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0. Introduction

Let G be a connected, simply connected, completely solvable Lie group with
Lie algebra g. For G nilpotent, Pukanszky in [6] shows that there is an
Ad*(G)-invariant Zariski open subset @ of g* in which all Ad*(G)-orbits
have the same dimension and in which there is an algebraic subset ¥ which
is a cross-section for the orbits. Moreover, there is a subspace V of g* and
a computable, rational, nonsingular map ©: X X V' — Q such that, for each
[eX, O(,-) is a polynomial map whose graph is the orbit of {. In fact,
Pukanszky’s technique yields a layering of g* by a collection of algebraic
subsets {{2;} having a natural total ordering such that the maximal subset is
( and such that in each {; one can construct objects X;, V;, and ©; as de-
scribed above. In this way a semi-algebraic cross-section for all the Ad*(G)-
orbits is obtained. It should be emphasized that these constructions are quite
explicit and depend only on the choice of a Jordan-Holder basis for g. The
ordering of the layers and the computability of the cross-section in each layer
makes this result particularly useful (see, e.g., [1]). For solvable groups,
the layering {Q;} of g* has itself been useful, but the space of co-adjoint
orbits in each layer is more complex. For a given layer 2, one cannot ex-
pect to obtain objects analogous to I, ¥V, and © above. In this paper we
show that, for G completely solvable, there is a refinement of the layering
{Q;} such that in each of the refined layers one can obtain computable ob-
jects analogous to X, V, and © above. This refined layering also has a nice
ordering, and the layers are algebraic sets. More specifically, we prove the
following.

THEOREM. Let G be a connected, simply connected, completely solvable
Lie group with Lie algebra g, andlet g=g,08,_12 - D go=(0) be a Jor-
dan-Holder sequence of ideals in g. Choose a basis X,,X5,...,X, for g
such that X\, X,, ..., X; span g;, and let e,, e,, ..., e, be the dual basis in g*.
Then there is a finite computable layering (i.e., partition) @ of g* with the
Jollowing properties:
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(a) each Qe @ is G-invariant and algebraic;

(b) foragiven Q€ @, the dimension of the co-adjoint orbits in Q are con-
stant, and there are indices |={j, < j,<:--<jgz} (d=dimGl, e Q)
such that for each 1€, j={j:g;+g(1)#g;_;+g(1)}; and

(¢) thereisatotal ordering 0 <Qy < --- <Q, of @ such that U{Q,:r'<r}
is Zariski-open in g* (1<r < p).

Given ) € @ with associated index sequence i, let
Vsiqy=span{e;: jej} and Vrg =spanfe;:j¢il.

There is associated to Q a subset k™ ={k; <k,<---<k;} of {1,2,...,d},
and for each k e k™ there is a computable real-valued rational function by
on g* such that

(d) by is nonsingular, nonvanishing, and semi-invariant on Q;
(e) if Vi~ =spanfe;, : kek™}, then the set

r={le(Vrg+Vi-)NQ: b (1) =x1}
is a cross-section for the co-adjoint orbits in Q.

For each i€ (1, -1}/, set Q;={1eQ: b (1)i;>0, 1=s=<t}, ;={leL:
ka(I)=is}s and VT(j),i= {IE VT(i): I(Xlk )is>0]' Then

(f) for each i there is an analytic diffeomorphism ©;: ;X Vr;. ;i —Q;
such that, for each 1€;, ©;(1, -) is an analytic map whose graph is
the orbit of 1. If 1€ Q; then 67 '(1)=(I",1"), where I is the unique
point in £;NAd*(G)1, and where 1" is defined by 1"(X; ) = b (1) ' if
kek™ and by "(X; )=U(X;) if k¢ k™.

The notation here follows to some extent that of Theorem 1 of [1], where
Pukanszky’s results for the nilpotent case are summarized. The above theo-
rem can, in fact, be regarded as a generalization of [I, Thm. 1].

