COMPLEMENTATION OF PRINCIPAL IDEALS IN
WEIGHTED (FN)-ALGEBRAS OF ENTIRE FUNCTIONS

Jiirgen Wolter

Introduction. In this paper we study (FN)-algebras
A%(CNy:=A):={fe H(CN)|for all D>0: sup | f(z)|e PP < o0}

zeCN
for nonnegative plurisubharmonic functions p such that log(1+|z|?) = o(p(2)).
For the sake of simplicity we will assume in the introduction that p(z) =|z]?,
o >0. Then each principal ideal I(G) generated by G € A% is closed in AY. Our
main result is the following.

THEOREM. For G € A%(C?) and G(z,w):= f(z) —Zi4j<m@i jz'w/ (meN,
a; j€C, ag, n#0), the following statements are equivalent:

(1) fis a polynomial,

(2) I(G) is complemented in A (C ) (i.e., there exists a continuous linear pro-
Jjection on A%(C?) with range 1(G));

(3) for some H eAO (C*)\(0} the ideal I(GH)) is complemented in A5(C?).

For a >1, the Ag are isomorphic to the strong duals of weighted (DFN)-spaces
of entire functions by Fourier-Borel transformation, the pointwise multiplica-
tion carried over to form the convolution product. Therefore, the results of this
paper imply that certain convolution operators have no continuous linear right
inverses.

The main point of our theorem is (2) = (1). To prove it, we assume that f is
not a polynomial. Note then that 4% (C"') is a power series space of infinite type.
Hence by a theorem of Zahariuta [27] AO(CZ) cannot contain a subspace iso-
morphic to a power series space of finite type. We shall find such a subspace E in
A%(C?)/I(G). However, (2) would imply that A%(C?)/I(G), and hence E, are
subspaces of 45(C?).

We must ﬁnd E only in the case G(z, w) = f(z) —w, as the others follow by a
substitution argument. For such G we have a canonical isomorphism of locally
convex algebras A%(C?)/1(G) - A%(C), with q(z):=p(z, f(z)) by a variant of
an interpolation theorem of Berenstein and Taylor [3].

An extension of results of Meise and Taylor [14] shows that, for certain closed
ideals J in A%(C), the quotient A(C)/J is a power series space of finite type.
The essential step in the proof is to find such an ideal J that is complemented in
Ag(C). To do this, we construct first a sequence of subharmonic functions and
use them, together with Hérmander’s L?-theory of the d-operator, to find for a
certain ideal J a Schauder basis of a complement £ sAg(C)/J.
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(1) = (2) was proved by Djakov and Mityagin [4], and (2) & (3) is an easy cal-
culation involving the transposes of the operators f~ Gf and f— Hf on Ag(Cz).

In Section 1 we gather basic definitions and the needed results on interpolation
and division with entire functions of restricted growth. Section 2 serves to con-
struct the J in a given Ag(C), while the rest of the theorem’s proof is carried out
in Section 3. In Section 4 we outline its consequences for convolution operators
on (DFN)-algebras of entire functions.

The author thanks the Studienstiftung des deutschen Volkes for financial sup-
port and Prof. R. Meise for encouragement and guidance during the work on his
thesis [26], of which this article presents a part.

1. Preliminaries. In this section we introduce weight functions, weighted (FN)-
algebras of entire functions, and some results about interpolation and division
that will be used in the following sections.

DEFINITION 1.1. We call p: CN— [0, ) (N e N) a projective {resp. inductive]
weight function if it has the following properties:

(1) p is plurisubharmonic;

(2) there exist r: CN— [0, ), r=0(p) [resp. r = O(p)], and C < oo such that

for all £, z € CN with log|z — &| < —r(z) we have p(§) <=Cp(z)+C;

(3) log(1+|z[?) =0(p(2)) [resp. log(1+|z|*) = O(p(2))].

We call p componentwise radial if p(zy, ...,z2n) =D0(|z1], .-, |2n]) for all z=
(21, ..., 2ZN) € CN. We call it radial if p depends only on the Euclidean norm of z.

DEFINITION 1.2. For an (inductive or projective) weight function
p:CN—[0, )
and for fe H(CN) we define:

| flp,p:= sup |f(z)|e~PP&) and
zeCN

12
o= ([ s Pe227 an)

(where \ denotes the Lebesgue measure on CV);
Bp,p={feH(CM)||f
Wp,p={feH(CN)[|f|p,p <].

If p is projective, we set

A%(CNy:=A%:={fe H(CN)|for all D>0, | f|p,,<};

if p is inductive,

A,(CN):=A,:={feH(CV)|there is D < oo with | f|p, p < o].

