On Isometric Isomorphisms of the
Bloch Space on the Unit Ball of C”

STEVEN G. KRANTZ & DAOWEI MA

1. Introduction

Let B" denote the unit ball in C", B"={z e C": |z| <1]. Let S be the bound-
ary of B", S={z e C":|z|=1}. The Bloch space ®(B") on B" is defined as
follows:

(B(B"):{f:fis holomorphic on B”, £(0) =0, sup M =1/l <_,_°°}’
zeBn H(Z,E)
EeS
where
_%, @

and H(z, ) is the length of the vector £ € T,(B") in the Kobayashi metric
(see [7]). We will give the explicit form of H(z, £) later. With the norm |-|,
®(B") is a Banach space. Let ®B((B") be the closed subspace of ®(B")
spanned by polynomials or, equivalently,

. D, f(2)
®o(B") =) f: fe B(B"), 1 —£——=0}.
o) {f Se®(BY), lim sup 4 8)

(That these are equivalent is elementary. See [11] for a proof.)
If n=1 and D= B!, then the definitions of ®&(D) and ®y(D) reduce to
the more classical

®(D) = {f:fis holomorphic on D, f(0)=0, sup (1—|z|2)]f’(z)]<-l-oo}
ZeBN
and
®o(D) = [f: fe®(D), |lilml(l—-lzl"‘) |f(2)] =0} .

For general properties of ®&(D) and ®&(B"), see [2] and [11]. In [3], the lin-
ear isometries of By(D) and the isometric isomorphisms of & (D) are char-
acterized.

Received March 4, 1988. Revision received February 9, 1989.
The first author’s work is supported in part by a grant from the National Science Foundation.
Michigan Math. J. 36 (1989).

173



174 STEVEN G. KRANTZ & DAOWEI MA

In this paper we characterize the isometric isomorphisms of By(B"). The
principal result is that an isometric isomorphism is given, up to suitable nor-
malizations, by composition with a Mobius transformation. A similar result
should hold in the strongly pseudoconvex case, but we are unable to prove it
at this time. We shall comment on this at the end of the paper.

We thank the referee for his incisive comments and particularly for his
help in simplifying the proof of Lemma 3.

2. Notation and Technical Lemmas

Let us introduce some notation. If z, £ e C”, let
n —
(2,86=Y z;E and |z]=(z,2)"%
ji=1

If in addition z # 0 then we set

_ ¢,2)
|z|?

In terms of this notation, H(z, £) can be explicitly given (see [10]) by:

[ 1A=z PEP+ (1|27 Q. E[*1? if ze Bz 0,
H‘z’g)“{m if z=0.

Pt and Q.(=§(—P¢.

Let C(B"x S) denote the continuous functions on B” X S. Let Cy(B”" X S)
denote the continuous functions on B”x S which vanish on dB”"x S =S X S.
If g(z, () e C(B"x S), we will sometimes extend g(z, £) to be a continuous
function on B" x (C”\ {0}) which is homogeneous of order 0 with respect to
£; that is, if £ % 0 then define g(z, £) to be g(z, £/|£|).

Define

D ={FeC(B"xS):31fe®(B") such that F(z, £) = D; f(z)-H(z, £)™').

Then D is a closed subspace of C(B”x .S) and the mapping A: B(B”") -> D
defined by (Af)(z) = D; f(z)H(z, £)"!is a linear isometry of &(B") onto D
[where D has the norm inherited from C(B” x S)]. Let D, be the image of
®Bo(B") under A.

LEMMA 1. Every (zy, £0) € B"X S is a peak point of D.
Proof. For ¢ € Aut(B"), define @: B"XS—>B"X S by

P+ (2)(£) )
I‘P*(Z)(g)l

Clearly, @ is a bijection since @ ~! = (¢ ~1)~. It is easy to check that (4 f)e 3 =
A(feo) for each fe B(B"). Thus, if $(zy, £y) is a peak point of Af then
(29, £0) 1s a peak point of A(fe¢).

(z,¢) - (90(2),
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Given (zg, £o) € B" X S, c_tloose ¢ € Aut(B") such~that ©(z9) = 0. Then
?(z9, &9) = (0, &) for some &y e S. Define f(z) = (z, £;). We have

(&, o)
H(z,§)

It is not difficult to verify that F(0, £) =1 and that |F(z, )| <1if (z, £) #
(0, &). Thus (0, &) is a peak point of F=Af. Therefore, (2, &) is a peak
point of A(f-¢). Clearly, fep e By(B") and A(f-¢) € D,. U]

LEMMA 2. Ifz/eB", £/ eC"\{0}, j=1,2,3, and Du f(z')+ D2 f(z ) +
D3 f(z3) =0 for every polynomial f, then z' =z>=2z3 and £' 4+ £+ £ =0.

F(z,8)=Af(z,§) =

Proof. Elementary. ]

LEMMA 3. Let T:Dy— Dy be an isometric isomorphism, and let \:
B"x S — S be a mapping such that

(2.0) TF(z,8)=F(z,\z, %))

Jor every Fe . Then there is a constant p of modulus 1 such that \(z, £) =
p& forall &.

