Corona Theorems for Subalgebras of H®

RAYMOND MORTINI

Let H* be the Banach algebra of all bounded analytic functions in the open
unit disk D. The famous corona theorem of Carleson [1] states that the unit
disk is dense in the maximal ideal space M(H*) of H®. Equivalently, the
ideal I = (fy, ..., fn) generated by the functions f;e H* (i =1, ..., N) equals
the whole algebra H* if and only if 3¥_,|fx|=8>0in D.

Let L™ denote the space of essentially bounded, Lebesgue measurable
functions on the unit circle 7. It is standard to identify, via radial limits, H
with a uniformly closed subalgebra of L. Let B be a Douglas algebra, that
is, a uniformly closed subalgebra of L™ containing H*. Associated with
each Douglas algebra is the largest C*-algebra OB contained in B, that is,

OB=BNB={feB: feB],

and the C*-algebra CB generated by the invertible inner functions in B and
their conjugates.

By using the corona theorem for H*, Chang and Marshall [2] showed
that the unit disk is dense in the maximal ideal space of CAgz:= CBNH"™.
Later Sundberg and Wollff [15] could prove by highly sophisticated methods
that the corona theorem is also true in the algebra QAz:=QBNH®. Itis
now quite surprising that the methods of Chang and Marshall [2] not only
yield another proof of the corona theorem for QApg, but that they can be
used to show that every subalgebra A of H® of the form A=CNH has
the corona property, where € is a C*-algebra satisfying CB < C € OB. The
proof of this result will be a major object of this paper. Incidentally, we ob-
tain some other properties of algebras of this type. This will answer a ques-
tion of Dawson [3, §6] concerning the ideal structure of subalgebras of H™.

The Corona Theorem for Admissible Algebras

DEFINITION 1. Let A be a closed subalgebra of H*. According to Metzger
[12] we shall say that A4 has the “weak F-property” if f belongs to A when-
ever uf € A for some inner function u € A. If we merely assume that « is an
inner function in H®, then we say that A4 has the “F-property” (in the sense
of Khavin).
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Most of the standard algebras arising in function theory have the weak F-
property; for example, if A is the trace in H* of any C*-algebra C<SL”
(that is, if A =CNH) then it follows from f =i (uf) that A has the weak
F-property. A nontrivial example of a closed subalgebra of #* which does
not have the weak F-property was recently discovered by Gorkin [6], who
shows that the algebra H*NBy=(fe H®: lim,_,(1— 1z|?)|f/(z)| =0} of
bounded analytic functions belonging to the little Bloch class By is such an
example.

Let C = C(T) be the space of continuous complex-valued functions on the
unit circle 7, and let QA ={fe H*: fe H®+C}. As usual, A(D)=CNH"
denotes the disk algebra.

If A is a closed subalgebra between A(D) and QA, then A has the weak
F-property if and only if A is invariant under the backward shift operator;
that is, if fe A then (f(z)—/f(0))/z € A. This follows from [3, p. 56] and
the fact that every inner function in A is a finite Blaschke product.

DEFINITION 2. A closed subalgebra of H® is said to satisfy the “D. J.
Newman property” if the Shilov boundary 34 of A coincides with the set

K s={meM(A): |u(m)| =1 for every inner function u € 4},

where M(A) denotes the maximal ideal space of A.

Here also, a large class of algebras has this property. Let us mention at this
point the algebras QAz and CAg (see [13, p. 38, Thm. 5.3]). In Proposition
7 we shall encounter further examples.

DEFINITION 3. Let AZS B be two commutative algebras with the same
identity element. Then (A, B) is called a “Wiener pair” if every element
f € A which is invertible in B is also invertible in A4 (see [14, p. 203]).

In order to expect that the corona theorem holds in a subalgebra A of H*
which contains the polynomials, it is of course necessary that (A4, H*) forms
a Wiener pair.