In the first section of this paper we define the partition @ and prove that it
has the properties described in parts (a), (b), and (c) of the above theorem.
In the second section, a proposition is proved which is precisely analogous
to Proposition 1.1 in Chapter II of [6]. The content of this proposition may
be summed up by the statement: For each layer 2 =) Q;, there are comput-
able analytic functions P;: Vy;, ; X Q; — {; which are G-invariant in the sec-
ond factor. The remaining parts of the theorem then follow from the prop-
osition.

1. A Layering of g*

Let X;, X5, ..., X, be a basis of g such that g; =span{X,, X5, ..., X;} is an
ideal, 1<i<n. Let ¢; =X;*, 1 <i=<n, be the dual basis in g* and let V; =
spanfe; ,...,e,} and W;=spanfe,,...,e;}, 1<i<n. Let w;: g*—> W, the
projection parallel to V;. For [e g* and X € g, let [ X, [] =ad*X (I); we denote
the co-adjoint action of G on g* multiplicatively. For eachi=1, 2, ..., n, let
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v; € g* be the root corresponding to e;, V;. Let C; =kervy;, 1 <i=<n. Given
[eg* andforeachi=1,2,..., n, consider the equivalence relation on the line
7; (1) +Re; induced by the quotient space g*/G. It is well known that there
are essentially only three types of such relations. The line either (0) meets
each orbit in at most one point, (1) is contained in a single orbit, or (2) meets
exactly three orbits: one orbit at a single point and the other two in open
“half-lines.” For any s € G, w;(sl)+Re; has the same equivalence relation
type as 7; (1) +Re;. We wish to define G-invariant layers in which, for each
i, the equivalence relation type of =;(I)+Re; is “constant.” To this end we
define, for eachi=1,2,...,n and [ € g*, the “type” 7;(I) of [ at i as follows:

7:(1)=0, if vXeg and VteR, [X,[+1te;]#e; mod(V});
7;(I)=1, if 3X e C,; such that [ X, []=¢; mod(V]);
7;(1)=2,if 3X eg, t € R such that [ X, [+te;] =¢; mod(V;) but ¢ (1) #1.

It can be seen (in fact, it follows from the sequel) that 7; (1) =0 (resp. 1, 2) if
and only if 7; ([) 4+ Re; has equivalence relation type (0) (resp. (1), (2)). Note
also that 7; (1) =0 implies dim(7; (G[)) = dim(m;_{(G1)), while 7;([) =1 im-
plies dim(7; (GI)) =dim(x; _(G()) +1.

Foreachleg*andl=<j=<n,letL;(I)={Xeg: [X,[]=0mod(V;)}, and let
fr=1/:L;(1)#L;_1(1)}. It is easily seen that jy={(;: g; +g(I) # g;_; +g(1)},
where g(I) =log(Stabs(1)). Let J={j;: e g*}, and for each jeJ let Q;=
{leg*:ji=1}. Asis well known, each () is a G-invariant algebraic set; welet
J have the total ordering as defined in [3], where it is shown that there are
real nonnegative semi-invariant polynomials {Q;: j € J} such that

We now define a partition of each {; into G-invariant algebraic sets .

L@tiGJ,i#ﬂ, and writei= [j1<j2< ve <jd}' Let IGQi. Set i1=j1, h]=
h(1)=L; (1), and let j(i;) be the smallest integer j such that g;+h; #h;.
Then it is easily seen that j(i;) >i; and j(i;) €j. Let i, =min(j\{i;, j({})}),
let hy=hy(1)={Xe€h;: ker([X,1]) Dgi,Nh}, and let j(i,) be the smallest
integer j such that (g;NhA;)+hA,# h,. Then it is easily seen that j(i,) €],
J(iy)>i,, and j(iy) & {i;, i, j(i1)]. Continuing in this way we obtain indices
{(1<iz<---<igp} and {j(i1), j(i2)s ..., JUgp)}, With i, <j(iy), 1<k=
d/2, and j={i,, j(iy): 1=k =<d/2}. Each h; is a subalgebra of g of codi-
mension k, and A/, is the Vergne polarization at I. (The detailed proofs of
these facts may be found in [2], Lemma 3.2] for the nilpotent case; the proofs
carry over verbatim to the completely solvable case.) We refer to this se-
quence of subalgebras #;Dh, D --- D hy/, as the polarizing sequence for [
(relative to the Jordan-Holder sequence (g;}). We denote by a([) the d-
tuple (iy,i2,--.58q/2, J(i1), J(i2), ..., j(ias2)); it is easily seen that, for each
leg*andse G, a(l)=a(sl). Let A;={a(l): [e )} and, for each a € A;, let
Q,={1€9: a(l)=«}. In [2, Prop. 3.3], it is shown that for each j thereis a
total ordering of A; [in fact, it is the lexographic ordering on the d/2-tuples
(J (1), j(i2), .., j(igs2))], and for each o € A4; a polynomial function P, on
g*, such that
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Qaz{IEQi:Pa'(I)=O’ Ol’<0t, Pa(I)7£O}’

