Analytic Functions That Have
Convex Successive Derivatives

T. J. SUFFRIDGE

1. Introduction

In a series of papers [4]-[8], Shah and Trimble studied the family of uni-
valent functions such that an infinite sequence of the successive derivatives
(possibly each successive derivative) is univalent. Many of their results in-
volved functions that map the unit disk onto domains that have certain geo-
metric properties such as close-to-convexity or convexity. For example, The-
orems 1 and 2 in [8] give necessary and sufficient conditions on 3 and {z;}¥-,
(with each z; on a given ray) so that the function f given by

N b4
f@)=ce’* I] <1 — —)
k=1 43

is close-to-convex (or convex) and has each successive derivative close-to-
convex (or convex). They conjecture that the function e*—1 has many ex-
tremal properties within the family of functions f that are analytic in D=
{|z] <1}, are normalized by f(0)=0 and f’(0)=1, and have the property
that f(D), f'(D), f"(D), ... are all convex. For example, they conjecture
that for such an f with f(z) =z+a,z%+---,

1—e Fl<|f(z)|<elfl=1 and |a|=< 7(1—'
In [9] we showed that if f as above satisfies the conditions described and if,
in addition, each coefficient a; is positive, then a, <1/k! and then clearly
|f(z)|<ell-1.

In [1], Barnard and Suffridge showed that if f is analytic in D, f(0)=0,
S'(0)=1, and f(D) and f’(D) are convex, then the coefficients a;, k=2,
satisfy |a;| <4/(3k) with equality if and only if f(z) =—%—3 log(1—2z) (so
that f'(z)=1+ g—(z/(l—z)) or a rotation e ~¢f(ze’®) of this function). In
this paper, we prove some general theorems concerning convexity of f when
f'(z)=1+2ag(z) and g is convex. We then study some extremal problems
in X,,, where K =Ky,={/f: f is analytic in D, f(0)=0, f’(0)=1, and f(D)
is convex}, K, ={feK,: f" (D) is convex or f"*V is constant}, and
Ko=MNy=0K,. We find the sharp coefficient bounds in the family X,, and
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we have a conjecture for the coefficient bounds and the extremal function in
K,,n=12,3,....

2. The Family K,

If feK,, n=1, then

1) f'(z)=1+2ag(z), f(0)=0,

where g e K,,_; and a =a, = f"(0)/2. We wish to begin with (1) where g € K
and find conditions on a (related to the function g) so that f € K;. Of course,
such conditions will apply to the situation ge K,,_;, f€K,,, n=1.

When convenient, we will assume that ¢ in (1) is positive. For our pur-
pose, this is no restriction since for g € Ky, f/(0) =1+2ae’g(z) is the de-
rivative of f e K| if and only if

['(ze” ™) =1+2ae"g(ze ) =142a(e"*g(ze ')

is the derivative of e’ f(ze ~'®) € K;. We begin with the following straight-
forward result.

THEOREM 1. Let ge Ky (a#0). Then f given by (1) is in the family K, if
and only if |1/a+2g(z)+zg’(z)|=|g’(z)| for all zeD.

Proof. The necessary and sufficient condition for f € K; (given g € K;)) is that
Rel[l+zf"(z)/f'(z)]>0. That is, we require Re[1+2azg’(z)/(1+2ag(z))] >
0. This is equivalent to |2 +2azg’(z)/(1+2ag(z))|=|2azg’(z)/(1+2ag(z))]
(i.e., Rew>0if and only if [w+1|=|w—1|). After dividing by 24 and mul-
tiplying by |1+ 2ag(z)|, the result is |1/a +2g(z) + zg'(z)| = |zg’(z)|. Since
the right side of this inequality is zero only when z =0, the left side is never
0. The theorem now follows from Schwarz’ lemma applied to

z28'(z) O
1/a+2g(z)+z8'(z) "

It is convenient to set py =sup, .y min |-, | f(z)| for functions analytic in D
with f(0) =0. The following theorem is very useful.

THEOREM 2. IfgeK, (a#0), and if f given by (1) is in the family K,,
then |a|<1/2(pg+ pze’).