DEFINITION 4. We shall call a closed subalgebra 4 of H* “admissible” if
it satisfies the following conditions:

(1) A has the weak F-property,
(2) A has the D. J. Newman property,
3) (A, H®) forms a Wiener pair.

Since we are dealing only with uniform algebras A, we shall identify a function
f € A with its Gelfand transform. Moreover, Z(f)={meM(A): f(m) =0}
denotes the zero set of fe€ A, and Z(I) =\ s Z(f) will be the zero set (or
hull) of an ideal 7 € A.
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We are now able to show that the admissible algebras A with CAg S AC
QAp behave essentially in the same way as CAg and QAg. The main tool
to achieve this is the following result of Chang and Marshall.

LEMMA 1 (Chang and Marshall [2]). If ge H® and if u is an inner func-
tion in CAg with dist(gii, H®):=inf{|gii — h|, he H*} <1, then there exists
a unimodular function u, € git + H* with u, € CB.

A result of the following type was first proved by Marshall [12, p. 20] for the
algebra H™.

THEOREM 2. Let A be an admissible algebra with CAg € A< QAg, and
let I be an ideal in A whose hull does not intersect the Shilov boundary of A.
Then I is generated (algebraically) by inner functions.

Proof. In the first step we show that 7 contains an inner function u.

Step I. By a compactness argument there exist finitely many functions
J1s --es fv€I such that

4 (I'V] Z(f)NoA=0.
i=1

Define S to be the closure of the set
{fu: feA, uinner, ue CAg}.

Then S is a closed subalgebra of OB which contains CB. Since every inner
function u € A4 is invertible in S, we see that the maximal ideal space M (S)
of S coincides with

Kg={me M(S): |u(m)| =1 for every inner function u € A4}.

Since A has the D. J. Newman property, it follows that the restriction
mapping I': M(S) — dA4 is well defined. Moreover, by a theorem of Shilov
[8, §12], I' is surjective. It is also easy to see that A separates the points of
M(S); thus M(S) is homeomorphic to dA. Hence, by (4),

N
> |fil|=6>0 on M(S).
i=1
This implies the existence of functions g; € S such that 1=, g, f;. By the
definition of S we can choose functions u;,h;je A (i=1,...,N), u; inner,
such that

_ 1 .
||q,-—u,-h,-||s——— (l=1,...,N),
2C

where C =37 fi|. Thus we have

1

N N N 1
(5) Yhu filz|Xa fil-2lai—hia] | filz1-—=C==
1 1 1 2C 2
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on M(S). Let g;=h; I1;; u; and b=TI"_, u;. Then g;,be Aand |b|=10n
M(S). Multiplying (5) by |b|, we obtain

N 1 1
© Yas|=zlbl=5 on M),
1

Let f=3Vg;f;. Then fel. Let uF=f be the inner-outer factorization of
f- Since | f|=3 on M(S), f does not vanish on M(L>). Thus the outer
function F is invertible in H*.

Since F#0on M(B) S M(H*), F~'e B (note that F = u(iiF) € B). Hence
it = iF(F)~' e B and therefore u € A. Since A4 has the weak F-property, Fe A.
Because (4, H®) is a Wiener pair, F~'e A. Thus u = (uF)F el

Step II. This works exactly in the same manner as that of [13, p. 49]. We
include the proof for the convenience of the reader. Let g € I. Without loss
of generality we may assume that |g| < % Since dist(git, H*) < | gii| < % <1,
the hypotheses of Lemma 1 are fulfilled. Thus there exist functions 7 e H®,
u; € CB and u; unimodular (i.e., |u;|=1a.e. on T) such that

u1=gﬁ+h.

Let v=v,:=g+uh=uu,. Then v is an inner function in %, Moreover v =
uu, € CB, hence ve A and uh =v—g € A. Since A has the weak F-property,
heA. Thus vel. The set {v,: g eI} and the function ¥ now generate /.

O]

REMARK. Theorem 2 generalizes Theorem 6.2 in [13, p. 48].
As a corollary we obtain the following separation property.
COROLLARY 3. The inner functions in A separate the points of M(A)\ dA.