in particular, each Q, is a G-invariant algebraic subset of ;. The set {a:
a € Aj, jeJ} then has a total ordering —< defined as follows: If a € A;
and a’e Ay, then a —< o’ if | <f’, or if | =}, a < a’. Note that U{Q,:
a’—< a} is a Zariski-open subset of g* [Let a € 4;; then U{Q,: o' —<a}=
{12 O (D+IQ{N(X - <o Pur(1))]# 03]

LEMMA 1.1. Let jeJ and o€ A;. Then there are rational functions r;:
Q,— g, JE€i, such that for each jeiand 1€ Q,, [r;(1),1]=¢; mod(V)).

REMARK. This result is more or less well known. The functions r; were
considered by Pukanszky in [6] in the nilpotent case. As their role is neces-
sarily more explicit in the completely solvable case, we give a constructive
proof.

Proof. First we inductively define elements Y, (1), X3 ([) of g 1<k =<d/2) for
€ Q, in the following way. Fix [€ 2,, and let 2y D h; D -+ D hy/; be the induc-
ing sequence for [. Set Yi(1) = X; and X(l)= Xitip- Then I([X (1), Y,(1)]) #
0. Assume that £ > 1, and that Y;([), ..., Y;_;(I) and X;(1), ..., Xx_{(I) have
been defined such that, foreachr (1=r=<k—1), Y, (I)eg; Nh,_;and X, (1) e
(gj(,-r)ﬂhr_l)\ h,-, and such that

(XD, X (DD =1([Y(D), Y (D) =0 1=r,s<k-1
and
([X,(1), Y,(1)])#0 if and only if r=s.
Define, for any X e g,
¢, (1, X) =1([X, (D), X ])/ULX, (1), Y. (D]),

d (1, X) =Y, (), XD/UX, (D), Y(D]D).

Set

k-1 k—1
H(D=X,— 2 ¢ (LX) Y, (D+ 3 d(1, X)X,
r=1 r=1

k—1 k—1
X0 =Xj49= 3 e X)) Yo(D+ B dr(l, Xji) X(D.
r= r=

It follows from the induction hypothesis that, for 1 <r<k-—1,

([ X% (1), X (D) =1([X (D), Y(D)]) =0,
and
([ Y (D), X (D)) = U[Yx(1), Y, (D]) =0.
Hence, by construction of the inducing sequence, X, (1) and Y, (1) belong to

hy 1. Now we claim that Y (1) € g;, . For this we need to show that, if j(i,) >
iy for some r <k, then d,,(1, X;)=0. So suppose that j(i,) > i; for some
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r < k. By the hypothesis we have g = h,_{+span { X ([}, X(I), ..., X, (D)},
and {X;(0), X5(1), ..., X,_1(1)} are linearly independent modulo 4, _;. Hence
we have W e h,_; and unique constants ¢y, c,, ..., ¢,_; such that

Xik= W+C1X1([)+02X2(I)+ s +C,-_1X,-_1([).