Proof. Using Theorem 1, we require |1/a +2g(z) +2g'(z)| = |zg'(z)|. The
function 1/a+2g(z) maps the unit disk D onto a convex domain that does
not contain the origin. It is convex because g € K, and it does not contain
0 because f’(z) =1+2ag(z) is the derivative of a univalent function. For
fixed r, 0 <r <1, there is a z, with |zo|=r such that min;|_,[1/a+2g(z)|=
|1/a+2g(zy)|. Since zg’(z) is an outer normal to the curve 1/a+2g(z), |z|=
r, we conclude that
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1
;+2g(20)+20g'(20) —|z08’(z0)].

1
- |— +28(z0)
a

Therefore, |1/a+2g(zo){=2|z08'(2)|- Now choose z; so that ag(z;) <0,
|z1|=r. Then

1 : 1
————2m1n|g(2)|— —2|g(z1)|= ‘ +2g(z1)|
|a| |z|=r I I
1 1
=min|—+2g(z)|=|—+28(2p)
lz|=r a
22|Zog’(zO)|221rrllinIzg'(z)l-
z|=r

Thus, foreachr, 0<r<1,

>2 mm |g(z)|+2 min|zg'(z)].
l I |z]=r |z|=r

Since both terms on the right increase with r, we have 1/|a|=2p, +2p,,
and the theorem follows. |

Note that for g e K, pg = 1 and Prgr = 1so|a|= 3, whlch is the result ob-
tained in [1]. Further, it is clear in this case that |a| < % 2 unless g is a rotation
of z/(1-2z2).

In light of Theorem 2, the value of p /- for fe K, should be useful in the
study of K.

THEOREM 3. If feK; then Pzy 2 1 (hence | f'(z)|= ), with equality if
and only if f is a rotation of —% —3 log(l Z).

Proof. Write f'(z) =1+2ag(z), g€ Ky,. We know that Re[zg'(z)/g(z)] =
%+ €, where € = 0 with ¢ > 0 unless g(z) =z/(1 —z) (or a rotation). Therefore
2g°(z)/2(z)| = 1 +€ and |zg’(z)| = (3 +¢)|g(z)|. Thus,

min | f’(z)| = min |14+ 2ag(z)|=|1+2ag(z,)|

|z|=r lz|=r

=2(al|z08"(z0)| = |a|(1+2€)|g(z0) |

for some zy, |zo|=r. If 2|al|zog’(z9)| = (1+¢€)/3 then clearly we have that
min ;.| f'(z)| = (1+¢€)/3. If 2|a||zog"(z0)| < (1+¢€)/3 then
14¢€

|allg(zo) | (1+2¢€) <2lallz0 g (20| < ——

and we have

2 1+
min | f'(z)| = min |14+2ag(z)|=|1+2ag(zp)| = 1-2|a||g(z¢)|=1— = :
lz|=r lz|=r 3 142

1 2 € 1+e€
=—+= >
3 3142 3

because € < 1.
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In any case, | f'(z)| = % + ¢/3, where € = 0 with equality only if g(z) =
z/(1—z) or arotation. The proof of theorem is now complete. O

Since z/(1—z) is the extremal function for many extremal problems in K,
(in fact, the set of extreme points in K is precisely {z/(1 —ze'®): « is real}),
it is instructive to find the values of @ such that f, given by (1), when g(z) =
z/(1—z), is convex. The answer is somewhat surprising.

THEOREM 4. Set f'(z)=1+2az/(1—2z), a#0, f(0)=0. Then feK, if

and only if |la—1|<4%.

Proof. Using Theorem 1, we obtain the inequality

+ 2az + az
1—z  (1-z2)2

On multiplying by |(1—2z)?| we obtain

03 |(1-2a)z*+ (3a—2)z+1|=]az|, |z|=1,

as the necessary and sufficient condition for f e K. Note that |1—2a|<1is
necessary because otherwise the left side of (2) has a zero in 0 < |z| < 1, which
is not possible. We rewrite (2) as

1

=

az
} (1-z)?

