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1. Introduction

Let F be a relatively closed subset of the open unit disc D of the complex
plane C, and let 4 be a space of analytic functions on D endowed with a
topology 7 such that the polynomials are 7-dense in A. The set F is said to
be a Farrell set for (A, 7) if for each function f e 4 whose restriction f | is
bounded there exists a sequence (p,),~; of polynomials satisfying:

(1) p,— f in the 7-topology, as v — o,

(2) p, — f pointwise on F, as v — o0, and

@) 1p)r=|f1F, as v > oo,

As usual, | g| z denotes sup{|g(z)|: z € B}. Similarly, F is said to be a Merge-
lyan set for (A, 7) if, for each function f € A4 whose restriction to F is uni-
formly continuous, there exists a sequence (p,),—; of polynomials such that

(o) p, — f in the 7-topology, as v — oo, and

(8) p,— f uniformly on F, as v — oo,

Farrell and Mergelyan sets have been described for several cases: (a) A4 is
the space H*(D) of all bounded analytic functions and 7 the topology of
pointwise convergence on D [9]; (b) A is the Hardy space H” (1 <p <)
and 7 is the weak topology [8] or the norm topology [7]; (c) A is the space
H(D) of all analytic functions on D with the topology of uniform conver-
gence on compact subsets of D.

A holomorphic function in D is said to belong to the Nevanlinna class N
if its characteristic function

T(, ) =5 | log(1+]/(re®)]) o

is bounded for 0 <r < 1. In this case N(f)=Supg<,<;T(r, f). A function
feN is said to belong to the Smirnov class N if there hold

27 . 27 .
lim SO log(1+|f(re®®)|) do = SO log(1+|f(e™)|) db.
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For 0 < p < g < it is well known that H* C H?C HP? C Nt C N with all in-
clusion relations being proper (see, e.g., [3]). The class H?, 0 < p <1, does
not form a Banach space but is a complete metric topological vector space
with the metric

_ L2 e i0y|p p
(1) lr—glp=5- | Ire)—ge s, f,geH?,

and there are bounded linear functionals on H” enough to separate functions
in H?. ((H?)* can be identified with a Lipschitz space of order o, 0 < <1,
a depending on p; cf. [4].) An analogous affirmation can be made for the
Smirnov class N+, which is a complete metric topological vector algebra
with the distance functions

@ o 8)=lim - [ log(1+f(re™®) ~ g(re™)]) a9,
r—1 & J0

f,geN*t. Nt also has a separating dual space (N*)* which can be identi-
fied with the space of all the functions f in the disc algebra whose Taylor co-
efficients satisfy g(n) = O(exp[—cvr]) for a positive constant ¢ [13]. Hence
we can consider the weak topologies on H? (0<p<1) and N*.

In this paper we prove the following theorem, extending the main result
in [8] but using different methods.

THEOREM. Let F be a relatively closed subset of D and 0 < p <. The
Jfollowing assertions are equivalent:
(i) Fis a Farrell set for (H?, | |,).
(ii)) Fis a Mergelyan set for (H?, | |,).
(ili) There exists a set ECTNF with m(E)=0, such that if { e FN'T\E
then there is a sequence ({,) C F converging nontangentially to ¢.
(iv) Suppose g is a uniformly continuous function on F and that f € H”
is bounded on F. Then there exist polynomials p, (v =1,2,...) such
that p, — f in HP metric and lim, _, ., |g—p,|r=|g—f]F.

2. Proof of the Theorem

We prefer to begin by showing the following proposition.

PROPOSITION. Let Y be any of the metric spaces HP(0< p<1) or Nt
and let F be a relatively closed subset of D. If almost every point of FND
is a nontangential limit of a sequence of points of F, then F is a Farrell set
forY.