Proof. Let m;# m, be two maximal ideals in M(A4)\dA. Since the m; are
generated by inner functions, there exists ¥ € A, u inner, such that u(m;) =0
but u(m,) #0. [l

We can now prove the main result of this paper.

THEOREM 4. Let A be an admissible algebra with CAg € A< QAg. Then
the corona theorem holds in A.

Proof. Using standard arguments and the fact that the corona theorem holds
in H®, it is easy to see that the assertion of the theorem is equivalent to the
assertion that the restriction mapping I : M(H*) - M(A) is onto.

Assume that I'(M(H™)) is a proper subset of M(A). Let me M(A)\
I'(M(H®)). Because by a theorem of Shilov [8, §12], every x € d4 extends
to a maximal ideal of M (H*), we see that m ¢ dA. Choose an arbitrary p €
I'(M(H®)). Then by Corollary 3 there exists an inner function u € A such
that u(m) =0, but u(p)=0. (Note that if pedA, then |u(p)|=1#0 for
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every inner function u € A.) Since by the continuity of I" the set I' (M (H ™))
is compact, there exist finitely many inner functions #; € A with u;(m)=0
(i=1,...,n) and 27 |u;| =6 >0 on I'(M(H*)). We shall now proceed in the
same manner as Chang and Marshall [2].

Because D cI'(M(H*)), X7|u;| is bounded away from zero on D. By the
corona theorem for H® there exist functions g; e H* such that 1=Y{g;u;.
Let u =1/~ u;. By Lemma 1 there exist functions h;€e H*, v;€ CB, |v;|=
2|g;| a.e. on T with &u; g; =h;+v; (i=1,...,n). Hence

n n n
1= ug=uy hi'*'? u;(uii; v;).
1 1

Since u, uii;v;€ CBNH™ S A, we obtain that u 37 h; € A. Because A has the
weak F-property, 21 h; € A. Finally, we see that 1 =X{ p,u;, where

n
P1=m71(2 hi+vl)’ pi=uiliv; (i=2,...,n)
1
are functions in A. This gives the contradiction

1=m(1) =3 p;(m)u;(m)=0. 0
1

Copying the proof of Theorem 6.5 in [13, p. 50], we also obtain the follow-
ing result.

THEOREM 5. Let A be an admissible algebra with CAg € A< QAg. Then
the ideals I € A satisfying Z(I)N3A =0 are in a one-to-one correspondence
with the ideals J <€ H® such that Z(J)NM(B) =0. In particular, every ideal
Iin A whose zero set is disjoint from the Shilov boundary of A is the trace of
a unique ideal J in H*. Moreover Z(I)=T(Z(J)), where T': M(H*) — M(A)
is the restriction mapping.

If we specialize to maximal ideals, we obtain the following corollary.

COROLLARY 6. The restriction mapping I': M(H®) - M(A) is a homeo-
morphism from M(H*)\ M(B) onto M(A)\ dA.

Traces of C*-Algebras in H* and the Corona Theorem

In the second part of this paper we shall now use Theorem 4 to show that
every subalgebra A4 of H® which is the trace of a C*-algebra between CB
and OB has the corona property. This answers (at least for C*-algebras of
the above type) a question of Dawson [3, p. 95]. In view of Theorem 4, it
suffices to show that every such algebra is admissible. This is done in our
next proposition.

PROPOSITION 7. Let C be any C*-algebra between CB and QB and let
A=CNH®. Then A is an admissible algebra which is logmodular on C.
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Proof. That A satisfies the weak F-property was already discussed in the
introduction. Of course (A, H™) is also a Wiener pair. In fact, let fe A be
invertible in H*; then f is an outer function. Because the restriction map
M(L®)— M(@) is onto, f does not vanish on M(C); hence f~!e @. Thus
fleCNH®=A.

