)(s~1)+1___._z(u+l)(s~—1)+u
* S UADSTLL Ly ot Ds b

II(A,M;\,z2) =

(7.6)

u
=1+Z+"'+Zu=2 E z(u+1)s+r[___)\s+l+)\5}.

s r=1

From (7.6) it follows that
dim(H D (A; M))=1 for all s,r

odd, (u+1)s+r
and

dim(H ) (A; M))=1 for all s,r.

even, (u+1)s+r

From this, (7.5) follows immediately. It should be noted that Loday found
an earlier proof of (7.5) using different techniques.

At this point it is worth saying a few words about the restriction 4, =0.
Without this restriction the alternating sum };,, dim(C,s,’(LO(A; M)) does not
converge for all values of j and wy. So the Euler characteristic, defined as the
alternating sum of the dimensions of the complex, makes no sense. An un-
fortunate consequence of the restriction Ay =0 is that it does not allow A4 to
have an identity. However, this is not really a problem. If 4 is a graded ring
with identity e and if A= (e), let A=A/A,. Then A is a graded ring with
Ay=0. It is well known (see, e.g., Quillen [18]) that H(A; M)=H(A;M).
So the Euler characteristic IT1(A4; M; \, z) defined as

(A, M;\,2)= 3 {E(—1)"dim(H,Sf'go(A;M))}xfzwo
Jrwol n

does converge and is equal to I1(A, M; \, z). The latter Euler characteristic

can be evaluated using Theorem 7.4.

We end this section with the analogue of Theorem 7.4 for cyclic homol-
ogy. Assume that A is a graded, commutative k-algebra (with A;=0) and
that M = A. Using the double complex definition of cyclic homology (sez
[16]), Loday showed that the Hodge decomposition (P i H U)(A4; A) just ob-
tained for Hochschild homology gives rise to a similar Hodge decomposition
@, HCY)(A; A) of cyclic homology. He also showed that for any j =1 and
any wg, there is a long exact sequence

an’ ~H) (A3 4) > HCL) (A) > HCYS), (A) > HD, |, (A;4) -
s HE) (4;4) > HCH) (A) 0.
The corresponding sequence for j =0 is

(7.8) 0 H{" (A;A) > HC®, (4)—0

(see [14]).
Define ITC(A; A\, z) by
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IC(A; M\ 2)= 3 {2 dim(HC,S{'gO(A))(—D”}xfzwo.
j, wo\ N

The following result is an immediate corollary to Theorem 7.4 and the se-

quences (7.7) and (7.8).

COROLLARY 7.8. Let A be a graded, commutative k-algebra with Ay=_(.
Then

Py(z)
1—-A\

IIC(A;N\, z)= {H(l +PA(ZI))—(1/[)Ed“#(d))\l/d_)\} .
/

8. Open Problems

There are a number of open problems suggested by the work in this paper.
The most interesting of these is to find an explicit combinatorial decomposi-
tion of the modules e{’k[S,], should one exist. Another problem is to find a
more conceptual proof of our main result. The proof given here obscures
any homological connection that might exist between the Hodge decompo-
sition of the Hochschild complex and the induced characters indf!;a)(fg).

Lastly, there is a bizarre connection, at the level of character values, be-
tween the characters of S,, studied in this paper and certain topologically de-
fined characters of S,,. For each n, let A, denote the thick diagonal in C”,
that is,

A,={(vy,...,0,) € C": v; =v; for some i # j}.

Let 91T, denote the complement of A, in C” and let H/(9,,) denote the jth
cohomology group (in the topological sense) of IM,,. Note that S,, acts on
9N, which gives an action of S, on H/(9,,). Let 8§’ denote the character
of this action of S, on H/(91,), and let Z(B, \) be defined by

1 . .

26:M=3 ¢ 3 {3 690V]z0).
n coeS,\ Jj

Combining Corollary 5.7 of Orlick and Solomon [17, p. 186] with Corollary

4.4 of Calderbank, Hanlon, and Robinson [3, p. 293], we have

8.1) Z(B: N) = [T (1+ (=1)'a) = /D Zay s
/

Note the striking similarity between equations (6.1) and (8.1). The author
knows of no direct connection between the characters x%’ and the charac-
ters BY?; however, the possible existence of some connection merits further
investigation.
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