Compare 1.1 to [6, Thm. 1]. The next proposition follows by standard argu-
ments, which we omit.
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PROPOSITION 1.3. The following statements hold:
(1) with the topology induced by |-|p,,, Wp,, is a Hilbert space;
(2) there exists K(p) < and, for all D, C(D, p), C(D, p) <o such that

"'"DK(p),p = C(D,p) I ID,p and I'ID,p = é(D,p) "'"D/Z,p
on A) for all D;
(3) as a projective limit of the Wp , (D>0) (or, equivalently, of the Bp, ,
(D>0)), Ag is a nuclear Fréchet space;
4) A?, with this topology is a locally convex algebra under pointwise multipli-

cation;
(5) feAS implies 8, f:=df/dz;e AS (i:=1,...,N).

Similar statements hold for A,, which becomes a (DFN)-space.

DEFINITION 1.4. For F:=(F}, ..., Fr) e H(CN)R and r: CN— R we define
R 1/2
(2 |F}(z)l2) <e*"z’}-
i=1

PROPOSITION 1.5 ([3], [10]). Let p: CN - [0, ) be a projective weight func-
tion, taker as in 1.1(2) for p, and let s: CN — [0, ) be an inductive weight func-
tion with r =0(s) and s =o(p). Take Fe Wp ; for some D and assume

S, (F):= {z e CN

N
—log( Y |6,-F|2)=O(s) on V(F):={z|F(z)=0}.
i=1

Then, for each € >0 and fe H(V(F)) with

sup |f(z)|e~ @ < oo,
zeV(F)

there exists f € Wac,,, (C from 1.1(2) for p) such that f |y = f.

Proof. Assume r <vyyq+0. From [10, Lemmas 6.2, 6.3] we have ©6,veR,
such that for ¢:=+s+ O there exists a holomorphic retraction = : S,(F) >V (F)
with the property:

sup |z—m(z)|e"0@ <e P,
Z€8,(F)

Hence, for z € S;(F) and f*(z):=f(w(g)) we have:

sup |f*(z)|le~CP@ < sup |f(w(z))|e " PEEN+C< oo,
2€S,(F) zeS,(F)

An elementary (though tedious) argument yields an upper semicontinuous p:
CN [0, ) with p>¢ and p=0(p), as well asavye C°°(CN)_with the proper-
ties0=y=<1, v|s,im =1, v|s,rc =0, and log|dy|= o(p). As 3(f*y) =f*3dy, by
analysis of the proof of [6, Thm. 7] we obtain a (0, 1)-form 4 on C¥ such that
oh=0, Fh=09(f*y), and

ScN |h|2e =3P d\ < o
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Hence, [7, Thm. 4.4.2] implies the existence of a function ¥ on CV with u = 4 and
S v ulPe 4P dr < oo,

Finally, we have d(f*y—Fu)=3(f*y)—Fh=0, and f:= f*y— Fu has the prop-
erties: | flace, p <, flvr =*Y lviry =1- 0

More general results on interpolation of holomorphic functions on varieties
with or without multiplicity can be found in [1], [2], [3], and [10].
For later application of this proposition we need the following.

LEMMA 1.6 (Mittag-Leffier lemma [12, Lemma 1.3]). Let

O—»)(j-if»)j-—&—»Zj—»O

U U U

0_'*Xj+1_¢;]’Yj+lm ji+1— 0
be exact sequences of C-vector spaces for jeN such that pi(x)=9j1(x) and
Vi(¥)=v; 1 (¥) forall jeN, xe X j+1, and y€Y; . Let X; be Fréchet spaces
and let the inclusions X; ;- X; be continuous. Then the projective limit of these

sequences,
0— ﬂX — ﬂ ; —> ﬂZ — 0,

is exact provided that, for all JEN, Xj+2 is dense in X with respect to the io-
pology of X;.

This lemma’s last hypothesis leads to the following.

DEFINITION 1.7. A projective weight function p has property (ML) (i.e., Mit-
tag-LefHler) if there exists a decreasing sequence (D(n)),.n of strictly positive
numbers with limit 0 such that, for all e N, Wp, ), , is dense in Wp(n+1),p With
respect to the topology of Wy, ,.

REMARK 1.8. If p is componentwise radial then the monomials are an orthogo-
nal Schauder basis in each Wy, ,, as is shown in [14, 1.16]. [22] proves that, for p
convex and for many other cases, the polynomials are dense in each Wp,p. Hence
all these p have property (ML).

A consequence of Nevanlinna theory is the following.

PROPOSITION 1.9. Let p be a componentwise radial projective weight func-
tion on CN with p(2z) = O(p(2)) and F, G € Ay, F/G entire. Then F/G € A,

Proof. For g meromorphic on C¥ and for z € CV, define 7(g, z) as the Nevan-
linna characteristic function of the restriction of g to the subspace generated by
Z, evaluated in z, and (in case f is entire)

M(f,z):=sup{|f(e’z)||0 = ¢ < 2x}.
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It is well known that there exist C;, C, € R, depending only on f such that
T(f,z)—Cy<logM(f,z)<3T(f,2z)+C,. We also know that T(1/g,z) =T(g, z)
in case g #0, and that T(fg,z) <T(f,z)+T(g, z) (see [23, pp. 196-205]). There-
fore we have log M(F/G, z) =o0(p(2z)) =0(p(z)). O

DEFINITION 1.10. (1) For Fy, ..., Fre A) we define I(Fy, ..., Fg) as the ideal
algebraically generated by Fj, ..., Fy in A9.

