Spectral Invariants of CR Manifolds

NANCY K. STANTON

The trace of the heat semigroup for the Laplacian on a Riemannian mani-
fold has an asymptotic expansion in powers of the time ¢ for small positive
t whose coefficients are integrals of local Riemannian invariants (see [1], [&],
and [13]). Parker and Rosenberg [14] and Branson and @rsted [5] showed
that in the analogous expansion for the conformal Laplacian, certain coef-
ficients give conformal invariants — the coefficient of #°is a global conformal
invariant and the coefficient of # ~!is the integral of a local conformal invari-
ant of weight —2.

Analogues of the Riemannian result hold for the sublaplacian [, acting
on forms of suitable degree on a compact strictly pseudoconvex CR manifold
equipped with a Levi metric ([3] and [18]). In this paper we show that the
analogue of the conformal result holds for the pseudoconformal Laplacian—
the CR analogue of the conformal Laplacian—on a compact strictly pseudo-
convex CR manifold. The resulting invariants are pseudoconformal invari-
ants (i.e., CR invariants) of the manifold.

After giving the background in Section 1, we prove our first main theo-
rem —that the coefficient of ¢ is a CR invariant—in Section 2. The proof
follows the outline of the one in [14]. In Section 3 we show that the coeffi-
cient of 71 is the integral of a local CR invariant. Again the proof follows
the outline of the one in [14]. However, new complications arise because
the heat kernel for the pseudoconformal Laplacian does not have a parame-
trix with a simple form. In Section 4 we calculate the asymptotic expansion
of the trace of the heat semigroup for the pseudoconformal Laplacian (with
respect to the standard metric) on spheres and show that the invariants are 0
on spheres. In Section 5 we show that the invariants vanish on all three-
dimensional CR manifolds.
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1. Background

Let M be a compact strictly pseudoconvex CR manifold of dimension 27 +1.
The CR structure is defined by a complex rank n subbundle 7}  of the com-
plexified tangent bundle C&QTM with the properties

(1.1) Tl,onT0’1=[O}, where T0’1=TH);
(1.2) if Z and W are smooth sections of T ,, then sois [Z, W].

Let 6 be a real nonvanishing 1-form which annihilates 7} o. The Levi form
determined by 6 is the Hermitian form L, on T} o defined by

(1.3) Lo(Z, W)= —id0(Z, W).

Because M is strictly convex, Ly is definite; thus, by changing the sign of
0 if necessary, we may assume that it is positive definite. Following Webster
[20], we call (M, 0) a pseudo-hermitian manifold. There is a unique vector
field X on M satisfying

(1.4) 0(X)=1, i(X)do=0.
The 1-form 6 determines a Hermitian metric on M by
X1Tp and |X|=1;
(1.5) T),0 LTy, and conjugation is an isometry;
(Z,Wy=Lo(Z,W) for Z, WeT,,.

This metric is a Levi metric.

Let H* denote the orthogonal complement of 6 in 7*(M), so that H* is
the dual of the maximal complex tangent space H(M), and let = denote
orthogonal projection onto H*. Let

(1.6) dy=med: C°(M)— H*
and define the sublaplacian
(1.7) Ap=dyd,,.

The sublaplacian depends on both the CR structure and the choice of 1-form
6. We have the freedom to make a pseudoconformal change of pseudo-
hermitian structure, that is, to multiply @ by a positive C® function e%/. We
call e/ a pseudoconformal factor. The sublaplacian is not invariant under
pseudoconformal changes; the following lemma shows how it changes.

LEMMA 1.8. Let A, be the sublaplacian for the pseudoconformal struc-
ture § =e%/0. Then

(1.9) Ayv=e"2 (A ,v—2ndyv,dy [)).

Proof. This follows by a straightforward calculation from [11, Prop. 4.10
and Lemma 5.6]. 0
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We introduce the operator
(1.10) . D=b,A,+R,

where R is Webster’s scalar curvature [20] and b, =2 +2/n. This operator
satisfies the following conformal invariance property.

PROPOSITION 1.11 [9]. Let 8 =r%"09, where r is a positive function. The
corresponding operator D is given by the transformation rule

(1.12) Dr-'=p-1-2np,

This transformation rule is analogous to the one satisfied by the conformal
Laplacian in pseudo-Riemannian geometry. In fact, by [11, Prop. 6.1 and
Thm. 6.2], the pseudoconformal wave operator on the Fefferman bundle
over M pushes down to 2D, so Proposition 1.11 follows from the pseudo-
Riemannian result for the pseudoconformal wave operator. This proof, which
is given in [9], requires the pseudo-Riemannian result and also the Moser
normal form (which is used to prove [11, Thm. 6.2]). One can also verify
(1.12) directly, using Lemma 1.8 and the transformation rule for R [11, Prop.
5.15]. By analogy with the Riemannian case, we call D the pseudoconformal
Laplacian.
If {Z,} is a local orthonormal frame for 7 4, then

(1.13) Apyu=—3(Z,Z,+Z,Z )u+2Re Y, wg(Zg) Z u
a a,f8

where (wg*) is the connection matrix for the Tanaka-Webster connection
with respect to the dual basis {0} of 77y (see [11, Prop. 4.10]). Formula
(1.13) shows that D is uniform in the sense of {3, Def. 4.12] and satisfies
the hypotheses of [3, Thm. 5.22]. Hence, because D is bounded below, [3,
Thm. 7.30] remains true with (1, , replaced by D. Thus, if we let e D de-
note the one-parameter semigroup generated by —D and p(x, y, ¢) the ker-
nel of e~ *?, we have the following theorem.