Proof. Let f(z)=2z; and F=Af. Then

b
F(Z,S) - H(Z, E) ’
Mz,
TF(z,£) =F(z,Mz,§)) = H(zl()f(zs)f)) '

Thus
Mz, ) _ D;g(z)
H(z,N\(z,§)) H(z,§)

for some g in 8. Letting z =0 gives D; g(0) =X(0, £). Hence \{(0,£) is a
linear function of £. The same argument applies to \;(0,£), j=1,2,...,a.
Thus A0, £) is linear. Hence A (0, &) is unitary since it preserves the unit
sphere {|&|=1]}.

Let K: ®y(B") —» ®y(B") be defined by K = A~1TA. Thus

De(Kf) _  Dygp/S

Hz 6 ~ Hag 8y 7B
It follows that
(2.1) D (K(/f8)) = 8D:(Kf)+ fDy(Kg)
for polynomials f and g. Now take f(z) =g(z) =z;. Then (2.1) leads to
(2.2) Dy(Kf?) =2z;Dg(Kf).

Let (ey,...,e,) denote the standard basis of C". Let h(z)=Kf*—27,Kf.
Now (2.2) leads to
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(2.3) D, h(z) = -2Kf;
(2.4) D, h(z)=0, j=2,..,n.

By (2.4), h(z) is a function of z; alone; by (2.3), so is Kf. It follows that
K f?is a function of z; alone. A similar argument shows that Kf™ is a func-
tion of z; alone for each positive integer m.

Now this means that K, restricted to functions depending only on z;, can
be used to define an isometry on the space 3, (D). To this we can apply the
one-variable result of Cima and Wogen [3] and conclude, comparing the
form of these isometries to the form of K, that

Kz =pzy

for some p; € C with |p;|=1. Of course, a similar argument is true for the
other variables:
KZj'——-/,Lij, j=1,...,n.

Now applying (2.1) to f=z; and g =z, gives
D¢(K(z122)) =22 De(p121) + 21D (12 23).-

Calculating 82K (z,2,)/0719z, in two ways tells us that p; = p,. We similarly
conclude that all the u;’s are equal. Thus gy =p; = --- =p;=p. The set S=
{f € Bo(B"): Kf =pf} contains f(z) =z;, j=1,...,n. Itis an algebra by
(2.1). Thus S contains all polynomials and hence S= ®y(B"). Therefore,
Nz, &) =pé. O

3. Statement and Proof of Main Result

Let ¥ € Aut(B”) and let ¥ be the mapping from By(B") to By(B") defined
by '
J(2) =Y¥fo(2) = fo(¥(2)) — fo(¢¥(0)).

Let F=Af and Fy=Af,. Then, using the notation of Section 2,
F=Af=A(foo¥ —fo(¥(0) = A(foo¥) = (Afp) ¥ = Foo;

that is,

(3.D F(z,8) = Fo(¥(z), ¥« (2)§).

It follows that

(3.2) SUp [F(5, £)] = sup [Fo(w, )],
£#0 7#0

since ¥ is a bijection. That is, | fls,zn) = |fol@,@n- Therefore, ¥ is an iso-
metric isomorphism. The following theorem says that every isometric iso-
morphism is of this form.
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THEOREM. Let U: ®y(B")— ®y(B") be an isometric isomorphism. Then
there is a o € Aut(B") and a pe C (|u|=1) with

Uf = r(f(p(z)) — f(£(0))
for every fe ®y,(B").
Proof. The mapping T=AUA™! is an isometric isomorphism of D,. Let
T*: D — D§ denote the adjoint of 7. Thus 7* is also an isometric isomorph-
ism. If X is a Banach space, E(X) will denote the set of the extreme points
of the unit ball of X. Then T* maps E(D}§) injectively onto E(D§).

The same argument as in [3] and [6] shows that every y € E(Dj) is an eval-
uation functional on Dy, v =e, ), where e, . is evaluation at (g, £). Con-
versely, for every (z,£) e B"XS, e, is an element of E(D§), which can
be seen by Lemma 1. Therefore E(D§) ={e, 1): (z, &) € B" X S}. Because I'*:
E(D§) —» E(D}) is a bijection, there exists a bijection 7: B”" xS — B" X S such
that
3.3) Te(z,5) = €@z, 8-

Write 7(z, £) = (o(z, £), Mz, £)), where o(z, £) e B” and \(z, £) € S. We
claim that o(z, £) is independent of £. Now (3.3) implies that, for every Fe
Do,

(3.4) (TF)(z, &) =F(0(z,§), Mz, §)).