3 z |2 |(1-2a)z—z|?
— 2_—-—— — i
(1 2a)<z 2z)+1 5| = 1 , lz]=1,
and
312 1 3 Z\ Z
aar2to2f 2 1\ _ S _2\_ %
|1—2aq| |z|<z > 4) 2Re[(1 2a)z(<2 z)(l 2) 4>]
2 2
z|® |z
1-2| - 2L >0.
+[ [-El=0
Thus,
201,12 2 3 |Z2
|1—2a|(|z]°)(|z|*—3|z|cos 8 +2)—2 Re| (1—2a)z 5—2|z|c030+7

_ +1—|z|cos 6 =0,
where z =|z|e’. This can be rewritten as
3|1—2a|?|z|>(1—cos 8) —4 Re[(1—2a)z(|z|) (1—cos 0) +|z| (1 —cos §)]
3) +|1—2al?|z|*(2—3]|z|+]|z]*)

3 |z)?
—2Re|(1-2a)z 5_2|z|+—2— +1—|Z|20.

Now let |z| -1, divide by 1 —cos 6, and let (1—2a)z —|1—2a| to see that
3|1-2a2—4|1—2a|+1=0, (1—|1—2a|)(1—3|1—2a])=0.

Since 1>[1—2a| (as observed previously), we see that § =|a— 1| is a neces-
sary condition.
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Returning to (3), assume 1—3|1—2a|=0. We see that

|z|(1—cos 0) (3|1 —2a|*|z|*—4 Re[(1—2a)z] +1)
+(1—|z])(|1-2a)*|z|*(2—]|z]) = Re[(1-2a)z]1 (3 —|z|)+1)
>|z|(1—cos 8) (1—4|1—2al|z|+3|1—2a[*|z|?)
+(1—|z)(J1—2a)*|z|*—2|1—2a]|z|+1)
+(1=|z)*(|1-2a*|z|*~[1-2a]|z])
>|z|(1—cos 6)(1—|1—2a||z|)(1—3|1—2a||z|)
+(1=|z)(1=]1-24||z)*=0

when |z| <1, and the theorem is proved. O
REMARK. Assume f is given by (1) with g € K. Since g is convex and we

require f'(z) #0, |z|]<1, f’ maps the disk onto a convex set that does not
contain the origin. Consider f’(|z| =r) (see Figure 1).

f'(rei® roif

1 j
0

fl(reiel) ret™

Figure 1

We want zf’(z) to be starlike so that d[arg re’’f’(re®®)]/d0 = 0; that is,
[0 arg f'(re’?)] /30 = —1. From Figure 1it is clear that [d arg f'(re®)] /80 =0
when 0; <60 < 6,, so we need only consider 6, < < 8,4+ 2x. Consider g(z) =
z/(1—z),a>0. Whena=3,

darg f'(e”)
a0 e x

Now consider what happens to (9 arg f’(e‘%))/30 near § =0 as a decreases.
Since [d arg g(e'®)]/30 = %, 0 # 2k, we know that if 0 < 6 < 7 then the arc
0 <0< 0y maps to the half-line indicated in Figure 2. Clearly the angle ¢
increases as a decreases. Finally, if 0 <a <  then 6, can be chosen so that
¢ > 0,. This implies that [ arg f’(e?)]/80 < —1 for some 6.

=—1
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— — S ——-

- w
N i

Figure 2

Similar considerations apply if @ is not real. Assume f’ maps onto a half-
plane that makes an angle n/2+¢ with the positive real axis, 0 < ¢ <w/2,
so that the point on df (D) that is at minimum distance from the origin is
pe™. Using (1) with g(z) =z/(1—z), we see that

1—(11—2a)z — )= 1—(1—2(cos qb—-p)e'.o)z'
-z 1-z

If a=1—Lle " (so that [a—1|=1), we have tan ¢ =sina/(3 —cos a) and
tan ¢ <V2/4 with equality when cos @ =1 and sin o =2v2/3. Further, p=
4/34/10—6 cos .

As demonstrated in the proof of Theorem 4, equality holds in (3) when
(1 —2a)e’ = |1 — 2a|; that is, with a = } — e ™" when 0 = «. Thus, if we
choose a=1—1e " and let & vary from — to = with f'(z) =2az/(1—2z),
the regions f’(|z| <1) will be the half-planes

sin o ) _ 4
J0—6cosa ) T 3Jl0-6cosa

Given a function g € K, there is no reason to suppose there is an @ # 0 so
that f given by (1) will be in the family K,. For example, consider the case
where g maps the disk onto an infinite strip, not a half-plane. If a is chosen
so that f’(z) =0 for some z, |z| <1, then clearly zf’(z) is not starlike. For
other values of @, we use the fact that Re[zg’(z)/g(z)] — oo as z tends to either
of the discontinuities on |z|=1 to see that there will always be a value of ¢
such that [d arg(f’(e’%))]/00 < —1.