THEOREM 1.14. Let M be a compact strictly pseudoconvex CR manifold
of dimension 2n+1 equipped with a pseudo-hermitian structure 6 and the
corresponding metric. Then

(1.15) tr(e Py ~¢—"-1 § kjt! as t >0+,
j=0

where

(1.16) kj=SMKj(x) dv(x)

and the function K; may be evaluated at x by evaluating a polynomial (de-
pending only on n and j) in the components of the curvature and torsion of
the Tanaka-Webster connection and their covariant derivatives, computed
in normal coordinates at x. In addition,
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0

(1.17) plx,x, 1)~ S K (x),

=0
The functions K;(x) and the coefficients k; depend on the CR structure and
the pseudo-hermitian structure.

2. A Global CR Invariant

If we scale the pseudo-hermitian structure § on M by a constant A2, and let
k; ) denote the constants in the asymptotic expansion (1.15) for the asso-
ciated pseudoconformal Laplacian, then

(2.1) kj’)\=>\2n+2_2jkj

by {3, (6.38) and (6.48)]. Hence, the only coeflicient in the expansion which
might be a CR invariant of M is k,,,.;. The main result of this section is that
it is.

THEOREM 2.2. Let M be a compact strictly pseudoconvex CR manifold
equipped with a pseudo-hermitian structure 0. The coefficient k, ., of t% in
the asymptotic expansion of tre ‘P is a pseudoconformal invariant of M;
that is, it is independent of the choice of 8 and depends only on the CR
structure.

The conformal analogue of this result is proved by Branson and @rsted [5,
Cor. 3.7] and Parker and Rosenberg [14, Theorem 3.1]. Our method of
proof is similar to the one in [14]. The key observation is that the construc-
tions in [3] of the kernel and parametrix for e ~*? depend smoothly on pa-
rameters. The corresponding smooth dependence in the Riemannian case
is well known (see [16, Prop. 6.1]).

Proof. Fix a positive C® function r on M and let
2.3) ¢ =r2/ng,

Let D€ denote the a_ssociated pseudoconformal Laplacian, and let kf denote
the coefficient of #/~"~! in the asymptotic expansion (1.15) of tr(e~*P%). It
suffices to show that

d

2.4 —kf =0.
( ) dE n+1 c=0
By Theorem 1.14,

n+1
2.5) tr(e~Py= 3 /7" kf+O()

ji=0
as t = 0. Hence for Res>n+1,

1 s—1 —th'd il 1 k€ €

2.6) AR G AR e ARG
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where f¢(s) is holomorphic for Re s > —1. Formula (2.6) gives a meromor-
phic continuation of the integral on the left for Res > —1. Thus

l €
2.7) k<., =Res, SO 5~V tr(e~"P*) dt.

Let p¢(x,y,t) denote the kernel of tr(e~*?‘) and let Q¢ denote the pa-
rametrix given by [3, Thm. 5.22]. The construction in [3, §5] of the leading
symbol g¢, of this parametrix depends smoothly on ¢. It follows from the
argument of [3, Thm. 4.5 and Appendix] that p¢(x, y, t) depends smoothly
on ¢, and also that

(2.8) P, x, )= 3 /7K (x) = 0N ")

j<N

uniformly in x and ¢, where K is the function in (1.16). By Theorem 1.14,
K; depends smoothly on e. Hence

d 1 . 1 d ¢
(2.99 — Res, So 5 Lir(e P dt = Res, §0 57 r — (e7'P") dt.

de e=0 de €=0
For ¢ >0,
(2.10) < 9 +Df)e—”3‘ =0.
ot
Differentiating (2.10) with respect to e and evaluating at e =0 gives
(2.11) Dr’%(% +D> (e Py =0,

where we have used the notation ° to denote the derivative evaluated at 0
and D = D°. The inverse of d/0t + D is convolution with the heat semigroup

e P, so

2.12) (e~'Py = —S:) e~ =D Pp=sD g,
Because De P and e~ 9P have smooth kernels,

(2.13) tr(e~ =92 De 5Py =tr(De ~Pe~(!=9)D),
By (2.12), (2.13), and the semigroup property,

(2.14) tr(e Py =—¢ttrDe™'P.

By (1.12),

(2.15) D¢ =r~<1+2/m ppe

SO

(2.16) D=—<l+%) logrD+Dlogr.