It also follows from the definition of j(i,), j(i,), ..., that ¢, =0 if j(i5) >i.
[For suppose this is false and choose the smallest s such that j(i;) > i} and
¢, #0. Solving for X,(I) in the above equation then shows that X;(I)=
Y+ W', where Yeg;, Nhy,_; and W’e h;. Y ¢ hs because X (1) ¢ h;, and
hence (gi, N hs_,) + hs # hs. But by definition, j(i;) is the smallest index j with
the property that (g; N A,_y)+ hs # kg, a contradiction.] Thus We g; Nh,_;.
Now (by definition of j(i,) and h,) We h,, and by the induction hypoth-
esis Y,(I) € gi,Nh,_,. Hence [([W, Y,(1)]) = 0. But (also by the induction hy-
pothesis) [([X;([), Y,(1})]) =0, 1 <s <r—1, and thus we have [([X;,, Y, ([)]) =
0 and d,(1, X;,) =0. A similar argument shows that X, (1) € g;(,). To sumup
the above, we have shown that Y, (1) e g, Nh;_; and X (1) € gj(ip) N As—;-
Hence, by definition of j(i;) we have [([X (1), Y, ([)]) #0.

We now define the r; (1): Set r; (1) = — X3 (1)/1([ X, (1), Y (1)]) if j = if and
set r; (1) = Y (/U X (1), i (D) if j=j(ix), 1<k =d/2. It follows from
the above that, for each j e}, I([X;, r;(1)]) =0, i <j, and ([ X}, r;(1)]) =1,
and hence that [r;(1),[]1=e; mod(V}), j €. The proof is finished. O]

REMARK. The formulas for X; (1) and Y, () show that, for each k=1,2,
...,d/2, the function on Q, given by

[ (X, (D), YI(DDIUX(D), Yo(D]) -« WX (D), Y (D)

extends to a polynomial function on Q;. If P, , denotes this function, then
the polynomials P, are given by

P, (1) =Py (1) P, 2(1) -+ Py g/2(1)
for each o € A4;.

Fix o = (i1, i3, ...y igs2, J(i1), S (i2), ..., J(igs2)). The functions 7; may not be
constant on Q,; note, however, that 7;(,)(I) =1 (since iy <j(ix)) and that
7, (I)=1or 2, 1<=k=d/2. Lemma 1.2 and Proposition 1.3 will show that
the subsets of @, on which the functions 7; are constant are algebraic sub-
sets of Q.

LEMMA 1.2. Let 1€Q,, and let hy D hy D --- D hg/, be the polarizing se-
quence for 1. Then 7;, (1) =2 if and only if

(8jip N1+ Ci, # (8jiy—1Nhx 1)+ C;, .

Proaof. Suppose that (&aip) Nhe_q)+ Cik = (g,-(,-k)_l Nh_p)+ Cik' Then
Xk (1)=X+Y, where X e C;, and Y € gj(i,)—1MN Ax—,. By definition of j (i),
Y € b, and thus X € h;_,\ h,. Now the element
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k—1
X'=X- 2% ¢(1,X)Y. ()

r=1
belongs to L;,_1(I)\ L; (1), and since i, <i} (1=r<k-1), X’'eC;,. Thus
7i, (1) # 2.

Suppose that (g;g,) N Ak—1) + Ci, # (gjiy)—1N hg—y) + Ci,.. We claim that

CiyNhy_; = hy. Assume that C;, N Ay, _# hy. Let j’ be the smallest integer
J such that g;NA;_;NC;, is not contained in /4, and let

X'e(gj Nh_NCip)\ .

By definition of j(i;) we have j’=j(i;), and by the hypothesis j’'# j(iz).
Now [X’, Y, (1)] € gi,—1Nht_q; hence, by definition of iy,

0 =1([Xk (D), [X", Y (D]]) = (([[X, (1), X', Yy (D) +U([X", [Xi (1), Yie(T)]D).