Actually, any f given by (1) has f’ subordinate to one of the functions
1+2az/(1—z), where a = 5+ ;e™.

Re(we %) > p, ¢=sin‘1<

THEOREM 5. If feK, then there exists a, |a—1|=
1+2az/(1—2z). Furthermore, we may assume that a =

cos " 1(2v2/3).

such that f'(z)<

1
6° !
3+ Le'™ where |a|<
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Proof. The last part of the theorem follows readily from the first, because
(from the remark above) the half-plane that is the image of 1+2az/(1—z)
for some a (a—1=1e’, |8]>cos™!(2V2, /3)) is contained in the half-plane
that is the image of 1—2az/(1 —z) (a—3 e"‘" for some «, where |a| <
cos ~1(2v2/3)). We prove the theorem by contradiction. Assume there is an
f € K, that is not subordinate to any of the functions

1 . Z

ha(z)=l+(l+—e'°‘>-—, —T<a=<T.

3 1-z
Then it is easy to see that there is an r <1 such that f,(z) = f(rz) is not sub-
ordinate to any 4,. That is, we may assume f is analytic on |z|<1. Taking
o =0, we see that Re f'(zo) < 1 for some zy, |zo| <1. The proof will proceed
as follows. We want to find p and « so that f’(pz) < h,(z), that is, f'(pz) =
ho(w(z)) where |w(z)|<|z| and w(e®) =e™ for some 8 and ¢. We may as-
sume Im f’(z4) > 0 (otherwise replace f(z) by f(Z)) because Im f’(zq) 0
since | f'(z)|= % Since f’(D) is convex, Re f'(z) > % whenever Im f'(z) <0.
Thus, o > 0 and we want ¢ = 7 — «, so that

Re e®h’(e®)] _[dargh(e')
h(e') | a0 b=o
(see the proof of Theorem 4). Then we will have that e/®w’(e’®)/w(e’®) is

real and greater than 1 by a result known as Jack’s lemma (see [2, p. 28] and
[10, p. 777]). Then

=-1

peiﬁfﬂ(peiﬂ) 3 aarg fr(peiﬂ) B eiowr(eia) Re ewh&(eig) »
f'(pei®) | 30 T w(e') ho(e') ’
contradicting the fact that fe K].
Observe that

(1+3e ) (—e™")

ha(e'T= ) =1 .
ale )=1+ 1+e—ia

= 2 N T L

3(1+e—@)  3cosa/2 T3 3 2
are the images of the values z =e’("~® where Re[zh%(z)/h,(z)1=—1. The
line Re w = 1 intersects the curve f(e'’), 0 <6 <2, in exactly two points in
the upper half-plane. Let the points be % + § tan o; and % + % tan oy, oy > .
Figure 3 makes it clear that a p, # and ¢ as described above exist.

Let /; and /, be the boundary lines for #,, (D) and haz(D), respectively.
The normal #; to the boundary curve S (e"’) at + tan «; is below the nor-
mal to /,, and the normal n, at 3 + tan a, is above the normal to /,. The
vector zf”(z) assumes every dlrection between the direction of n; and n,
along the pre- image of the line segment. Therefore, there is a pe'® =z such
that f'(pe”®y =1+ 4 tana (e < a < a,) and such that the normal to the
curve f’(|z| = p) at pe'® is in the same direction as the normal to A, (|z]=1).
This yields the required p, 8, « and the proof is complete. O
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Figure 3

THEOREM 6. If f € K| then there exists a probability measure p. on [0, 27]
and an a=1+1e™ |aj<cos™'(2V2/3), such that

f(z)= §;T[z(1 —2a)—2ae " log(1—ze")] du(t).

Proof. By Theorem 5 and Herglotz’ formula, there is an @ as described above
and a probability measure u on [0, 27 ] such that
it

27
"(2)=1+2 S _
f'(z)=1+4+2a o T—ze? du(t)
(1 202"\ dute
—So ( al—ze"‘) kA1)
The theorem now follows by integration. C
THEOREM 7. The functions f € K, given by
z 1 1 2V2
’ =142 — 4 plo < -1='=
S(z)=1+ ar=-, a=5tee || < cos 3

are extreme points of K.

