Corona Theorems for Subalgebras of H^{∞}

RAYMOND MORTINI

Let H^{∞} be the Banach algebra of all bounded analytic functions in the open unit disk **D**. The famous corona theorem of Carleson [1] states that the unit disk is dense in the maximal ideal space $M(H^{\infty})$ of H^{∞} . Equivalently, the ideal $I = (f_1, ..., f_N)$ generated by the functions $f_i \in H^{\infty}$ (i = 1, ..., N) equals the whole algebra H^{∞} if and only if $\sum_{k=1}^{N} |f_k| \ge \delta > 0$ in **D**.

Let L^{∞} denote the space of essentially bounded, Lebesgue measurable functions on the unit circle T. It is standard to identify, via radial limits, H^{∞} with a uniformly closed subalgebra of L^{∞} . Let B be a Douglas algebra, that is, a uniformly closed subalgebra of L^{∞} containing H^{∞} . Associated with each Douglas algebra is the largest C^* -algebra QB contained in B, that is,

$$QB = B \cap \bar{B} = \{ f \in B : \bar{f} \in B \},$$

and the C^* -algebra CB generated by the invertible inner functions in B and their conjugates.

By using the corona theorem for H^{∞} , Chang and Marshall [2] showed that the unit disk is dense in the maximal ideal space of $CA_B := CB \cap H^{\infty}$. Later Sundberg and Wolff [15] could prove by highly sophisticated methods that the corona theorem is also true in the algebra $QA_B := QB \cap H^{\infty}$. It is now quite surprising that the methods of Chang and Marshall [2] not only yield another proof of the corona theorem for QA_B , but that they can be used to show that *every* subalgebra A of H^{∞} of the form $A = \mathbb{C} \cap H^{\infty}$ has the corona property, where \mathbb{C} is a C^* -algebra satisfying $CB \subseteq \mathbb{C} \subseteq QB$. The proof of this result will be a major object of this paper. Incidentally, we obtain some other properties of algebras of this type. This will answer a question of Dawson [3, §6] concerning the ideal structure of subalgebras of H^{∞} .

The Corona Theorem for Admissible Algebras

DEFINITION 1. Let A be a closed subalgebra of H^{∞} . According to Metzger [12] we shall say that A has the "weak F-property" if f belongs to A whenever $uf \in A$ for some inner function $u \in A$. If we merely assume that u is an inner function in H^{∞} , then we say that A has the "F-property" (in the sense of Khavin).

Received May 2, 1988. Michigan Math. J. 36 (1989). Most of the standard algebras arising in function theory have the weak F-property; for example, if A is the trace in H^{∞} of any C^* -algebra $\mathbb{C} \subseteq L^{\infty}$ (that is, if $A = \mathbb{C} \cap H^{\infty}$) then it follows from $f = \overline{u}(uf)$ that A has the weak F-property. A nontrivial example of a closed subalgebra of H^{∞} which does not have the weak F-property was recently discovered by Gorkin [6], who shows that the algebra $H^{\infty} \cap B_0 = \{f \in H^{\infty} : \lim_{|z| \to 1} (1 - |z|^2) |f'(z)| = 0\}$ of bounded analytic functions belonging to the little Bloch class B_0 is such an example.

Let C = C(T) be the space of continuous complex-valued functions on the unit circle T, and let $QA = \{f \in H^{\infty} : \overline{f} \in H^{\infty} + C\}$. As usual, $A(\mathbf{D}) = C \cap H^{\infty}$ denotes the disk algebra.

If A is a closed subalgebra between $A(\mathbf{D})$ and QA, then A has the weak F-property if and only if A is invariant under the backward shift operator; that is, if $f \in A$ then $(f(z) - f(0))/z \in A$. This follows from [3, p. 56] and the fact that every inner function in A is a finite Blaschke product.

DEFINITION 2. A closed subalgebra of H^{∞} is said to satisfy the "D. J. Newman property" if the Shilov boundary ∂A of A coincides with the set

$$K_A = \{m \in M(A) : |u(m)| = 1 \text{ for every inner function } u \in A\},$$

where M(A) denotes the maximal ideal space of A.