But [X,(),X']e C,-kﬂgj(,-k)ﬂhk_l, and h, D C,-kﬂgj(,-k)ﬂhknl since j'>
J(g). Thus [ X, (1), X’] € hy and so [([[ X (1), X'], Y, (1)]) =0. Therefore (by
the above) we have [([ X', [ X (!), Y, (1)]]) =0. On the other hand, the hypoth-
esis implies that v;, (X, (1)) #0. Since [([X’, Z])=0 for all Ze hy_;Ng;, 1
(again by definition of i, and A, _,), it follows that ([ X", Y, ([)]) =0. But
this means that X'e A;, a contradiction. This proves the claim. Now sup-
pose that Xe g and [X,[]=e;, mod V. Then XeL; _,(I). But by con-
struction of 4, _; and the fact that i, _; <i;,—1, h_;DL;,_,(1). Hence X e
hi_1\ hg, and (by the above) X ¢ C;, . This proves that 7; (1) =2, and the
proof is finished. O

PROPOSITION 1.3. LetieJ, andletozeAi, o= (il,iz, seny id/z,j(il),j(iz),
ey J(iqs2)). For each 1€, 7, (1) =2 if and only if v (X, (1)) #0.

Proof. Suppose that v;, (X; (1)) #0. We claim that C;, D (gji,)—1MNAk—1).
Let X € (g —1Nhyg—1). Since 7y D gjiy—1Nhg_y,

i COULX, (1), Yy (D) =1([Xk (D), [X, Yy (D])
=U([[Xx (D), X ], Y (DD + ULX, [ X, (1), Y, (1)]]) =0,

and the claim follows. Thus Cj, D (gj(i,)-1NAx—1) + C;, and the hypothesis
implies that (g;i,)Nhx—1)+Ci, # (&g, -1N hx—1)+Ci,. Hence, by Lemma
1.2, 7;,([) = 2. The converse follows immediately from the fact that X, () e
L;, _1(D\L;, (1). This finishes the proof. Ll

We now complete the definition of the layering @. Letje J, i={/1, J2; .--» Ja}>
and let o € 4;. Consider the set &k, of all k¥ such that 7;, is not constant on
Q,. For each 1€ Q,, let k() ={k e k,: 7, ([) =2}. Let K, ={k([):[€Q,}
and, for each ke K, let

Q= {1eQy: k() =k].

For each k (1 =<k =d), set by (1) =+, (rj.(1)). By Proposition 1.3, for any
leQ,, 7;,(I)=2 if and only if b;(I)#0. Since [ - by (I) is a nonsingular
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rational function on @, it follows that, for each k € K, Q,  is an algebraic
subset of Q. Set

©={Qr: keK,, aeA,jell.

Each Q € @ is G-invariant, and the functions 7; are constant on {2. The layer-
ing @ also has the following property.

PROPOSITION 1.4. There is an ordering Q) <, < --- <Q, of @ such that,
foreach q 1<q=<p), U{Q,:1=<r=<gq} is a Zariski-open subset of g*.

Proof. Define an ordering of @ as follows. Let @ and €’ belong to @, with
Q=0, and @' =Q, . If a—<a’ then Q'<Q. Suppose that o« =ao’. We
then order K, as follows. Let r be the number of elements in k,, and let
the minimal element k; be the k,. The next r elements k, <k; < :-- <k,;;in
the ordering are the r elements of K, having r—1 terms each (taken in any
order); k, 2 <k,;3<:-- <k, are the elements having r—2 terms, and so
on. We say that 9'<Q if k’<k. This completes the definition of the total
order on .

Now, for each k €k,, there is a nonnegative real polynomial function #;
such that 7;, (1) =2 if and only if #; () #0. Set

t(D) = IT %(D).

kek

For any Q € p and @ =, ¢, let a’ be the predecessor of o and let Q~, Q™" be
nonnegative real polynomial functions whose zero sets are the complements
of Q,, Q. , respectively. Then

Q={1eQ,: 1, (1)=0, k'<k, t,,(1)#0},
and hence

U[Q“Q'SQ}:{Ieg*:Q"’(I)+Q~(I)( > t,(([)>¢0}. O

kK'=<k

2. The Collective Orbit Structure

Let G be a connected, simply connected, completely solvable Lie group with
Lie algebra g. Fix a Jordan-Holder sequence g=g,208g,-12D "+ Dgo=0,
and let X}, X5, ..., X,, be a basis of g such that span{X;, X,..., X;} =g,
l1<i<n. Let @ be the layering of g* constructed in Section 1. We shall de-
scribe the orbit structure in each layer . The following lemma proves two
crucial facts about the functions by.