Proof. Assume not, so that

=1g1(z)+(1-1)g5(2)
=1+1(g{(z)—-1)+(1—-1)(g3(z)—1)

1+2a1z
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for some a as in the theorem and g, g, €K, 0<¢<1. Let b=1g{(0), c=
125(0), 1 .
g1(z)— _ &(z)—
2h s GZ(Z) - 2¢c .
Then z/(1—-2)=(b/a)tG,(z)+(c/a)(1—1)G,(z), where G, G, € K, (or G,
or G, is constant). We may assume G, has the property (1—2)G,(z) # 0 as
z — 1. Since G, € K, this implies G;(z) =z/(1 —z) because G, ¢ H' [3, Lem-

ma 8.8]. Thus,
b
(1—-—:)—3’— = £ (1-1)Gy(z)
1-2 a

Gi(z)=

a

and there are two possibilities. First, if G,(z) = z/(1 — z) then a = bt +
c(1—1t) and

1 1 1 1

S =la—-=|=tlb-Z|+1-1)|c—=

6 a 2| Ib 2|+( t)|c 2‘
1 1 1

< — —(]— =
_6f+6(1 t) G’

it follows that @ = b = ¢, contradicting the assumption that f was not an ex-
treme point. The second possibility is ¢ =0 so G,(z) =0 and 1—(b/a)t =0.
Then b/a=1/t>1 which is not possible under the assumption on «. This
concludes the proof. O

THEOREM 8. If fe K, then |f'(z)| = (3 —|z])/3(1 + |z|) and |f(2)| =
log(1 +|z|) —|z|/3, with equality if and only if

4 z 3+z
SR =+ 31 =30

or a rotation of this function so that f(z) = —z/3 — % log(1—z) orarotation.

Proof. We know f”(z) <1+ (2az/(1—z)) for some a =3 +1e™ so

1+1 loz

’ . l_lz 3__Z
|f'(z0)|= min - - 3l20| _ |zl

2l =Izol T 14zl 3(1+[zo])
Equality is clearly only possible when oo =0. Further,

| f(z)]= g "(u)du|= S S'(u)du =S | f7(u)||du|
Y Y
4 1 1 4
ZS(I)ZI(§1+D _§> dp=— 3 log(1+lzl)—|—§—|
where
vy=f"tf(z)), 0=t=<],
so that

f(z)

Sndu= 155

||f( u)||dul. L
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3. The Family K,,, n>1

We believe that in K, there is an extremal function f,, with positive coeffi-
cients that maximizes every coefficient. Further, it appears that the sequence
{f.} satisfies f,; . {(z)=1+42af,(z), where 2a = 1/(pfn +p.s;). Furthermore,
it seems to be true that

—fu(=lzD)=|f @)= fullz]) and  fi(—|z])<|f"(2)|=< fi(|z])
for all f in K,,. Here,

4
folz) = l—f—z fiz)= —§ —5 log(1-2),

and )
Z

1 1-z
=z(1 — 1 -2).
/22) z( + log2> 8log2 + log 2 og(l-2)
We will show f, € K, and will find the functions f, generated using f,,,, =
1+ [1/ (o5, + P2y fu(2).-

THEOREM 9. If fe K, and f'(z) =1+2ag(z) with ge K, and a >0, then
a<3/(8log2). This result is sharp, with equality if and only if

z? 1—z

1
f(z)‘z(1+ log2>_ 8log2 T Tog2 28172

Proof. Using Theorems 2, 3, and 8, we see that g € K; implies

4 1 1
pg—glogz_gs ng’2'3—;
8log2 3
204+2p, = 3 and a< 8Tog 2

It remains to show that f given in the theorem is in the family K,. Clearly
S'(D) and f"(D) are convex. It remains to show f(D) is convex. We require
(by Theorem 1) that