Because D is self-adjoint,
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(2.17) tr(D logre Py =tr(log r De ~'P).
Using (2.10), (2.16), and (2.17) in (2.14) yields

. 2
tr De ™ "P = — — tr(log r De™*P)

(2.18)
_24 tr(logre'P)
T ndt gre .
By (2.7), (2.9), (2.14), and (2.18),
- —_ 2 1 s d —tD
(2.19) ns1=—= Reso Sot - tr(logre™*P) d.
Formula (2.8) gives
(2.20) trogre-?y= 3 rf'-"—'S log r(x)K; (x) dV(x)+O(1).
Jj<n+l M
Thus, the residue in (2.19) is 0 and £, , =0. dJ

3. A Local CR Invariant

The integrand in (1.16) also scales by A>"*2~2/ under the scaling of the pseudo-
hermitian structure § by a constant A2, and the function K ;(x) satisfies

3.1 K \(x)=N"YK;(x)

[3, (6.38) and (6.48)]. In general, the functions K; do not satisfy a simple
transformation rule under pseudoconformal changes. In Theorem 3.3 we
prove that K, does. The analogous result in the conformal case was proved
by Parker and Rosenberg [14, Thm. 2.1]. The key point in their proof is that
the coefficient of #~! in the asymptotic expansion of the heat kernel on the
diagonal is, up to a constant factor, the coeflicient of the leading logarithmic
singularity of the Green’s function for the conformal Laplacian. To show this,
they use the fact that the heat kernel has a good approximation of the form

L
(3.2) (4wt) =24 kzomx,y)t",

where r is the Riemannian distance between x and y and 7 is the dimension
of the manifold, and they use error estimates for the approximation. We
are also able to identify X, with the principal logarithmic singularity of the
appropriate Green’s function. The main new difficulty which arises in doing
this is that we do not have an approximation to the kernel of e ~*? with a
simple form analogous to (3.2).

THEOREM 3.3. Let M be a compact strictly pseudoconvex CR manifold
of dimension 2n+1 equipped with a pseudo-hermitian structure 0. The co-
efficient K,(x) of t~! in the asymptotic expansion (1.17) of p(x,x,t) is a
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local pseudoconformal invariant. If the pseudo-hermitian structure is changed
to 0=r%"9, then

R (x)=r"2(x)K,(x),
R (x)dV(x)=r¥"K,(x)dV(x),

where ~ denotes quantities with respect to the pseudo-hermitian structure 8.

(3.4)

Proof. It suffices to prove the result for x € U, where U is open and U C Uj
a coordinate patch on M. Choose a local frame {Z,} for T} ¢ and write Z; =
Xj—iXptj, J=1,...,n, Xo=T. Fix coordinates on U, and for ye U] let
¥, denote the coordinates

(3.5) x=(x% ..., x")=(x%x")

on U, obtained by following the fixed coordinates by the affine map which
makes y the origin and satisfies

ad .
(3.6) i 0=Xj(0), Jj=0,...,2n.
In the terminology of [2] and (3], ¥, is the y coordinate map. For x € R2+1
t e R, we have the non-Euclidean dilations

(3.7) Ax=0x%Ax") and \-(x, 1) =2 Ax’, N20).
We let | | denote the homogeneous norm on R27*1;
(3.8) ] = [(x®)? +x414,

In U, the kernel p(x, y, t) of e~'P has an asymptotic expansion
(39) p(X,y, t)~ 2 k-2—j,x(‘Px(y)9 t);
j=0

where k_,_; ,€ C®(R*"*2\{0}) is homogeneous of degree j—2n—2 with
respect to the dilations (3.7), and vanishes for ¢ < 0 (see the proof of Theo-
rem 4.5 in [3].) Hence, k_5_; (-, 1) e S(R*"*!). Let

m
(3.10) DX, ), )= E k—2—j,x(‘l’x(y)st)-
Ji=0
For any L,
L+2n+4 -
(311) (p—pm)(x,ys t)= 2 k—Z—j,x(‘I’x(y),t)+kL(xsy, t)a
. J=m+1

where k; € C*(M X M x R). By the homogeneity of k_,_; , for j=m+1,

7

Because k_,_; ((-,1) € S(R?*"*1), the expression in brackets is bounded on
compact sets and vanishes to infinite order off the diagonal as # —» 0+. Hence

B12) ko ; (¥e(¥), 1) = t""—z"—"/2{t<1-'"—"f2k_z_j,x( S0, 1)}



274 NANCY K. STANTON

(3.13) (P —Dm) (X, 3, )| <t™2"=12f(x, y, 1),

where f is bounded on compact sets and vanishes to infinite order off the
diagonal as ¢ —» 0+.

In the remainder of this proof, we use the notation g ~ £ to mean that
g—h is bounded. By [2, Thms. 7.8 and 9.30], D has a parametrix G and

(3.14) Gou~ > (G0 ¥ () +a(x) log | ¥, (¥,
—2n=j<-—

where G;(x, -) is homogeneous of degree j for the dilations (3.7) with A
positive. Let L* denote the closed subspace of L?(M) spanned by the eigen-
functions of D with positive eigenvalues, let e “*P* denote the restriction of
e P to L*, and let p* denote the kernel of e 2. The operator D is sub-
elliptic, self-adjoint, and bounded below, so it has only a finite number (with
multiplicities) of nonpositive eigenvalues and

(3.15) G,y ~ | pHex .
By the semigroup property,

S”e—uﬁ dt = S”e—D+e~(:—1)D+ dt
1 1
(3.16)

_p+{>® _;p+
=eDSe’Ddt.
0

The last expression is a smoothing operator, so

. 1
(.17) G(x,y) ~ SO pH(x,y, 1) dt.
Now
1 1 1
(3.18) | prxyndi=| (p*=paxyndi+| patx .