In order to prove that A has the D. J. Newman property, we show first
that A is logmodular on C. Let g be any function in € € OB. Since OB =
QAg+ CB (see [5, p. 386]), there exist functions fe QAg and v e CB with
qg=/f+v. Hence f=q—ve CNH™=A, from which we can conclude that

(7) C=A+CB.

Now let g be any real-valued function in C; then e? e @C. By (7), there exist
for every e >0 functions f € A and u € CB, u inner, such that |e?— fii| <e.
The next step of the proof now works in exactly the same manner as in
Chang and Marshall [2, p. 15]. We need only replace CB by €. This leads to
a function e A which is invertible in A and has the property that log|F|
approximates g. (Note that F can be taken to be the outer part of f.) Hence
A is logmodular on C.
Consequently we obtain the result that the restriction mapping

I' M(C)-M(A)

is a homeomorphism between M(C) and dA [4, p. 38]. Since C=A+ CB,
the closure S of the set {fii: fe A, ueA, uinner} coincides with €. On
the other hand, it is not hard to prove that every maximal ideal me K 4:=
{meM(A): |u(m)| =1 for every inner function u € A} has an extension to
S (see [13, p. 39]). Now let I': M(S) - M(A) be the restriction mapping.
Since K¢=M(S)=M(C), we therefore obtain

K =T(Ks) =T'(M(§))=I'(M(C))=034.
This shows that 4 has the D. J. Newman property. Ul

Combining Theorem 4 and Proposition 7, we obtain the following result.

THEOREM 8. Let A be a subalgebra of H™ which is the trace of a C*-
algebra C between CB and QOB; that is, A= CNH®, Then A has the corona

property.

REMARK. As a special case of Theorem 8 we obtain Sundberg and Wolff’s
result that the corona theorem holds in QAp (see [15, p. 563]).

Application of the Corona Theorem
to the Ideal Structure

In the above proposition we showed that 04 =K 4:={me M(A): |u(m)| =1
for every inner function u € A}. It is now a natural question to ask whether
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one can restrict to Blaschke products. The following theorem now gives a
positive answer to this question, thus solving a problem posed in [13, p. 39].

THEOREM 9. Let A be an admissible algebra with CAg € A € QAg and let
meM(A). Then the following assertions are equivalent:

(1) meoA,;

(2) |u(m)| =1 for every inner function u € A;
(3) |u(m)| >0 for every inner function u e A;
(4) |b(m)| =1 for every Blaschke product b € A;
(5) |b(m)| >0 for every Blaschke product b € A.

Proof. (1) = (2) is part of the definition of an admissible algebra.

(2) = (3): trivial.

(3) = (4): Assume there is a Blaschke product b € A with [b(m)| <1. Then
the function u = (b—b(m))/(1—b(m)b) is inner and belongs to A. Here we
have used the fact that (4, H*) is a Wiener pair. But u (/) =0, which con-
tradicts (3).

(4) = (5): trivial.

(5) = (1). This is the only nontrivial part. Assume that #2 ¢ dA. Then there
exists by Theorem 1 an inner function u € A with u(m)=0. Using a result
of Guillory and Sarason [9, p. 180], we obtain a Blaschke product b€ H”
such that g:=ub e QC. Hence b =qii € QC-B S B. Therefore be CAp C A.
Since by Theorem 4 the map I': M(H*) - M(A) is onto, there exists x e
M(H®) with x| 4, = m. Note that by (5) m ¢ D; hence xe M(H*+ C). Thus
we have the following relations:

0=u(m)=x(u)=x(gb) =x(q)x(b).

Since |x(gq)| =1, we see that b(m)=x(b) =0, which contradicts hypothe-
sis (5). O

REMARK. Using Proposition 7 we see that Theorem 9 applies in particular
to every algebra A of the form A = CNH™, where Cis a C*-algebra between
CB and QOB.