+— 4 gy (z+ 2
4log2( 373 U T T glog2 \* T3 1
3

4 z°
8log2 31—z

After multiplying by |1—z], both sides are continuous in {|z|=<1} so it is

sufficient to prove the inequality on |z|=1. By symmetry, we may take z =

e’® 0 <0 <. Thus, we require
2

=

z+

— % log(1—2z)
4log 2 log 2

3 4 z° z  log(i—z)
+4log2Re[<z+§1—z>(l~§— log 2 )]ZO’
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which becomes
. et log(2 sin 6) o T—0
4log 2 log 2 2log 2

/1 2i 14cosé
R iof ~ =
e[e (3+ 3 sind )

—i0 . _
w(1— e _log(251n0) _ w—0 ~0.
4log 2 log 2 2log?2

2

+4log2

This is equivalent to

2
4log’?—=— —2log

1—cosé 1—0050(2+3C050)
—142cos 0 +3cos?
+2(m—g)yLF2C080+3C0ST0 o oysg.
sin 6
or
2 2
210gm(210gm—2—3cosg>
“ sin@(1—3cos f)
+(2(7—0)2(w—0)— >0
1—cos @
Set
B sinf(1—3 cos ) yoan —4—cos0+3cos?0
h(0)=2(r—0)— I —cosd so h'(0)= [—cos 0 <0.

Thus, A(8) is a decreasing function and (7w —8)/(6) is decreasing and is 0
when 0 = w. Thus, (7 —8)h(8) =0.
Set K(0)=21log[2/(1—cosf)]—2—3cos 8, so that

sinf(1—3cos )

K’'(0)=
©) 1—cos@

>0 if cosf<1,

<0 if cosf>1.

Since K(7/6) > 0 it follows that (4) holds when 0 < 6 < x/6. Also, K(27/3) >
0 50 (4) holds when 27/3 <6 <.

When 7/2 <0 <2x/3,
2 2
2(x—0)h() = %h(%) >1.36,
while
2

so (4) holds for these values. Finally, if 7/6 <0 < «/2,
w

2(m—0)h(0) = wh( >

)=7r(7r—1)>6.7

while
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2 2 1
2log ————K(6)=21 -1—
08 cos 8 (0)=2log 1—cos(w/6) K<COS 3 )

4
=2log ——— — -4.4,
og 2_\/§(210g3 3)>—-4.4
Thus, the proof is complete. ]

COROLLARY 1. If feK, and f(z)=z+a»z>+--- then |a,|<3/(8log2)
and |a;|<1/[k(k—1)log2l, k=3, with equality if and only if f(z) is a ro-

tation of
1 z2 1—z
z(” logZ)_ Slog2 T logz 08U—%)-

Proof. We know that ge K, and g(z) =z+b,z%+--- implies |by|<4/3k
(k=2), with equality if and only if g(z)= —%—g‘-log(l—z). Further, by
Theorem 9, if fe K, and f’(z) =1+4+2ag(z) witha>0and ge K, thena <
3/(8 log 2) with equality if and only if g is as described above. The corollary

now follows. O

REMARK. Since e*—1e K, CK,, for each n, we know that

1
5 <max{a: f(2)=1+248(2), feKy, g€ Ky} < <0.542

gek, 8log 2

when n=3.
4. An Interesting Lemma and the
Conjectured Extremal for K,

In order to find the conjectured extremal for K,, n =3, we require the fol-
lowing rather curious lemma.

LEMMA 1. Ifn=3 then

b 1 -3 L4 CV
n_ J—
5) 77 (p—l)!(n—p—l)![ P i=p 1 pl:l / ]
_ 2n-1 n—3_ 1
 (n=1! (n—=2)!"
Proof. Set
—n-l n—p n—1 xl
() _,,{:1 (p—1! (n—p-1)! Ep !
and
WD =3 2 P
N =Dln—p—1 & 1

Then ¢(0) =0 =y¢(0) and ¢ (1) + (1) is the left side of (5). We have
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p)=y —— S
’ x —_ x —
p=1 (p—Dt(n—p-D! /2,

S =D (n—p-1)!  1-x
This series can be obtained in closed form by replacing p by p+1 and using
the fact that
n—2 (n—2)!
p=0 Pl (n—p-=2)!

x?=(1+x)""?

and
"2 p(n—-2)!

,Eo pl(n—p-2)!

xPl=(n-=2)1+x)"3.