By (3.13), the first integral on the right side of (3.18) is bounded, so by (3.17)
we have

1
(3.19) G(x,y)~ SO Dan(X, y, t) dt.

For j=2n-1,

. 1
(3.20) k g j (B (3), )=t _, i [ =¥(),1),
Vi

which is integrable on [1, c0), so by (3.10) and (3.19),

o 1
B2) G~ paorx 00 dt+ | ks (Fe(), ) dt.

Let z € R**!\ {0} and let w = (1/|z]|)-z. For j < 2n—1, by the homogeneity
of k_,_; » we have
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S:k_z_ ez, tydr= S: k_s_j (2, |2]25) d(|z]s)
(3.22) =12l [ k- jallal-w 2ls) ds

=lal/ 2" kg lw,5) d,

which is positively homogeneous of degree j —2n < —1 with respect to the
non-Euclidean dilations (3.7). Similarly, since k_,,_, , is homogeneous of
degree —2,
1 Iz|—2
SO k—2n—2,x(zs t) dt:g() k—2n—2,x(was) ds
(3.23)

-2 d
= S el k——2n—2,x(s 172, w, 1) _SS‘

0
The homogeneity of k_,,_, , also gives
(3.24) kg2, x(s 72w, )| =C(|s T2 w|*+1) "2 <2Cs

for some constant C when s <1. Using (3.24) in (3.23) gives
1 lz] 2 _ ds
3.25) | ka0 di= [T kg sV, )

Write
k—2n—~2,x(s _1/2'W, 1)
=Kk_on_2,x(0, 1)+ [k_p,_5 (s 72w, 1) —k_y,_5 (0,1)].

Because k_5,_5 x(-,1) € S(R?"*1), the expression in brackets in (3.26) is
bounded by Cs —1/2 for some constant C, so the integral of its absolute value
against ds/s on [1, ) is bounded independent of w. Using this in (3.25)
along with the fact that k_,,_, »(0,1) = K,(x) yields

(3.26)

1 Iz} =2 ds
(3.27) So K_on-2x(z,t)dt ~ Sl K, (x) P —2K,(x)log|z|.

Thus, combining (3.14), (3.21), (3.22), and (3.27), for j <2n—1 we have

(3.28) Gy a6, He) = |~ ko (He), 1)
and
G(x,y)— X Gi(x,%.(y)~a(x)log|¥.(»)]
(3.29) —ansj=-1
~—2K,(x)log|¥,.(»]|
SO

(3.30) K, (x)=—a(x)/2.
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Applying a parametrix G for D on the left and a parametrix G for D on
the right to the transformation rule (1.12) gives

(3.31) GDr~'G=Gr~172/"pG;
hence
(3.32) r-l1G=Gr-1-2/m,
where = denotes equivalence modulo smoothing operators. Now,
(3.33) dV=r2*t2rqy,
so when we pass to the level of kernels in (3.32) we have
(3.34) G(x,»)=r~'(x)G(x, »)r ().
Hence, with the notation of (3.14),
(3.35)
o Gj(x, ¥ () +a(x) log| ¥, (»)
~ 2n<§3j< lr"‘(x)G,-(x,‘I'x(y))r“(y)+r“(x)a(x)logll‘l’x(y)llr“(y).
If we let z=¥,(y) and Z=V¥,(y), then
(3.36) 2=(2%2)=r"""(x)-(z% 2’ +2%")
for some b’ e R?", Using this and a Taylor expansion, we have
(3.37) _ZnsEjs_l Gi(x, ¥, () ~ _ZHEjs_lIﬁ(x, Y. (),

where H;(x, -) is homogeneous of degree j. Also

(3.38) log| ¥, ()] ~ log| ¥, (»)].

Using (3.37), (3.38), and the fact that r () =r ~(x) + O(¥,(»)) in (3.35)
gives

(3.39) a(x)=r"%(x)a(x).
The theorem now follows from (3.30), (3.33), and (3.39). ]
4. Spheres

Let S27*1be the unit sphere in C"*1. Now $2"*!is pseudoconformally equiv-
alent to the hyperquadric

@4.1) Imz"*'=|z'|% z'=(z,...,2"),

which has a pseudo-hermitian structure with curvature and torsion identi-
cally O ([20, §4]). Hence the local invariant K,(x) is 0. In this section we
show that the global invariant k,,,; on S§27+1ig also 0. In addition, we show
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how to calculate the full asymptotic expansion of tr(e ‘) for a suitable
pseudo-hermitian structure.
We give S2"*! the pseudo-hermitian structure determined by
i n+l1