Here also, a large class of algebras has this property. Let us mention at this point the algebras QA_B and CA_B (see [13, p. 38, Thm. 5.3]). In Proposition 7 we shall encounter further examples.

DEFINITION 3. Let $A \subseteq B$ be two commutative algebras with the same identity element. Then (A, B) is called a "Wiener pair" if every element $f \in A$ which is invertible in B is also invertible in A (see [14, p. 203]).

In order to expect that the corona theorem holds in a subalgebra A of H^{∞} which contains the polynomials, it is of course necessary that (A, H^{∞}) forms a Wiener pair.

DEFINITION 4. We shall call a closed subalgebra A of H^{∞} "admissible" if it satisfies the following conditions:

- (1) A has the weak F-property,
- (2) A has the D. J. Newman property,
- (3) (A, H^{∞}) forms a Wiener pair.

Since we are dealing only with uniform algebras A, we shall identify a function $f \in A$ with its Gelfand transform. Moreover, $Z(f) = \{m \in M(A) : f(m) = 0\}$ denotes the zero set of $f \in A$, and $Z(I) = \bigcap_{f \in I} Z(f)$ will be the zero set (or hull) of an ideal $I \subseteq A$.

We are now able to show that the admissible algebras A with $CA_B \subseteq A \subseteq QA_B$ behave essentially in the same way as CA_B and QA_B . The main tool to achieve this is the following result of Chang and Marshall.

LEMMA 1 (Chang and Marshall [2]). If $g \in H^{\infty}$ and if u is an inner function in CA_B with $\operatorname{dist}(g\bar{u}, H^{\infty}) := \inf\{\|g\bar{u} - h\|, h \in H^{\infty}\} < 1$, then there exists a unimodular function $u_1 \in g\bar{u} + H^{\infty}$ with $u_1 \in CB$.

A result of the following type was first proved by Marshall [12, p. 20] for the algebra H^{∞} .

THEOREM 2. Let A be an admissible algebra with $CA_B \subseteq A \subseteq QA_B$, and let I be an ideal in A whose hull does not intersect the Shilov boundary of A. Then I is generated (algebraically) by inner functions.

Proof. In the first step we show that I contains an inner function u.

Step I. By a compactness argument there exist finitely many functions $f_1, ..., f_N \in I$ such that

$$(4) \qquad \bigcap_{i=1}^{N} Z(f_i) \cap \partial A = \emptyset.$$

Define S to be the closure of the set

$$\{f\bar{u}: f \in A, u \text{ inner}, u \in CA_B\}.$$

Then S is a closed subalgebra of QB which contains CB. Since every inner function $u \in A$ is invertible in S, we see that the maximal ideal space M(S) of S coincides with

$$K_S = \{m \in M(S) : |u(m)| = 1 \text{ for every inner function } u \in A\}.$$

Since A has the D. J. Newman property, it follows that the restriction mapping $\Gamma: M(S) \to \partial A$ is well defined. Moreover, by a theorem of Shilov [8, §12], Γ is surjective. It is also easy to see that A separates the points of M(S); thus M(S) is homeomorphic to ∂A . Hence, by (4),

$$\sum_{i=1}^{N} |f_i| \ge \delta > 0 \quad \text{on } M(S).$$

This implies the existence of functions $q_i \in S$ such that $1 = \sum_{i=1}^{N} q_i f_i$. By the definition of S we can choose functions $u_i, h_i \in A$ $(i = 1, ..., N), u_i$ inner, such that

$$||q_i - \bar{u}_i h_i|| \le \frac{1}{2C}$$
 $(i = 1, ..., N),$

where $C = \sum_{i=1}^{N} ||f_i||$. Thus we have

(5)
$$\left| \sum_{i=1}^{N} h_{i} \bar{u}_{i} f_{i} \right| \geq \left| \sum_{i=1}^{N} q_{i} f_{i} \right| - \sum_{i=1}^{N} \|q_{i} - h_{i} \bar{u}_{i}\| \|f_{i}\| \geq 1 - \frac{1}{2C} C = \frac{1}{2}$$

on M(S). Let $g_i = h_i \prod_{j \neq i} u_j$ and $b = \prod_{j=1}^N u_j$. Then $g_i, b \in A$ and |b| = 1 on M(S). Multiplying (5) by |b|, we obtain