LEMMA 2.1. Let Q=Q, €@, let 1€, and let j = j, € such that k k.
Then, for any A € g such that [A, 1] =e;, mod(V},), we have v;, (A) = b, ().
Moreover, for each '€ Gl such that wj, (1) =7, -1('),

[; — ! =1 :

b)) (D)
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Proof. Suppose that, for some A € g, [A4, 1] =e¢; mod(V;) and v;(A4) #
vi (ri(1)). Set B= (b (1)A—"; (A)r; (1))/(vj,(A) = by (1)). Then v, (B) =
0and [B, 1] =e;, mod(V},), contradicting the fact that k € k. This proves the
first statement of the lemma.
Let s =1;—1;, so that ["=[+se;, mod(V},). Now
e, =1r; (1), 1)) =r; (1), 11 +50r; (1)), &,]
=[r;, (1)), (1+5bi(I')e;, mod(V},),
and hence [r;, (I')/(1—sbi(1')),[]1=¢ej, mod(V},). Thus, by the first state-
ment of this lemma, we have

b (1)
bp(l)= ————
KO = ey
and so —1/b,(1)=s—1/b;(1’), which gives the result. This completes the
proof. tl

COROLLARY 2.2. Let Q=Q, (€@ and let kek. Set
pr(s) =exply; (log(s)], seG;

then by is G-semi-invariant with multiplier p’.

Proof. Let e Q2 and s € G; set A = [l.k(S)—lAd(S)rjk(I). Then [A,s]] =
uk(s)“ls([rjk(I), )= ,LLk(S)_lsejk = ej, mod(V},). Thus, by Lemma 2.1,
br(s) =7, (A) = pe (8) b (1). O

PROPOSITION 2.3. There is a G-invariant partition of g* into algebraic
sets Q such that, for each such set 1, there are n functions {P;} in d+n
real variables z,,2, ..., 24,1, {2, ..., [, and indices {j,} and {k;}, with 1<
J1<ji<<jg=nand 1<k <k,<:--<k,<n, having the following
properties:

(1) for each 1€ Q, there is an open set U=U, (XU, (X -+ XUy in R¢
such that

Gl={feg*:f=% P;(z,1)e;, z€ U},

where Uy (=R if k ¢ ks} and Uy, (= (—,0) or (0, +) if k € {k;};
(2 Pj,(z,1)=2z4(21,225 .-, 2k—1), and if k ¢ (k) then P; (z,1)=z; for
every € Q;
(3) Pj(z,1) depends only on those z; for which ji < j; and
(4) foreach z, P;(z, ) is G-invariant.

Proof. Let @ be the layering of g* define above; each ( € p is an algebraic
subset of g* (defined by explicit polynomials).

Now fix j € J, j # 0, and write j = {/y, j3, ..., Jg}. FiIXa € 4; and ke K. Let
{k;} be the set of all k& such that 7;, () =2 and [ € 2,; note that {k,} Dk. For
each [e 2 =9, ( set g, (¢,1) =exp(¢rj, (1)) with e R and 1 <k =<d, and set
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g(T, 1) =g (t;,1)gx(t2,1) - ga(t4,1), TeR
The proof of Proposition 5 in [5] shows that, for each [e Q, G = {g(T, [)I:
TeRY}, and g(T, [)I=3 Q,(T, [)e; where the Q; (1< j <n) satisfy the fol-
lowing:
(1) Qi(T,1)=0 (4, t,..., tx), where k is such that j, < j < ji 413
@) Qj (T, )=t F(by(1)ty) exp[Li(T, )]+ Sx (T, 1), where F(x) =
(e*—1)/x, Ly (T,1) is a linear form in ¢, ¢,, ..., t,_; (Li(T,[)=0),
and Si(7, 1) depends only on ¢, 5, ..., t;_.
Moreover, L, (T, 1) depends only on m;, _1([}, and S;(7 1) is of the form