“4.2) 0=— S z/d7/.
2 9

The resulting metric is the standard metric on 77 o and is 2 times the stan-
dard metric on (7T7,0® Ty ;)". It follows that A, =2Re [,, where [, is the
dp-Laplacian for the standard metric acting on functions. Folland calcu-
lated the eigenfunctions and eigenvalues of [, ([6]). The scalar curvature
of the pseudo-hermitian structure is R =2n(n-+1) by [20, §4]. Hence

D=2(2+2/n)Re O, +2n(n+1)

4.3)
=2+2/n)Ap+2n(n+1)

and we can write down the series for tr(e ‘") explicitly. We use number-
theoretic techniques to study its asymptotic behavior. Corollary 4.32 and its
use in the proof of Theorem 4.34 (the case of S*) are due to Montgomery.

Let 3”7 denote the space of harmonic polynomials of bi-degree (p, g) in
C”*1, that is, harmonic polynomials which are homogeneous of degree p in
the z*’s and of degree ¢ in the Z’’s. The following proposition is essentially
due to Folland [6, Thm. II.6].

PROPOSITION 4.4. 3CP9 is an eigenspace of A, on S*"+1 with eigenvalue
2(2pg+pn+qn).

Proof. By [6], JC”?is an eigenspace of [J, with eigenvalue 2g(p+n). The
proposition follows immediately from this and the fact that A,=2Re ;.
We sketch a different proof. Let

ntls g 9
4.5) T,= ijgl(zf 7 -z’ 52{;) .

Then for fe C®(S*"*1),

4.6) df=dy f+2T,f0, and Af=d*df=A,f—-T3f,
where the adjoint is with respect to the standard metric, so
@4.7) Ap=A+TP2

The restriction of a harmonic polynomial of degree k£ to S?**!is an eigen-
function of the Laplace-Beltrami operator, with eigenvalue k(2n+ k) (see
[4, Ch. IIIC] or [7, Lemma 2.61]). The proposition follows from this and
the fact that, on JC”°9, T; is multiplication by i(p —q). O

COROLLARY 4.8. 3CP 9 s an eigenspace of D with eigenvalue
4.9) (2+2/n)2p+n)(2g+n).
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Proof. This follows immediately from (4.3) and Proposition 4.4. L]

Using Corollary 4.8, we can obtain the following explicit formula for the
trace of the heat semigroup e ~2.

PROPOSITION 4.10. On S?"*! with the pseudo-hermitian structure 0,

(4.11)
tr(e“”’): 2 (prn-Ditgtn=l) (ptq+n) e~ (2+2/n)(2p+n)(2q+n)t
p,q=0 plg'n! (n—1)! .

Proof. By Corollary 4.8,
(4.12) tr(e~"P) =3 dPde=@+2/mCp+mQq+mt

where d#>7 is the dimension of JC”:9. We calculate d*’9 by the method used
to calculate the dimension of the space of harmonic polynomials of degree
k ([4, Ch. IIIC], [7, Cor. 2.53]). Let P?9 denote the polynomials homoge-
neous of bi-degree (p, g) in C"*!. The dimension of P” Y is

(p+m)!(g+n)!
P,q_

4.13) pPd= L
Since P79 = JeP 94 |z|2PP~ 1971,

(4.14) dprq=pp,q_pp_.l,q_l.

The proposition follows from (4.12)-(4.14). 0

Before we calculate the asymptotic behavior of the sum in (4.12), we intro-
duce some notation. For k=1, let

_ [ Zama*, meN,
(4.15) ox(m) = {O otherwise.
Let
(4.16) Fo(x)=3 o (m)e=2mm/x,

1

A crucial ingredient in determining the asymptotic behavior of tr(e~'?) is
the following functional equation for F.

PROPOSITION 4.17. If k is odd, then

(4.18)

—k k+1 1
Fp(x)=— “2 ) +(2);> k! ;(k+1)—-ek%r- +(—1)(k+"/2xk+‘Fk<;>,

where { is the Riemann {-function and ¢, is 1 if k =1 and 0 otherwise.
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Proof. Write k=2[/+1. Let D, (s) denote the Dirichlet series

& ox(m)
(4.19) D=3 .

The function o is multiplicative; that is, if 72 and r are relatively prime then
or(mr)=o,(m)o,(r). Hence

2
(4.20) D)= I (1+ wp) | ob’) +)
p prime p? D=
For p prime,
(4.21) O’k(pj)zpkj+pk(j_1)+...+1.