(6)
$$\left|\sum_{1}^{N} g_i f_i\right| \ge \frac{1}{2} |b| = \frac{1}{2} \quad \text{on } M(S).$$

Let $f = \sum_{i=1}^{N} g_i f_i$. Then $f \in I$. Let uF = f be the inner-outer factorization of f. Since $|f| \ge \frac{1}{2}$ on M(S), f does not vanish on $M(L^{\infty})$. Thus the outer function F is invertible in H^{∞} .

Since $\bar{F} \neq 0$ on $M(B) \subseteq M(H^{\infty})$, $\bar{F}^{-1} \in B$ (note that $\bar{F} = u(\bar{u}\bar{F}) \in B$). Hence $\bar{u} = \bar{u}\bar{F}(\bar{F})^{-1} \in B$ and therefore $u \in A$. Since A has the weak F-property, $F \in A$. Because (A, H^{∞}) is a Wiener pair, $F^{-1} \in A$. Thus $u = (uF)F^{-1} \in I$.

Step II. This works exactly in the same manner as that of [13, p. 49]. We include the proof for the convenience of the reader. Let $g \in I$. Without loss of generality we may assume that $||g|| \le \frac{1}{2}$. Since dist $(g\bar{u}, H^{\infty}) \le ||g\bar{u}|| \le \frac{1}{2} < 1$, the hypotheses of Lemma 1 are fulfilled. Thus there exist functions $h \in H^{\infty}$, $u_1 \in CB$ and u_1 unimodular (i.e., $|u_1| = 1$ a.e. on T) such that

$$u_1 = g\bar{u} + h$$
.

Let $v = v_g := g + uh = uu_1$. Then v is an inner function in H^{∞} . Moreover $v = uu_1 \in CB$, hence $v \in A$ and $uh = v - g \in A$. Since A has the weak F-property, $h \in A$. Thus $v \in I$. The set $\{v_g : g \in I\}$ and the function u now generate I.

REMARK. Theorem 2 generalizes Theorem 6.2 in [13, p. 48].

As a corollary we obtain the following separation property.

COROLLARY 3. The inner functions in A separate the points of $M(A) \setminus \partial A$.

Proof. Let $m_1 \neq m_2$ be two maximal ideals in $M(A) \setminus \partial A$. Since the m_i are generated by inner functions, there exists $u \in A$, u inner, such that $u(m_1) = 0$ but $u(m_2) \neq 0$.

We can now prove the main result of this paper.

THEOREM 4. Let A be an admissible algebra with $CA_B \subseteq A \subseteq QA_B$. Then the corona theorem holds in A.

Proof. Using standard arguments and the fact that the corona theorem holds in H^{∞} , it is easy to see that the assertion of the theorem is equivalent to the assertion that the restriction mapping $\Gamma: M(H^{\infty}) \to M(A)$ is onto.

Assume that $\Gamma(M(H^{\infty}))$ is a proper subset of M(A). Let $m \in M(A) \setminus \Gamma(M(H^{\infty}))$. Because by a theorem of Shilov [8, §12], every $x \in \partial A$ extends to a maximal ideal of $M(H^{\infty})$, we see that $m \notin \partial A$. Choose an arbitrary $p \in \Gamma(M(H^{\infty}))$. Then by Corollary 3 there exists an inner function $u \in A$ such that u(m) = 0, but $u(p) \neq 0$. (Note that if $p \in \partial A$, then $|u(p)| = 1 \neq 0$ for

every inner function $u \in A$.) Since by the continuity of Γ the set $\Gamma(M(H^{\infty}))$ is compact, there exist finitely many inner functions $u_i \in A$ with $u_i(m) = 0$ (i = 1, ..., n) and $\sum_{i=1}^{n} |u_i| \ge \delta > 0$ on $\Gamma(M(H^{\infty}))$. We shall now proceed in the same manner as Chang and Marshall [2].