The result is

von 1
d'(x)= n—2)!
n—=3__~n-3,.n-3
Similarly,
N (2" 3 —(1-x)""?) 3
v(x)= =21 (—n T+ % —(n—-1)({1~-x) )

We want to find ¢(1)+ ¢ (1) = j},[q&’(x) +¢¥’(x)] dx. Consider the first terms

1 (1 n—3__2n-—3 n-3 1 2n—3_ 1— n—3
=S U+x) a dx and tn=§ (1=x)
0 1—x 0 14+x

dx.

Sn

Note that s;=0=1¢; while s,,,;—2s,=1/(n—2)=t¢,,;—2¢,. This implies
that s, =¢, when n=3. Therefore

o m2"? s s ()" (n=D(1—x)"3
¢(1)+¢(1)—§0[(n—2)! X = T T (2! ]dx

_2"@n-1) 1

 (n—=1)! (n=2)!"
and the proof is complete. W
Now take

4
fo)=12=,  file)=—3—3 log(l-2),

and

@y =214 — SR i Y
ZZ_Z< logZ) 8log2  log2 gtl—2).

We want f;1(z) =1+[1/(f7(=1) = f,(=1)]1/,(z). Clearly, f,,1(z) has the
form
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n+l
(6) kEI af™ Dk~ (1—a"*D)(1-z)" log(1—z).

Write
1+'Ynfn(z) =fn,+1(z)

n+1
=k21 ko021 (1— (D) [(1-2)" "1 (1+n log(1—-z))].

Equating coefficients of the term (1—z)"~!log(l1—z), we see that

n(l—af"*th)

Yn=—"
" l—a%”)

On dividing by (1—ca{"*1) and equating coefficients of z¥ in
o (k+1)afttD n—1
5 Sk 2 (" e

(n) 2 a/(c")z S

k=1 l1—a; 1—o;
we obtain
) (n+DatD  pafM ~o
TN N
and
®) (n+1-p)aH>, N nay?, _ (1! (n—1!
1—q{"th 1— oz(") (n—=p)(p—1!’

where the substitution k=n—p, 1 < p<n-—1, has been made in (8).
In (7), let u, =na/(1—a{™) to see that u,,;+u,=0. The solution is

na'™M/(1— a("))—c( 1), and using o{" = —1 yields
1 n
) ‘”’—(4) (1-a{), n=l.
In (8), let u, =a” /(1—of") to get
o (n—1)!
1— =(—1"+r-! .
(n+1—=pluy+nu,=(-1) =) (p=D]

The homogeneous solution of this equation is

c(n 1)
Uy = o D
(n—p)!
while a particular solution is
(=D)""P(n-1! 71 1

===t A T

Therefore

(=1)""P(n—-1)! n!
(n) _ — —_
apl, = =) (p—1)! [ + gl l](l ai), 1=p=n-1.

Setting p =n—1 yields
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b1 oD

Ky=—3 —— ,
P 1§=:11 p(1—afPth)

so that
o = (—=1)""P(n—1)!
P (n=p)(p—1)!

(10)
X[nil 1 1 ](1 (n)) 1<p<n 1
—— —-ai), 1<p=<n-1.
=p I p—af*h) ‘
It remains to find the a{*). The «{*) are chosen successively to make
n(l—a "+”) 1
Jur1(2) =1~ Sn(@)=1+— Jn(2).
" 1—a” " Si=D=fu=1)""

That is, we require [zf; (z) + f1(2)]; = -1 = 0. Using (6), with »n replacing
n+1, we conclude

n
3 K (1T (1-a™)2"3)2n—1+n(n—1)log2) =0.
k=1
Thus,
2"—3(2n-1+n(n—1)log2)(1— (my
—E(n P, (=1)" P~ (=1)"n?a)
p:

nl (n—p)(n—1)! "3l
[,, | (n—p=DI(p=1! 2, I
1 (n—p)(n—1)! 1
521 (n—p=DIp! 1—a@P*D

+%](1—a§”)).

We will show that

1 1 n-1 1)!
=D ‘[ et L ]
l—aI" 4 p=0 p' 2
an . )

+(n—1)< Y (—1)P-’——1og2>.
p=1 D
It is easy to check that (11) holds for n =1, 2.
In order to prove (11) for n=3, set
1 (—-1)?