Proof. Let f be any function belonging to Y whose restriction f |z to F is
bounded. Let f=B-G be the inner-outer factorization of f, G being its
outer part

2 it
3) G(z) =exp( = S € *Z (n)dt), zeD,
2w Jo ell—z

where u(¢) =log| f(e”)| e L'(T). We cut off the function u(#) defining
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(4) u,(t)=minfu(?),K,}, n=12,...,

where K, are positive constants and K,, — oo, and let G,, be an outer function
whose modulus on T is u,(¢); that is,

N 27 it+
Gn(Z)ze“"nexp(l S ¢ zu,,(t)dt),

2w Jo ell—
z e D. It is not hard to show that {G,};’- is a sequence in H “(D) satisfying
(@) <1 for any zeD;
) G(z)
G,(0
Gn((G)) —~1 a.e.dfonT.

Furthermore, if we choose the constants «,, and K, conveniently, it can be
shown that

G
(6) E”— —1 in H*norm, as n— o

(see [6, p. 85] for details). As |G,(z)|<|G(z)|, we can suppose
(7 |G, (e®)| =|G(e?)|, a.e. db.

Now, the inequality |G,(0) —G(8)| =|G(9)||1—-G,(6)/G(8)| < 2|G(0)| and
the dominated convergence theorem prove that G, — G in the H” metric if
Y = H? (any p), while if Y=N7 the inequality

Log(1+|G,(0)—G(6)|) =Log(1+|G,(0)]) +Log(1+|G(0)])
<2Log(1+|G(6)])

leads to G, — G in the p-metric. Next, we define the functions f, =B-G,,
n=1,2,.... According to the properties above for the G,’s, it is clear that
there exists f,e H*(D), |fule=|flr, [/2(z)|=|f(2)|, z€D, n=1,2,...,
such that f, converge to f in the Y-metric, and, in particular, pointwise on
D. Moreover, since f is bounded on F, we get sup, | /| =|.f|r- In the next
step, we shall use the geometric condition imposed on F in the hypothesis
and, in order to be more clear, we regard two cases: Y=H? and Y=N".
First, we suppose f € H”. Since F is a Farrell set for H (D) with the bound-
edly pointwise convergence topology [9], each f, can be approximated by a
sequence {q,};- of polynomials satisfying

q,(z) = fu(z), v—>o, anyzeD;
(8) la|e=<|/ule (r=1,2,...);
lalr=1fulr (»=1,2,...);

and taking a subsequence if necessary, we can even suppose

€) suplg,'|r= lim |g)'|r =] /ulF,

y — 00

and g7 (%) - f,(e’%) a.e. df on T, as v — . So, the second estimation in (8)
and dominated convergence theorem lead to gq,' — f,, as v — o, in the H?
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metric. Now, if we fix an arbitrary positive integer » and f, is such that
|f—/ful%=1/2n, and for this such f,, we choose a polynomial g =p, sat-
isfying | f, —pu|5 <1/2n, we can then find a sequence of polynomials con-
verging to f in H” metric, with lim,, _, | p,|r=|f|F by (8) and (9).

If Y=N1, we can do exactly the same we did in the case before, even
being able to approximate each f, by polynomials (and boundedly on F) in
any H” metric (0 < p < o). Here the hypothesis on F and results in [8] and
[7] have been used again. The proof is now complete. O

REMARK. With the notation as in the above proof, assume f admits con-
tinuous extension to T\F. Let V denote a compact annulus centered at a
point of T and assume VNT C (T \F) UF,, where F, denotes the interior of
FNT relative to T.

In this special situation we observe that | f|,np <o, and we claim that
the approximant polynomials p, can be chosen to satisfy |p,|ynp <K, with
K independent of n. This additional property of {p,} will be crucial at a
later stage.

To justify the claim, we first remark that the functions f,=B-G, con-
structed above will extend continuously to (T\F)NV if n is large enough.
Also, | fulvap = |flvap by construction. So fix # large, and put H=f,.
Given € > 0, we choose a smooth function ¢ with 0 = ¢ <1, ¢ =11in a neigh-
bourhood of F, ¢ =0 near TNV \F, and

(pH)(2)|<|H|p+e if ze (VND)\F.

Since H is continuous on (VND)\F, this is possible. Since the implication
(iii) = (iv) in the Theorem holds if p = o« (see [11]), we may apply it to the
relatively closed subset F U(VND) with the function # defined as ¥ =0 on
Fand u=(1—¢)H on (VWND)\F. Then we can find polynomials p, con-
verging to H pointwise boundedly in D and in addition satisfying

|py—ulruwnp) = |H—ulpuwnpy asv— .
But |H—u|rywnp)<|H|r+e=<|flr+e¢, and since |u|<|H| on VND, it
follows that |p,|<|flr+e€e+|f|vap on ¥ND, independently of v and the
number # used to define H as B-G,,.