Because $\mathbf{D} \subseteq \Gamma(M(H^{\infty}))$, $\sum_{1}^{n} |u_{i}|$ is bounded away from zero on \mathbf{D} . By the corona theorem for H^{∞} there exist functions $g_{i} \in H^{\infty}$ such that $1 = \sum_{1}^{n} g_{i} u_{i}$. Let $u = \prod_{i=1}^{n} u_{i}$. By Lemma 1 there exist functions $h_{i} \in H^{\infty}$, $v_{i} \in CB$, $|v_{i}| = 2||g_{i}||$ a.e. on T with $\bar{u}u_{i}g_{i} = h_{i} + v_{i}$ (i = 1, ..., n). Hence

$$1 = \sum_{1}^{n} u_{i} g_{i} = u \sum_{1}^{n} h_{i} + \sum_{1}^{n} u_{i} (u \overline{u}_{i} v_{i}).$$

Since $u, u\bar{u}_i v_i \in CB \cap H^{\infty} \subseteq A$, we obtain that $u \sum_{i=1}^{n} h_i \in A$. Because A has the weak F-property, $\sum_{i=1}^{n} h_i \in A$. Finally, we see that $1 = \sum_{i=1}^{n} p_i u_i$, where

$$p_1 = u\bar{u}_1\left(\sum_{i=1}^{n} h_i + v_1\right), \qquad p_i = u\bar{u}_i v_i \quad (i = 2, ..., n)$$

are functions in A. This gives the contradiction

$$1 = m(1) = \sum_{i=1}^{n} p_{i}(m)u_{i}(m) = 0.$$

Copying the proof of Theorem 6.5 in [13, p. 50], we also obtain the following result.

THEOREM 5. Let A be an admissible algebra with $CA_B \subseteq A \subseteq QA_B$. Then the ideals $I \subseteq A$ satisfying $Z(I) \cap \partial A = \emptyset$ are in a one-to-one correspondence with the ideals $J \subseteq H^{\infty}$ such that $Z(J) \cap M(B) = \emptyset$. In particular, every ideal I in A whose zero set is disjoint from the Shilov boundary of A is the trace of a unique ideal J in H^{∞} . Moreover $Z(I) = \Gamma(Z(J))$, where $\Gamma: M(H^{\infty}) \to M(A)$ is the restriction mapping.

If we specialize to maximal ideals, we obtain the following corollary.

COROLLARY 6. The restriction mapping $\Gamma: M(H^{\infty}) \to M(A)$ is a homeomorphism from $M(H^{\infty}) \setminus M(B)$ onto $M(A) \setminus \partial A$.

Traces of C^* -Algebras in H^{∞} and the Corona Theorem

In the second part of this paper we shall now use Theorem 4 to show that every subalgebra A of H^{∞} which is the trace of a C^* -algebra between CB and CB has the corona property. This answers (at least for C^* -algebras of the above type) a question of Dawson [3, p. 95]. In view of Theorem 4, it suffices to show that every such algebra is admissible. This is done in our next proposition.

PROPOSITION 7. Let \mathfrak{C} be any C^* -algebra between CB and QB and let $A = \mathfrak{C} \cap H^{\infty}$. Then A is an admissible algebra which is logmodular on \mathfrak{C} .

Proof. That A satisfies the weak F-property was already discussed in the introduction. Of course (A, H^{∞}) is also a Wiener pair. In fact, let $f \in A$ be invertible in H^{∞} ; then f is an outer function. Because the restriction map $M(L^{\infty}) \to M(\mathbb{C})$ is onto, f does not vanish on $M(\mathbb{C})$; hence $f^{-1} \in \mathbb{C}$. Thus $f^{-1} \in \mathbb{C} \cap H^{\infty} = A$.