Using (4.21) in (4.20) yields, for Res >k +1,

k 2k
1 kyl
D)= II (1+p AL +)

pprime ps p2s
p* 2k 3k
-1 -1 -1
= 11 ( + f k + 2{: k +>
pprime p - V4 (p _'1) D (p “1)
4.22) o ) ( p* 1 )
pprime p —1 l_pk—s l_p——s
1 1
_mgi[me( l—l/ps_k)( 1"‘1/Ps)
={(s)$(s—k).
Here ¢ is the Riemann {-function. By Mellin’s formula [15, 23.5],
1 k+2+ico s
(4.23) e—zf"’/X=——_S e =2 as.
2mi Jk+2—ic 2mTm

Combining (4.22) and (4.23) gives

1 k+2+io
Fi(x) = ——S F(s)Dk(s)( ) ds

k+2—ico
4.24)
= L ) syt — k)( )ds
2w 5k+2 joo

The integrand in (4.24) has simple poles at s =0 and £+1 and (if k=1) at
s =1, and no other poles. The residues are

g—(_k) X k+1 X
(425) - 5 s (271_) k'§‘(k+1) and —Ekz;
Hence
. g“(—k) X k+1 X
Fr(x) === +(27r) KLEGk+ 1)~ e
(4.26)

1 —2+iw
+5 o [T rer ) s - k)( )ds
Tl J-2—i
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Using Riemann’s functional equation
1—
(4.27) g(s)r‘(-;—)w-sﬂ = g(1—s)P(TS)7r—“-SV2

for both {(s) and ¢(s—k) gives

$(s) ?(S—k)I‘(%)I‘(i%f)Wk/z—s

= ¢l —s)§‘(k+1—s)F< I’Z_S)I‘( k+;_s>7rs—1—k/2.

(4.28)

By Legendre’s duplication formula for the gamma function,
(s) (s—k) I'(s/2)T'((s—1)/2)
' — I =
2 2 ((s—1)/2—1)---((s—1)/2-1)

(7()1/22(3+k)/2_sF(S"‘ 1)
©(s=3)(s=5)--(s—k)

(4.29)

and similarly

k+1—s 1—s\  «'/225*0=0O2D (k4] —s)
(.30 P( 2 )P< 2 >_(k—S)(k—2—S)---(I—S)'
Hence,
—k)I'(s)27)~S
@31) §S)S(s—k)I'(s)(2m)

= (D2 e(1=5) E(k+1-5)T (k +1—s) (2m) " €179,

The proposition now follows from using (4.31) in the integrand in (4.26)
and making the change of variables w =k +1—s in the integral. Ol

Specializing to the case kK =1, we have the following.

COROLLARY 4.32.

2

X X 1 1
4, Fiix)="— — 4+ ——x2F{ — ).
(4.33) 1(x) 24 4w 24 l(x)

The next theorem gives the asymptotic behavior of tr(e ‘) on S3.

THEOREM 4.34. On S* with the pseudo-hermitian structure (4.2),

2
1 2
4.35 tr(e~Py= — O — %/t
4.35) (e = 7562 YO\ 12°

as t —» 0+. In particular, there is only one term in the asymptotic expansion
of tr(e™'P) as t - 0+ and the CR global invariant k,=0.
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Proof. By Proposition 4.10,

tr(e"P)= ¥ (p+q+1)e @r+HQ2a+1)1

p,q=0
n>0 p,q=0
(4.36) @p+1)(2g+)=n
1
=5 Z e 5 (a+b)
n>0 ,b>0
nodd ‘;b=n
— E 0‘1(11)6—4"7.
n>0
nodd

The multiplicative property of o, gives

n n _ o'l(n), l’lOdd,
(4.37) o1(n) 3"1( 2)+201<4) _{0, neven.

Using (4.37) and (4.16) in (4.36) gives

tr(e_tD)=n§0(0'1(n) 30'1(2>+20'1(Z)>€—4m
_Fl(Zt) 3Fl<4t)+2Fl<8t>

The theorem now follows from (4.38) and Corollary 4.32, together with the
observation that Fj(1/x) = O(e~>™) as x — 0. O

(4.38)

On S’ we have the following.

THEOREM 4.39.

2
(4.40) tr(e—fD)zi m ] +0 i —w /3t
12\ 43213 2412 3¢

as t = 0+. In particular, the global CR invariant k; =0.

Proof. By Proposition 4.10,

tr(e—lD):_ 2 (p+1)(q+;)(p+q+2)e—12(p+l)(q+l)t
p,g=0
_E 2 —lZnt E (a+b)
n>0 a,b>0
ab=n

(4.41) = 3 noy(me™ =

n>0
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—1d —12nt

=12 dr E,me

-1 d T
"z a’ (a)
The theorem now follows from (4.41) and (4.33). Ol

We return to the general case. For n odd, this case can be treated by methods
similar to the proof of Theorem 4.34, and for n even by methods similar to
the proof of Theorem 4.39.

THEOREM 4.42. On S?"*1 with the pseudo-hermitian structure (4.2),

n—1 . 1
(4.43) tr(e”P)y=¢ =+ 5 ajtf+0< Py e-lff)

Jj=0
as t -0+, where a; is an explicitly computable constant. In particular, the
CR invariant k,, ., =0.
Proof.