ITW =p! Upr1—P 10g2+

Then
2"32n—1+n(n—1)log?2)
'S _(m=p)y(n-1)t Sl1 Ll (n—p)(n=1)!

_1921 (n— p—l)'(p——l)' 2 ——pE——;l (n—p—1)! Up+1
n—1 (n—p)(n—1n! _ln l(n —p)(n—1)! ) -’1
+(p=1 (n—p—l)!(p—l)!) pEI (n—p—1!p! (-1) +4.



68 T. J. SUFFRIDGE

The last series on the right has the sum n/2 when n =3 because it is
(5 a+x)"2=1)+(r—1) (1 +x)""?
2 x=-1
The next-to-last series is
log2[(n—1)2(1+x)"2—(n=1)(n—2)-(1+x)"3], -, =n(n—-1)2""3log 2.
Therefore we need
2”—3 (2”—1) =n—1 n—p nil l
(n—=1D! ;= (n—p-DH(p-1!,
n-l p—p 3n
p§=:1 (n—p+1)! Ups1t 4n—-1!"

That is,

= 1 s p 5! (=1
" 20 (n—p—1)! o1+ D) 2, (o= (n—p-1! 2, 1|

where we have used the lemma and the fact that u; = Z- Suppose that

17501 1 2t (=1
+ S (=1
42,00 T (p=2)t 2y

when 1< p </ (this is true for p=1,2). Then

= 7 (1! .
=1 p=0 (n—p—l)'( D ,EO ! + (n—1)!

" n—p (=n" ! P )
+p§=:l (n—p—-DH(p-1! I§1 ! pEz (p—Dl(n—p-D!, E [

1 1
S1+(n—__m §9—S83.

t, = (—1)P"!

Here

n—1 1 11 n—1
si=3% Py 2_(—)”[

1 1 ]e31

(n—p—D1 " (n—p)!]:=oﬁ
= = 1 P o1

= E (D57 2 7~ 2 (D B o

p=1 (n—p—1! Sy 11 p=0 (n—p—1! /o
n—-2 1 1 n—2 —1 p
=-D""'Y —— =3 (),,
=o' (n=1)! JZ; (n—p-1)!p!
n—1 1 n—1 (_I)P

pl(—P)’ 2o 1!

- ln 1 -
=N T A =D
nn 1 1
=(—1) AT

Also,
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S="§-:1 n—p+1 P51 (=1
2T (n=p)(p=-2 2
= O VA 1 1 ) 1
= p§+l[((n—p—1)!+(n—p)! (p—2)!
__n—~2 (_1)1—1 n—1 1
_1§=:1 [ p=§1:+l (p=2)(n—p-—1!
n—2 1
t 2 =D (=D ]
—n—2 (_1)1 n—1 p B 1 1
= [,E,H(p—n!(n—p—l)z (=21 " (a—I—D (I—1)!
n=2 (—p)f=t =2 (1)

=St 2 Tt 2 oD

B n-2 (__1)1—1
_S3+,§1 =21 T (=)

1 g (=np! 1

[(14+2)" = 1= ()"

I Ay B |
This shows that
—nr-1n-1 1 n—1 (_1yP-1
u = D R W
4 1=0 I! (n—2) I=1 f
O

which was to be proved.
CONJECTURE. The function f,, defined by fy(z) =z/(1—2z) and

n
@)=Y a2F—(1=a{")(1-2)""log(1-2),
k=1
with the a,({”) given by (9), (10), and (11), is extremal in K, in the sense that

(1) f.e€K,; and
(i) if f(z) =371 Axz" and g(z) =37~ arz* € K,,, then: |a;| <A for
each k, —f,(—|z|) =|g(z)| = fu(|z|), and
—lzlfu=lzD) _ . 28(2)
fn(—lzl) B g(z) |

Note that for the second coefficient A, of f,, we have

n— _1\n n— _ —1
( = 2 4D ((n—2)(log2— 22( 1;) ))

2 ST i T ) Z
n—1 (_1),0——1) ’

p=0 P!
2 (-D"-4
n—D!  (n—2)! (k’gz_,E »

A2=

J

1
2 n-1 1
> —+
| p=0 D!
which is of course always greater than % but approaches % quite rapidly. For

example, with n=12, 4,~1 <107,
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