Si(T, 1) =exp[ L (T, D11 + R (T, 1),

where R (7, 1) depends only on j, _((l) and R\(7,1)=0.
Define zy, 23, ..., 24 and P;(z,1), 1< j<n, as follows. For each &, if k ¢ k
set 2 = Q;, (T, 1), and if k € k then

_ explbp (1) 2] exp[Li (T, 1)]
L= .
by (1)
The properties of the functions Q; above allow us to solve for each #; in

terms of [ and the variables zy, z,, ..., Z;; We write ¢, = ¢, (2, [) and substi-
tute into Qy to obtain P;, Q, to obtain P,, and so on. Thus

Pj(z9 I) :Qj(()ol(zla I)’ @2(Z1’ <2 I)’ ceey (pj(zls <25 "-szjs I)s I):

and ¢;(z, [) depends only on 7;([). In this way we obtain analytic functions
Py, P,, ..., P, satisfying the first three conditions above.
It remains to show that P;(z, -) is G-invariant. Fix

s€eG and z=(21,22,..-,24)-

Let '=2 P;(z,1)e; and ["=3 P;(z, s{)e;; we show that, for each j, m;(I')=
w;(1”) by induction on j. Suppose that j =1; we consider cases (1) 1 ¢ j and
2) 1€j.

Case (1). In this case Pi(z,1) = Pi(z,s]) =[; by construction; hence
m (") =m([") =1,.

Case (2). Here j;=1. If 1¢ {k,} then Py(z, () = P(z,s!) =z;; thus 7 ('} =
m(1”). Suppose that 1 € {k;}. By the form of the function Q,(7, [) we have
that, for each fe G,

1
Pi(z,f)=z1+f1— ——.
‘ G
We now apply Lemma 2.1 to obtain that P(z, [) = P;(z, sI); hence = (([') =
m([").
Now suppose that j > 1 and that «; _ (') = 7;_;({"). We regard W;_, as a
subspace of W}, so that W; = W;_,+Re;. We again consider the two cases:

MJjeis () jei.
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Case (1). Since j ¢ i, 7;(I') =7;(1") =0. Because =;(I’) and 7;(I") lie in
the same G-orbit in W;, and since m;_;(I’) = m;_(1"), we have =;(l’) =
GIﬂ(vrj_l(I’)+Rej)=GIﬂ(7rj_1(I”)+Rej)=7rj(I”).

Case (2). Let j = ji; first suppose that & ¢ {k;}. Then P;, (z,1) = P;, (2, s1) =
zy so that 7;, (I') = m;_ (") + 2 €, = ;1 (1") + 24 €j, = 7;, (1”). Suppose then
that ke{k;}. Wehave l'=g(T’,[)[and ("= g(T ", sl)s], forsome 7', T"€e RY,
Now set go=g;(¢{,1)&2(¢3,1) +-- gx—1(ti—1, 1) and g =g (¢;,1), and define
g6 and g7 similarly, so that ["=gg gzl and [” = g{grsl. Recalling the defini-
tion of p; in Corollary 2.2, one sees by the proof of [5, Prop. 5] that u;(gg) =
exp[Li(T’,1)] and ux(gg) =exp[Li(T",s(}]. Hence, by Corollary 2.2,

1 explbp(D)ti] exp[Li(T", 1)] _

" be(l) bi(D) “
_ explbi(s) £l exp[L (T, sD] _ 1
by (s) T b(17)

But by Lemma 2.1, [}, —1/b,(1") =1}, —1/b; (1"), since I’ and [” lie in the
same orbit. Thus [}, =1}, and =;, (I') = w; (1”). This finishes the proof. []

We now describe a cross-section in each layer. Fix Qe @, and fix @ =Q,,
with a={iy, i3, ...,ig/2, J (i), J(i2), ..., j(iqs2)} and with the range of a=
i=1{J1,J25...,Ja}. For each j, the “type” 7; at j is constant on {2, and if 7; =2
then j =i, for some k. Let k™ = {k;) = [k: 7;,, =2]. Set

Vsiy=spante;: je€j}, Vri=spanle;: j & j}, Vi~ =spanfe; :kek™}.