In order to prove that A has the D. J. Newman property, we show first that A is logmodular on \mathbb{C} . Let q be any function in $\mathbb{C} \subseteq QB$. Since $QB = QA_B + CB$ (see [5, p. 386]), there exist functions $f \in QA_B$ and $v \in CB$ with q = f + v. Hence $f = q - v \in \mathbb{C} \cap H^{\infty} = A$, from which we can conclude that

$$(7) C = A + CB.$$

Now let q be any real-valued function in \mathbb{C} ; then $e^q \in \mathbb{C}$. By (7), there exist for every $\epsilon > 0$ functions $f \in A$ and $u \in CB$, u inner, such that $||e^q - f\bar{u}|| < \epsilon$. The next step of the proof now works in exactly the same manner as in Chang and Marshall [2, p. 15]. We need only replace CB by \mathbb{C} . This leads to a function $F \in A$ which is invertible in A and has the property that $\log |F|$ approximates q. (Note that F can be taken to be the outer part of f.) Hence A is logmodular on \mathbb{C} .

Consequently we obtain the result that the restriction mapping

$$\Gamma: M(\mathbb{C}) \to M(A)$$

is a homeomorphism between $M(\mathfrak{C})$ and ∂A [4, p. 38]. Since $\mathfrak{C} = A + CB$, the closure S of the set $\{f\bar{u}: f \in A, u \in A, u \text{ inner}\}\$ coincides with \mathfrak{C} . On the other hand, it is not hard to prove that every maximal ideal $m \in K_A := \{m \in M(A): |u(m)| = 1 \text{ for every inner function } u \in A\}$ has an extension to S (see [13, p. 39]). Now let $\Gamma: M(S) \to M(A)$ be the restriction mapping. Since $K_S = M(S) = M(\mathfrak{C})$, we therefore obtain

$$K_A = \Gamma(K_S) = \Gamma(M(S)) = \Gamma(M(C)) = \partial A$$
.

This shows that A has the D. J. Newman property.

Combining Theorem 4 and Proposition 7, we obtain the following result.

THEOREM 8. Let A be a subalgebra of H^{∞} which is the trace of a C^* -algebra \mathbb{C} between CB and QB; that is, $A = \mathbb{C} \cap H^{\infty}$. Then A has the corona property.

REMARK. As a special case of Theorem 8 we obtain Sundberg and Wolff's result that the corona theorem holds in QA_B (see [15, p. 563]).

Application of the Corona Theorem to the Ideal Structure

In the above proposition we showed that $\partial A = K_A := \{m \in M(A) : |u(m)| = 1 \}$ for every inner function $u \in A\}$. It is now a natural question to ask whether

one can restrict to Blaschke products. The following theorem now gives a positive answer to this question, thus solving a problem posed in [13, p. 39].

THEOREM 9. Let A be an admissible algebra with $CA_B \subseteq A \subseteq QA_B$ and let $m \in M(A)$. Then the following assertions are equivalent:

- (1) $m \in \partial A$;
- (2) |u(m)| = 1 for every inner function $u \in A$;
- (3) |u(m)| > 0 for every inner function $u \in A$;
- (4) |b(m)| = 1 for every Blaschke product $b \in A$;
- (5) |b(m)| > 0 for every Blaschke product $b \in A$.

Proof. (1) \Rightarrow (2) is part of the definition of an admissible algebra.

- $(2) \Rightarrow (3)$: trivial.
- (3) \Rightarrow (4): Assume there is a Blaschke product $b \in A$ with |b(m)| < 1. Then the function $u = (b b(m))/(1 \overline{b(m)}b)$ is inner and belongs to A. Here we have used the fact that (A, H^{∞}) is a Wiener pair. But u(m) = 0, which contradicts (3).
 - $(4) \Rightarrow (5)$: trivial.
- (5) \Rightarrow (1). This is the only nontrivial part. Assume that $m \notin \partial A$. Then there exists by Theorem 1 an inner function $u \in A$ with u(m) = 0. Using a result of Guillory and Sarason [9, p. 180], we obtain a Blaschke product $b \in H^{\infty}$ such that $q := u\bar{b} \in QC$. Hence $\bar{b} = q\bar{u} \in QC \cdot B \subseteq B$. Therefore $b \in CA_B \subseteq A$. Since by Theorem 4 the map $\Gamma : M(H^{\infty}) \to M(A)$ is onto, there exists $x \in M(H^{\infty})$ with $x \mid_A = m$. Note that by (5) $m \notin \mathbf{D}$; hence $x \in M(H^{\infty} + C)$. Thus we have the following relations:

$$0 = u(m) = x(u) = x(qb) = x(q)x(b)$$
.