Take (z° £1), (z°, £2) e B"x S; we want to prove that o(£9, £1) = ¢ (£9, £2).
If £ =pt% (neC, |u|=1) then

F(o(z% &), Mz% ")) =TF (2% £') = pTF(2°, £2)
= pF (0 (&% %), Mz% £2) = F(a (2", £), uM 2%, £9)).
This is to say:
F(o(z%£"), M2% £Y) = F(o(2% £1)), un (2" £%))
for every F e Dgy; hence
0(z% &) =0(z%¢") and Az’ ¢ =N E%).

Now suppose that £}, £2 are linearly independent; then £+ £2# 0. Let ¢3 =
£+ 82|71 (¢1+ £%), f=AT'F, g=A"NTF), and

(Z/,8)=(0(z% ), M2% &%), j=1,2,3.

Then we have:

(3.6) HZ% &) TF(z%8/) =Dag(&y), j=1,2,3;
HZ% 8)TF (% £3) = |8 + £ [H (O EYTF (2% £+ H(z% 1) TF (2% £2)]
(3.7 and

HEzZ )23, 8) =8+ 827 H S EYF(Z EN+ H(ZO £2)F(22 E2);
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H(Z% £3)[H(Z%, ) 'Dgs f(2%)

(3.8) 2 _ o _
=18+ 87 X HE D HEEN T Dei /@)
Let o

n® = —H@EZ ) (H(Z3, )8,

o/ =8+ 2T HEO 8 (H @, E)7TE, j=1,2.
Then (3.8) becomes
3 .

(3.9) 3 Dyuf (&) =0, ¥feGy(B".

J=

By Lemma 2,

71=22=23 and n'4+9%+9’=0.
In particular, o(z° £') = 0(z° £2). Therefore a(z, £) depends only on z,
0(z, £) = 6(z). Because 7 7! is also an isometric isomorphism, the same ar-
gument applies to 7 ~!; thus o(z) is a bijection from B” to B". We now prove
that ¢(z) is holomorphic.

Because (z, £) and (o(z ), Mz, §)) are in one-to-one correspondence, there
is a A(z, &) such that A\(z, A\(z, £)) = &; hence (3.4) can be written as

(3.10) TF(z,§) =F(0(z), ), £=N\(z,§).

Write F=Af, TF=Ag, and g = Uf, where f, g € B,(B"); then (3.10) be-
comes
(3.11) H((z,£))"'Dsg(z) = (H(0(2), £)) "' Dy f(0(2)).

Let f;(z) =z, and g; = Uf;; let £ be defined as £f = §;;, with £¥=1X(z, £%).
Then

- no Jo. - af;
H ' S B = (Ho ), ghy 1 R _ ooy, ey 1s,
i=1 < aZk
or
3.12) GoX=1.

Here 7 is the identity matrix,

ag; "
Go=( g,(z)) , and X = (xy)i k=1
02k /i k=1 '

where x; = (H(z, £)) 7 H(o(2), £)£F. Similarly, letting f;(¢) = 327, &, =
Uf;, and o(z) = (0¢(z), ..., 0,(2)), we obtain

(3.13) GX = D(6/(z), ..., 6,(2)).

Here, the right-hand side denotes the diagonal matrix with the specified di-
agonal elements, and
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G ( ag’i(z))" .
0Zx /i k=1

From (3.12) and (3.13), we obtain

D(01(z), ..+, 0,(2)) = G(2) [Go(2)]7".

This clearly implies that o(z) is holomorphic. Hence o € Aut(B").
Now define the mapping ¥: ®B¢(B") - By(B") by

Vf(z) =f(67(2)) = f(67'(0)).
Let L=AV¥A™!. Then
(3.14) LH(z,8) =H(07(2), 0, (2)£)), HeD,.
Combining (3.4) and (3.14) we have
LTH(z,£) =TH(0 ~'(z), 0. '(2)§) = H($, Mo ~1(2), 057 (2)£))

or
(3.15) TH(z,£) = H(z,7\2,£)) (HeDy),

where 7= LT and A(z, £) = N0 ~1(z), 05 1(2)£).
By Lemma 3, (3.15) implies that

LTH(z,¢) =TH(z,§) = H(z, pt) = pH(z, §)
and
YUh(z) =ph(z), he®By(B").
Therefore

Uh(z) = p(h(0(2)) — h(a(0))), he &Bo(B"). 0

4. Closing Remarks

Lemma 3 is the key technical result required for our characterization of iso-
metries of By(B"). It is this point which we find intractible for more general
domains. Implicit in the proof of Lemma 3 is our explicit knowledge that the
coordinate discs are totally geodesic manifolds for the Kobayashi metric.
While a great deal is known about the boundary behavior of the Kobayashi
metric on strongly pseudoconvex domains, little is known about the global
interior behavior. Lempert [9] has constructed totally geodesic discs in strictly
convex domains, but their global properties are not well understood.

On the other hand (see [5]), generic strongly pseudoconvex domains, even
those near the ball, have no automorphisms except the identity. Thus we
see that the functional analytic question of characterizing isometries of the
Bloch space is linked to deep questions of geometry. We hope to explore this
matter in future work.

Related work on Bloch spaces, from the Kobayashi-metric point of view,
appears in [8].
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