Let ¢ be the number of elements in k™. For each i = (i, i, ..., {,) € {—1,1},
let Q;=Q, ¢ ;i={leQ:i;eU,, 1=s=<t}; wehave 2 =U Q; and Q;NQ; =0
if i#i’. Let Uy=U; (XU, (X--- XUy, where [€Q;. Define z(i)e R’ by
z(D)x=0if k¢ k™ and by z(i), =i, if k=k,e k™. Define

Li=X,i=lleg*: 1=XP;i(z(i), f)e;, fe Q.

By Proposition 2.3, X; is a cross-section for the co-adjoint orbits in ;.
From the equations (1) above it follows that U, =[x (gl): g€ G}, 1=s=<
t. Hence Q; = {le Q: sgn(b (1)) =i, ksek™} and

;i ={le (Vg + Vi-)NQ,: for each ks e k™, by (1) =ig);

thus ; is an open, semi-algebraic subset of {2, and X; is an algebraic subset.
The cross-section X =J ; for Q can be described as:

r={le (Vrg+Vi-)NQ,: for each ke k™, b (1) = x1}.
Finally, let Vs, ; ={Zzr€j,: 2= (21,22, .--,24) € U;}; the above results can
be summarized as follows.

THEOREM 2.3. Let G be a connected, simply connected, completely solv-
able Lie group with Lie algebra g, andlet g=g,28,_1D - Dgy=(0) bea
Jordan-Holder sequence of ideals in g. Choose a basis X, X3, ..., X, for g
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such that X,, X5, ..., X; span g;, and let e, e,, ..., e, be the dual basis in g*.
Then there is a finite computable layering @ of g* with the following prop-
erties:

(a) each Qe @ is G-invariant;

(b) for a given Qe @, the dimension of the co-adjoint orbits in Q is
constant, and 7;(1) is constant on  for 1< j <n;

(¢) thereisatotal ordering 1), <Q, < --- <Q,of @ such that U{Q,.:r'<r}
is Zariski-open in g*, 1<r <p.

Given Q € @ with associated index sequence {j, < j,<---<jz}=i (1€®),
let \“ =tk <ky<---<kj=1{k:7;, =2}. For each k € k™ there is a real-
valued rational function b, on g* such that

(d) by is nonsingular, nonvanishing, and semi-invariant on Q with
multiplier p;';

(e) if Vi~ =spanle;,:kek™}, then the set T = {l e (Vg + Vi-)NQ:
b, (1) = x1} is a cross-section for the co-adjoint orbits in ).

For each ie{l, -1}, set Q;={leQ: b (1)i;>0, 1=s=<t}, £;=ENQ =
(1€ X: b () =i, 1<s =1}, and Vi, = (L€ Vg [(X;, )iy > 0}. Then

(f) for each i there is an analytic diffeomorphism ©;: L; X Vi = @
such that, for each 1€};, ©;(1, -) is an analytic map whose graph is
the orbit of \. If 1€ Q; then ©;7 (1) =(1’,1"), where ' is the unique
point in X;NAJ*(G)|, and where 1" is defined by 1"(X;,) = b ()]
ifkek™ and by I"(X,)=U(X,) if k¢ k™.

We are currently investigating the extension of these ideas in two directions.
Much of the above can be carried over to the case of exponential groups,
but there are still some complications to be worked out. Once these are
handled, the general solvable case should present few additional difficulties.
Secondly, we are considering cross-sections of general double-coset spaces
H\G/K (H and X closed, connected) for G solvable. Progress has been
made in this direction as well. In [4, Prop. A.2] it is shown that for G nil-
potent there is a layering of G into finitely many algebraic sets, and a map
c: G —» G which is rational on each layer and whose image is a cross-section
for the H-K double cosets.
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