The proposition above shows that (iii) = (i). Trivially (iv) = (i) (take g =0)
and (iv) = (ii) (take g = f| r). To conclude the proof of the theorem, we shall
develop the following steps. First, we show that (ii) = (iii), then (iii) = (iv),
and finally (i) = (ii).

(ii) = (iii): Suppose (iii) fails. Using Detraz’s construction [2], there exists
a function f € H* not identically zero such that f | is uniformly continuous
and such that f(z) -0 as z—- ¢eB, zeF, where BCFNT and m(B) >0.
Let {p,} be a sequence of polynomials converging to f in H” metric, and
uniformly on . We can assume that f(0) # 0. Since p,(0) — f(0), Jensen in-
equality leads to a contradiction as follows:

Loglp,,(0)|sgT Loglp,,ldmss +

. sT\B v=1,2,..).
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Since p, — f in the Nt metric, p, converge to f in measure, and by passing
to a subsequence if necessary, p, — f almost everywhere with respect to m
on T. Then

L d 55 Log*|p,|d
&T\B og|p,|dm=) ' Log*|p,|dm

< Log*|p,— K Log* S Log 2
L\B og*|p,—fl+) Log*lfI+] Log

and lim, _, , {1\ p Log|p,|dm <. On the other hand, |5 Log|p,|— —o0, as
v — oo, and f(0) should vanish.

(iii) = (iv): We use an idea from [12]. Suppose now F satisfies the geomet-
rical condition (iii). By the Proposition, F must be a Farrell set. To show
that F even satisfies the formally stronger condition in (iv), we apply the
simple but useful observation that FN A is a Farrell set whenever A is a disc
and FNA#Q.

Given f and g as in (iv), we choose a finite covering of F by discs A,, 4,,

., Axn such that

(@) z,2’€Aj=|g(z)—g(z’)|<e, 1<j=<N.

(b) If {eTNAA; for some j, then f has a nontangential limit at {.

(c) If {eTNAaA; for some j, then either { ¢ F or { belongs to the interior

Fy of FNT relative to T.
Such a choice is possible by Fatou’s theorem. Let £ =J JN=1 dA;. In the proof
of (iii) = (iv) we shall assume that f is bounded in ¥ND for some neigh-
bourhood V of E. We shall justify this assumption at the end of the proof.

Let us select constants u; =g(z;) for some fixed points z;€Aj, 1=<j<N.
Since FNA; is a Farrell set for H” we choose polynomials pi such that

; 1
(=) =pilp<+ and |pflrns,<|f~ e+
forn=1,2,...and 1<j<N. Then we define

pl4u; in A4,
(10) g.=1 pi+uw; in ANU{ZI A, j=2,3,..,N

fn in D\Ullfv=l Ak’
where f,(z)=f((1—1/n)z), n=1,2,.... Since f is locally bounded near E,
we can arrange it so that g, has the same property with a bound independent

of n. This is possible in light of the remark following the Proposition above.
We observe that

I o N¥I
ay oo |l —rPas= =
and

1
(12) lan—glr=|/— g||F+2€+—

since |[g—u;|<e on FNA;. The functions g, may be discontinuous on E,
but as #n increases the situation gets better, since g, — f uniformly on com-
pact subsets of D.
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To modify g,,, we use a well-known idea from rational approximation. If
h is a locally integrable function and ¢ is a continuously differentiable func-
tion with compact support, the Vitushkin operator is defined by
h(z)—h({) de

dxdy, z=x+iy,
¢ z—¢ oz X% Y

and by the Green formula we also have

T, )=+

_ 1 h(z) d¢
T, )=o)~ || =5 52 axay.
We refer to [5] for more details and a proof of the following useful identity:
d oh
1 — —
(13) az(720(’1)) e

which is also valid when 4/97 is taken in the sense of distributions. Now
we select a finite covering of E by discs {Dy} and functions ¢, € C{(Dy)
such that