Case 1. Suppose now that n=2m is even. We examine the coefficient
(1/(n! (n—1)Na,, , of the exponential in a term in (4.11). Let a =p + m,
b=q+m, and k=ab. Then, by (4.11),

a, ,=(p+2m—1)(p+2m—-2)---(p+1)
X(@+2m—-1)(g+2m-=2)---(qg+1)(p+q+n)
(4.44) =(a+m—1)---(a—m+1)
X(b+m—1)---(b—m+1)(a+b)
=k(ar(a, k)+br(b, k)),

where r is a polynomial of degree 2/m— 2 with all its terms of even degree in
the first variable. Using (4.44) in (4.11), we have

tr(e”P)= 3 e Gk 5 k(ar(a,k)+br(b,k))

k>0 a,b>0
ab=k
— E 2 bijkio_j(k)e—4(2+2/n)kt
k>0 O0<i
(4.45) jodd
i+j<2m
d\' T
O§<;i l’j(df) J<2(2+2/n)f)
Jodd
i+j<2m

where b; ; and ¢; ; are explicitly computable constants. The result now fol-
lows for n even from Proposition 4.17.
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Case 2. Suppose n=2m+1 is odd. Again, we examine the coeflicient
(1/(n! (n—1)")a, , of the exponential in a term in (4.11). Let a=2p-+n,
b=2qg+n, and ab=k. Then a, b, and k are odd, and by (4.11)

ay ,=2""*Ya+n-2)(a+n—4)---(a—n+2)
(4.46) X(b+n—2)(b—n+4)---(b+n+2)(a+Db)
=ar(a,k)+br(b, k),

where r is a polynomial of degree n—1 with all its terms of even degree in
the first variable. Using (4.46) in (4.11) gives

tre P=S e @+Umkt S (gr(a, k)+br(b, k))

k>0 a,b>0
(4 47) kodd ab=k
— E 2 bi’jklﬂ'j(k)e_(2+2/n)kt,
k>0 jodd
kodd i+j=<n

where b; ; is an explicitly computable constant. The multiplicative property
of o; gives

@ o=+ 3)+2e(5) = { o0 eeven

Using (4.48) in (4.47) gives

Dy _ IN(er p — 2" \_oisne?, Ff —
tr(e™"") = jg(:ld (dt) (CI,JF}((2+2/n)t> (21+1)c”JFJ((2+2/n)t,)

(4.49) i+j=n
25e3 F. T
TG (2(2+2/n)r>>’
k

where ¢/ ; are explicitly computable constants and ¢f ; =c§ ; = ¢ ;. The the-
orem now follows for n odd from (4.49) and Proposition 4.17. ]

5. Three-Dimensional CR Manifolds

In this section we show that the invariants K;(x) and k, are 0 on three-
dimensional CR manifolds. We begin with the local invariant.

THEOREM 5.1. Let M be a compact strictly pseudoconvex three-dimen-
sional CR manifold equipped with a pseudo-hermitian structure 0. The local
invariant K,(x) =0.

Proof. By the arguments in Section 1, [3, Thm. 8.31] remains true with [J,
replaced by D. Hence

(5.2) K;=aR
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for some constant @ independent of (M, 0). By Theorem 3.3 and (5.2), if
the pseudoconformal structure is changed to § =2/ then

(5.3) K, =e %K,

SO

(5.4) aRk =ae 2'R.

By [11, Prop. 5.15],

(5.5) R=e 2 (R+4A, f—4(d, f,dy [)).

Using (5.5) in (5.4) shows that a =0 hence, by (5.2), K;=0. L

Before discussing the global invariant, we introduce some notation. Let M
be a strictly pseudoconvex CR manifold of dimension 27+ 1 equipped with a
pseudo-hermitian structure 6. We let {Z,} denote a local orthonormal frame
for T} o, {6} the dual coframe for 77*y. In what follows, we use the con-
vention that repeated Greek indices are summed from one to n. The con-
nection matrix (wg®) and the torsion forms 7% of the Tanaka-Webster con-

nection ([19], [20]) are uniquely determined by the structure equations
df=i0*AG*
(5.6)
d0“=06/\w5“+0/\ T¢

together with the requirements

O)ﬁa + (:)aﬁ =0
5.7 B
TENG%=0.
By [20, (1.41) and (2.9)], the curvature matrix
(5.8) I.f=du,f—w, Nw,?

has the form
(5.9) I.=R.pP,;0°N0°+ W, 0°NO— WP ;0°NO+if*NTP—i7*N 65,

If we view the curvature tensor as a complex-valued 2-form with values in
Hom(T(M)®C), its projection onto T7'¢ ATy is

(5.10) NM'=R P 0°N0°R Z;®6.
p

We denote the covariant derivative with respect to the Tanaka—Webster con-
nection by V. We define the torsion tensor 7 by

(5.11) T=7°QRZ,.
Let
(5.12) C:T*QTRT*->T*
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be contraction on the second and third indices. Here T and T* denote the
complexified tangent and cotangent bundle of M.

Our proof that k, =0 if n=1 requires knowing the general form of the
integrand K,. We use invariance theory, as in [3, §8], to obtain the general
form in any dimension.

PROPOSITION 5.13. There are constants a, b, ¢, d, e, and f depending
only on n such that

(5.14) K,=aR?+b|Ric)*+c|lIM|?+dA,R+e|T|*+ fImd;CVT.
Here Ric is Webster’s Ricci tensor [20, (2.16)].