Let A be an admissible algebra with CAg € A < QAg. Recall that a Blaschke
product be H® is said to be interpolating if (1—|z,|?)|b"(z,)|=6>0 for
every n, where z,, are the zeros of b in D. Put

G, ={me M(A): m contains an interpolating Blaschke product b e A}

and let 7 be an ideal in A whose hull is contained in G4. Since by Theorem 9
G4 does not intersect the Shilov boundary dA of A, it follows from Theo-
rem 2 that 7 contains an inner function #. Can one say more? Does / cor-
tain even a finite product of interpolating Blaschke products? (Note that one
cannot expect, of course, that 7 contains an interpolating Blaschke product
b, as the example I = (b?) shows.) It is known that in the algebra H* the
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answer is yes. This is a recent result of Tolokonnikov [16]. Using his result
and the results of our previous sections, we shall now give a positive answer
to this question.

THEOREM 10. Let A be an admissible algebra with CAg S A S QAg and
let I be an ideal in A whose hull is contained in G 4. Then I contains a finite
product of interpolating Blaschke products.

REMARK. We do not know if 7 is generated by such Blaschke products.

Proof. By the previous discussion, we have Z(/)NdA =@. Therefore there
exists, according to Theorem 5, a unique ideal J in H® such that JNA=1.
Moreover, we have Z(J)NM(B)=0. Since Z(I) C G4, every maximal ideal
m € Z(J) contains an interpolating Blaschke product; that is, Z(J) € Gj;.
In particular, Z(J) does not contain any point m in M (H*) whose Gleason
part is trivial (see [5, p. 413] and [10]). Theorem 2 of Tolokonnikov [16] now
implies that J contains a function b of the form b =TI%_, b;, where the b,
are interpolating Blaschke products in /*. The problem is that, in general,
b fails to be in A. The clue of the next step is therefore to factorize each
interpolating Blaschke product b; in a product b; =c;d; of two Blaschke
products such that

(8) Z(c)NM(B)=0 and Z(d,)NZ(J)=0.

To this end, let U;, U, be open sets in M(H™) containing M(B) (resp.,
Z(J)) such that the closures of U, and U, are disjoint. This choice is clearly
possible because M(H ™) is a normal topological space. Let V,=M(H®)\
clos U,. Let {z\”} be the zero set in D of the b;. Construct the (interpolat-
ing) Blaschke product d; with zero set {z{?}N V;. Then b; = c;d; for some in-
terpolating Blaschke product ¢; which satisfy (8). Here we have used the fact
that every point m e M(H>), with b(m) =0 and b an interpolating Blaschke
product, lies in the M (H ) closure of the zero set of b in D (see [5, p. 379]).

Since Z(d;---dy)NZ(J) =9, it is easy to see that c:=c; - cy belongs to
the ideal J. Moreover Z(c)NM(B) =@. Hence the function c is invertible in
the Douglas algebra B, and thus ¢ € CB € A. Therefore c e JNA =1, which
concludes the proof. O

To conclude, we state several open questions.

1. Let @ be a C*-algebra between C and L. Does 4 = CNH™ have the
corona property? (See also [3, p. 25].)

2. Let A be an admissible algebra containing the polynomials. Is the unit
disk dense in the maximal ideal space of A?

3. Generalized corona theorem: Let A be an algebra of the above type
and let f, f1, ..., fy be functions in A satisfying

N
If1=214l
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in D. Do there exist functions gy, ..., gy € A such that

(*)

N
f"=§gifi

for some n e N? The problem is open even when A is the disk algebra A(D).
Wolff showed that in the case A = H* one may take n =3 (see [5, p. 329]).
For A= QAp one may take n=35 (see [7]).

REMARK. If A4 is an admissible algebra between CAp and QAg, we can
show that (+) holds for n=3 if | f|=Z¥|f| in D and $¥|f;| = 6 >0 almost
everywhere on 7.

REMARK. After this paper was written we discovered the paper [17] of
Volberg and Tolokonnikov, where they claim (without giving any reference)
that the second author has also obtained a proof of the corona theorem for
CNH®, where C is a C*-algebra between CB and QB. However, we were
not able to locate this proof anywhere in the literature.
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