(14) Y ¢ =1 near E.
k

Let us numerate {D;} such that D, CD for 1<k <k, If k> ko, DLNT #0
and we assume then that D, is centered at some {; € E. The radius é; of D;
will be chosen so small that g,, is bounded on D,, independently of » and
k> kgy, and we also require that

<2 itk>k,.

co—ak

ek

0z
If g is any of the functions g, in (10) or f, we assume g has been extended
to C by the equation g(1/Z7) =g(z), z € D. We can finally define

(15)

ko
(16) Gi=0—3 T, (@n=1)— 3 T, (@u—No),

k=1 k>kg
where A\, is the nontangential limit of f at the center {; of D,. This limit
exists inside any cone I'y terminating at {;. Hence the area of D, ND\I'}
compared to D, NI, can be made as small as we please, simply by selecting
I'; properly.

Since f= M\, in I'yND, and g, - f as n — o, we can choose the discs Dy

so small that
<

+e€

17) 2 T, (@n—N)| = | 2 or(@n— M)

k>k0

if n is sufficiently large. This follows from the uniform boundedness of {gq,}
in D, and estimating the integrals

101 =M Oor

using Holder inequality and the above considerations about f, Ay, and T%.
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If k < ky then g,, — f uniformly on D;.. So by increasing » further we have

(19) 2 Tgak(Qn —f)(g.) =€

k=< ko
uniformly in ¢.
Let us now estimate |§, —g|r for n large. In FND; (k> k() we have

|q~n_g| = lqn_ﬂok(qn_)\k)_gl'l‘ze
<|(1— ) (qn—8)|+| o\ — 8) | +2¢
<|1—ei|(|f—glr+2e+n"")+|ok||f—2|r+3e.

In the last inequality we used (12). We also used that |\, —g|r<|f—g|r+e.
This last inequality holds since | f(e"’) —g(e*?)| < | f—g| r almost everywhere
on FNT with respect to linear measure m. Hence if the interior of FNT
with respect to T is nonempty, we may assume {A;} has been selected so
that |g—\;| <|.f—g|F at the center {; of D;. We conclude that |G, —f|r=<
|f—g| s+ 6€ if n is large enough. It is also clear that we can get

(20) |, 1d.—aul” a0

as small as we please by choosing {D,} carefully.

It remains to prove that g, can be uniformly approximated on D by poly-
nomials. Recall that the T, operator preserves continuity and analyticity [5].
Therefore G, is continuous on D\ E. By (13) it follows that

a .
b—z:(qn)=0 near E,

and hence §, is continuous in {z:|z|<1} and analytic in D. This completes
the proof that (iii) = (iv), except that we must justify our assumption about
f being bounded near E. We have the following.

LEMMA. Let F be a relatively closed subset of D and assume fe H? is
bounded on F. Then there are f,e HP (n=1,2,...) such that f, - f in H?,
Jfn— f uniformly on F, and each f,, extends to be analytic across T\F.

Proof. 1t is sufficient to prove this if p > 1. The general case can be reduced
to this situation since any H”-function is the sum of two nonvanishing H?-
functions [3, p. 79].

Let f be given as above. Using Lemma 3 of [10], we can find g, € H” such
that | f—g,|<1/n on FU{z:|z|<1-1/n}, g, is analytic across T \F, and
lgnlp = Cplf|p» where C, depends only on p.

In particular, g, — f weakly in H”. Since p > 1, H? is reflexive, and hence
we can obtain convex combinations {f,} from {g,} such that the Lemma
holds.

(i) = (ii): Finally, let f be a function in H? and let f |z be uniformly con-
tinuous on F, and suppose (i) holds. In order to approximate f in H” and
uniformly on F by polynomials, it is enough to replace g by f in proving the
implication above. This completes the proof of the theorem. O
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3. Remarks

Looking at the proof of the theorem, one notes that it holds even for the
Smirnov class N*. Hence, we can say that the geometrical condition in (iii)
is sufficient in order for F to be a Farrell set or a Mergelyan set for H” or
N7 with its weak topologies.
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