Proof. By Theorem 1.14, K,(x) is a polynomial, depending only on #, in
the components of the curvature and torsion and their covariant derivatives
computed in normal coordinates at x. By (3.1), the terms of this polynomial
scale by A% when the pseudo-hermitian structure is scaled by the constant
N2, We write

(5.15) 7U=A,50°
and let
(5.16) A=A

It follows from [3, (8.5) and (8.9)] and [20, (1.33) and (1.36)] that K,(x) is
a monomial in

RB

a po

R

Y v B2
(5-17) RaBpE;O’ Raﬁpa;,uv, Raﬂpﬁ;uf’ Aaﬁ’;O’ Aaﬁ;ﬂl”
A A wpe. ., wp

af;pvs Ma pipo

A Ay AagAm, RSP A

nvs

af;puvs [ H)

and their complex conjugates. Here we have written components of ten-
sors with respect to the basis {X, Z,, Z,} of T(M)®C and the dual basis
{0,0% 6% of T*(M)®C. As in the proof of [3, Lemma 8.12], we use the
metric to raise and lower indices and thereby eliminate conjugates. The poly-
nomial is invariant under the action of U(n) on the tensor algebra of C”. By
classical invariant theory, it is a linear combination of monomials, each of
which has the same number of indices up and down [17]. Also by classical
invariant theory [17], it is given by a complete contraction. Hence, by [20,
(1.23), (1.33), (1.36), (2.16) and (2.17)], it is a linear combination of

(5.18) R, |Ric|?, [II™'%, TP, XR, R, RS2, AaB;aB’ Waﬁp;'u

and their conjugates. We define a new CR structure 7y gon M by Ty o =T, ,,
as in the proof of [3, Lemma 8.24]. Then

(5.19) Ay=Ap,

SO
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(5.20) Kj=K,.

For a local orthonormal frame for 777, we take {6’ = 6%). By (5.6)-(5.9)
we have

(5.21) wl=aL, re=-7
hence

f— '"B_Y1 B R'B_=RB L —
(5.22) X'=-X, I[P =T1°, RP ,=R/P ., Ag=—A,.

By [20, (1.33)], R is real, so R’=R. Hence, we may assume that the coeffi-
cient of XR in K, is real. By (5.22), X’R’=—XR. Combining this with
(5.20), we may assume that the coefficient of XR is 0. Similarly, we may
assume that the coefficients of ImR. ,* and ReAaﬁ;"‘ﬁ are 0. By (5.6) and
[20, (1.43)],
Wo's=Aup;5

=(VT)
so the term Waﬁp;" in (5.18) is redundant. By the Bianchi identities [12, Lem-
ma 2.2],
(5-24) Rvu;u=R;V—i(n—1)Aav;&s

so R,*, " is redundant in (5.18). Thus, K, can be written as a linear combina-
tion of

(5.23)

afB;ps

(5.25) R?, |Ric?, |TIMY%, |T|%, ReR.,%, ImA,z°".

By (1.13),

(5.26) ReR.,*=A,R.

By (5.11) and (5.12),

(5.27) Im A% =—Imd;CVT.

The proposition now follows from (5.25)-(5.27). i

Proposition 5.13 is a crucial ingredient in the proof of the next proposition.

PROPOSITION 5.28. If M is three-dimensional then there is a constant a
independent of M such that

(5.29) k2=SMaIT|29/\d9.

Proof. Because n=1,

(5.30) [TTH'|? = |Ric|* = R*;

so, by Proposition 5.13, there are constants a, b, ¢, and d such that
(5.31) K;=a|T|>*+bImd;CVT+cR?>+dA,R.

The volume element is § A d@, so for any one form g,
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(5.32) SMdguBAd():O.
Because A, is self-adjoint,
(5.33) SMAbROAd():O.

For the case M =S3 with the pseudo-hermitian structure (4.2), T=0 and
R=4, so

(5.34) ky =4ch o A do.

By Theorem 4.34, k, =0 for S3, so by (5.34), c=0. The proposition now
follows from integrating (5.31). U

Finally, we prove the following.

THEOREM 5.35. On a compact strictly pseudoconvex three-dimensional
CR manifold M, the global invariant k, is 0.

Proof. We will show that there is a pseudo-hermitian structure on S (with
the standard underlying CR structure) for which 7"#0. The theorem then
follows from Proposition 5.28 and Theorem 4.34. For the pseudo-hermitian
structure (4.2) on S3, we may take

1 d d
. 0= — (zdw— —va(z-= —w ).
(5.36) 7 (zdw—wdz) and Z \/f(g o W az)

Here we use (z, w) as the coordinates in C2. Then, by (5.6) and (5.7),
(5.37) w!=—4i0 and 7!=0.

For any real-valued function \, we let § =e*6. By [11, Lemma 5.6], the tor-
sion form for this new pseudo-hermitian structure is

(5.38) Fl=e MiNy—i(\)?).
We take
(5.39) A=(z+Z).
By (5.36)-(5.39), |
(5.40) Ap=—2iw?e~G+D),
Hence, T#0. O
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