Since |x(q)| = 1, we see that b(m) = x(b) = 0, which contradicts hypothesis (5).

REMARK. Using Proposition 7 we see that Theorem 9 applies in particular to every algebra A of the form $A = \mathbb{C} \cap H^{\infty}$, where \mathbb{C} is a C^* -algebra between CB and QB.

Let A be an admissible algebra with $CA_B \subseteq A \subseteq QA_B$. Recall that a Blaschke product $b \in H^{\infty}$ is said to be interpolating if $(1-|z_n|^2)|b'(z_n)| \ge \delta > 0$ for every n, where z_n are the zeros of b in \mathbf{D} . Put

 $G_A = \{m \in M(A) : m \text{ contains an interpolating Blaschke product } b \in A\}$

and let I be an ideal in A whose hull is contained in G_A . Since by Theorem 9 G_A does not intersect the Shilov boundary ∂A of A, it follows from Theorem 2 that I contains an inner function u. Can one say more? Does I contain even a finite product of interpolating Blaschke products? (Note that one cannot expect, of course, that I contains an interpolating Blaschke product b, as the example $I = (b^2)$ shows.) It is known that in the algebra H^{∞} the

answer is yes. This is a recent result of Tolokonnikov [16]. Using his result and the results of our previous sections, we shall now give a positive answer to this question.

THEOREM 10. Let A be an admissible algebra with $CA_B \subseteq A \subseteq QA_B$ and let I be an ideal in A whose hull is contained in G_A . Then I contains a finite product of interpolating Blaschke products.

REMARK. We do not know if I is generated by such Blaschke products.

Proof. By the previous discussion, we have $Z(I) \cap \partial A = \emptyset$. Therefore there exists, according to Theorem 5, a unique ideal J in H^{∞} such that $J \cap A = I$. Moreover, we have $Z(J) \cap M(B) = \emptyset$. Since $Z(I) \subset G_A$, every maximal ideal $m \in Z(J)$ contains an interpolating Blaschke product; that is, $Z(J) \subseteq G_{H^{\infty}}$. In particular, Z(J) does not contain any point m in $M(H^{\infty})$ whose Gleason part is trivial (see [5, p. 413] and [10]). Theorem 2 of Tolokonnikov [16] now implies that J contains a function b of the form $b = \prod_{i=1}^{N} b_i$, where the b_i are interpolating Blaschke products in H^{∞} . The problem is that, in general, b fails to be in A. The clue of the next step is therefore to factorize each interpolating Blaschke product b_i in a product $b_i = c_i d_i$ of two Blaschke products such that

(8)
$$Z(c_i) \cap M(B) = \emptyset$$
 and $Z(d_i) \cap Z(J) = \emptyset$.

To this end, let U_1, U_2 be open sets in $M(H^{\infty})$ containing M(B) (resp., Z(J)) such that the closures of U_1 and U_2 are disjoint. This choice is clearly possible because $M(H^{\infty})$ is a normal topological space. Let $V_1 = M(H^{\infty}) \setminus \text{clos } U_2$. Let $\{z_n^{(i)}\}$ be the zero set in **D** of the b_i . Construct the (interpolating) Blaschke product d_i with zero set $\{z_n^{(i)}\} \cap V_1$. Then $b_i = c_i d_i$ for some interpolating Blaschke product c_i which satisfy (8). Here we have used the fact that every point $m \in M(H^{\infty})$, with b(m) = 0 and b an interpolating Blaschke product, lies in the $M(H^{\infty})$ closure of the zero set of b in **D** (see [5, p. 379]).

Since $Z(d_1 \cdots d_N) \cap Z(J) = \emptyset$, it is easy to see that $c := c_1 \cdots c_N$ belongs to the ideal J. Moreover $Z(c) \cap M(B) = \emptyset$. Hence the function c is invertible in the Douglas algebra B, and thus $c \in CB \subseteq A$. Therefore $c \in J \cap A = I$, which concludes the proof.

To conclude, we state several open questions.

- 1. Let C be a C^* -algebra between C and L^{∞} . Does $A = \mathbb{C} \cap H^{\infty}$ have the corona property? (See also [3, p. 25].)
- 2. Let A be an admissible algebra containing the polynomials. Is the unit disk dense in the maximal ideal space of A?
- 3. Generalized corona theorem: Let A be an algebra of the above type and let $f, f_1, ..., f_N$ be functions in A satisfying

$$|f| \le \sum_{1}^{N} |f_i|$$

in **D**. Do there exist functions $g_1, ..., g_N \in A$ such that

$$f^n = \sum_{i=1}^{N} g_i f_i$$

for some $n \in \mathbb{N}$? The problem is open even when A is the disk algebra $A(\mathbf{D})$. Wolff showed that in the case $A = H^{\infty}$ one may take n = 3 (see [5, p. 329]). For $A = QA_B$ one may take n = 5 (see [7]).

REMARK. If A is an admissible algebra between CA_B and QA_B , we can show that (*) holds for n=3 if $|f| \le \sum_{i=1}^{N} |f_i|$ in **D** and $\sum_{i=1}^{N} |f_i| \ge \delta > 0$ almost everywhere on T.

REMARK. After this paper was written we discovered the paper [17] of Volberg and Tolokonnikov, where they claim (without giving any reference) that the second author has also obtained a proof of the corona theorem for $\mathbb{C} \cap H^{\infty}$, where \mathbb{C} is a C^* -algebra between CB and QB. However, we were not able to locate this proof anywhere in the literature.

References

- 1. L. Carleson, *Interpolation by bounded analytic functions and the corona problem*, Ann. of Math. (2) 76 (1962), 547–559.
- 2. S. Y. Chang and D. E. Marshall, *Some algebras of bounded analytic functions*, pp. 12–20. Lecture Notes in Math., 604, Springer, Berlin, 1977.
- 3. D. W. Dawson, Subalgebras of H^{∞} , Thesis, Indiana Univ., Bloomington, Indiana, 1975.
- 4. T. W. Gamelin, Uniform algebras, Chelsea, New York, 1984.
- 5. J. B. Garnett, Bounded analytic functions, Academic Press, New York, 1981.
- 6. P. Gorkin, Gleason parts and COP, J. Functional Anal. 83 (1989), 44-49.
- 7. P. Gorkin and R. Mortini, *F-ideals in QA_B*, J. London Math. Soc. (2) 37 (1988), 509-579.
- 8. I. M. Gelfand, D. A. Raikov, and G. E. Shilov, *Commutative normed rings*, Chelsea, New York, 1964.
- 9. C. Guillory and D. Sarason, *Division in* $H^{\infty}+C$, Michigan Math. J. 28 (1981), 173–181.
- 10. K. Hoffman, *Bounded analytic functions and Gleason parts*, Ann. of Math. (2) 86 (1967), 74–111.
- 11. D. E. Marshall, Approximation and interpolation by inner functions, Thesis, Univ. of California, Los Angeles, 1976.
- 12. T. Metzger, On the F-property, pp. 95-98. Lecture Notes in Math., 1166, Springer, Berlin, 1985.
- 13. R. Mortini, *The Chang-Marshall algebras*, Mitt. Math. Sem. Gießen 185 (1988), 1–76.
- 14. M. A. Naimark, Normed rings, Hafner, New York, 1964.
- 15. C. Sundberg and T. H. Wolff, *Interpolating sequences for QA_B*, Trans. Amer. Math. Soc. 276 (1983), 551–582.

- 16. V. A. Tolokonnikov, Blaschke products satisfying the Carleson-Newman condition and ideals in the algebra H[∞] (Russian). Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 149 (1986), 93-102.
- 17. A. L. Volberg and V. A. Tolokonnikov, *Some remarks on multipliers of inte-* grals of Cauchy type and Sarason algebras, Functional Anal. Appl. 18 (1984), 137–138.

Mathematisches Institut I Universität Karlsruhe Federal Republic of Germany