(2) We call an ideal I in AY localized if the following holds: Fe A3 is in 1, pro-
vided that its germs F |, for all a € CV are in the ideal generated by the elements
of I in O,, the ring of germs of analytic functions in a.

(3) We call aclosed ideal I in Ag complemented if there exists a closed subspace
G in AY such that A) =I@®G as a topological vector space.

REMARK 1.11. Cartan’s theorem B together with 1.9 implies that, for p com-
ponentwise radial and p(2z) = O(p(z)), any principal ideal 7 in Ag is localized.
It then follows from the closure-of-modulus theorem that 7 is closed, too (see [7]
for these theorems).

At last we have a look at the linear topological structure of the Ag.

DEFINITION 1.12. For p € (—o, ] and for a::= (o) j<N an unbounded increas-
ing sequence of positive real numbers, we define

Ay ()= {(xj)jeCN for all r < p: |(x;)/],:= '21 ]leeraf<oo}.
J=

With the topology induced by the |-|, (» < p), this becomes an (FN)-space. The
A (o) are called power series spaces of infinite type, the A, (a) (p <o0) power
series spaces of finite type.

REMARK 1.13. Assume that the projective weight function p on C¥ has the
property:
(1) there exist A, B <o such that p(2z) <Ap(z)+B and 2p(z)<p(Az)+B
for all z € CN.
Then the proof of [14, 1.16] can easily be applied to our situation and yields:

AN(CNy=H(CN) = Ao ((jN)))
as locally convex spaces (not algebras).

PROPOSITION 1.14 ([27]; for an easier proof due to Vogt see [9, 21.7.6]). A
power series space of finite type can never be isomorphic to a closed subspace of
a power series space of infinite type.

2. Algebras restricted to graphs. In this section we investigate weighted (FN)-
algebras of entire functions in two variables, restricted to the graphs of entire
functions in one variable. We will show that for nice weight functions the graph
is that of a polynomial if and only if the restricted algebra does not contzin a
closed, complemented ideal of infinite codimension. This result forms the main
argument in Section 3.
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DEFINITION 2.1. For this section and the next, we fix a componentwise radial,
continuous projective weight function p: C2— [0, o) with 1.13(1) and:
(1) an r for 1.1(2) can be chosen as an inductive weight function of the form
r(z)=Flog(1+|z]?)+F (F>0).
Furthermore, we define p|: 2~ p(z,0) for zeC. For f eAg| not a polynomial,
we set ¢: 2~ p(z, f(2)).

REMARK 2.2. If one puts 2%:= A then 2.1(1) implies that there exist o, B, C < 00
such that, for all ze C2, (1/C)|z|*—B <p(z) <C|z|*+B.

Note that for all z, we C we have p(z,0) < p(z, w), as p is plurisubharmonic
and componentwise radial. Hence we get p|<gq.

Examples for weight functions with the properties of 2.1 are

p:(z, W)""xf’1(|z|)'*'902(|W|)+Ié1 ak+1(2DN 2k +2(W)),
where ¢;: [0, 00) = [0, ) (j =1, ...,2L +2) are strictly increasing functions such
that s— ¢;(e*) is convex and there exists A < oo with
@i (2t) = Ap;(t)+A, 20;(t) < pj(At)+ A
for all £ €[0, ), j=1,...,2L+2. Such ¢; could be, for example, functions like
t— 1P 1ogr@ (1+12)logr® log(3 +¢2)
for p(1)>0 and p(2), p(3)=0.

LEMMA 2.3. q is a continuous projective weight function with property (ML).
An r for 1.1(2) can be chosen as an inductive weight function with

(log2(1+(z|*)+1)2=<r(z) (zeC).

Proof. 1.1(1) and 1.1(3) are obviously true for q. Using the arguments of [14,
Lemma 2.3], we obtain radial inductive weight functions ¢;, ¢,: C — [0, ) and
D < o such that, for all zeCand i=1, 2,

¢1(2Z)SD901(Z)+D’ 901=0(pl)9
log| f|, log|af |, FV2(log(1+4]-[2)+1)2 < ¢y,
p2=0(p(0,+)),  FV2(log(1+|-|?)+1)2< ¢,.

Define s(z):=D+V2+De,(z) + ¢,(f(z)). By the mean value theorem, it fol-
lows for log|z —&| < —s(z), |z|=1, that

|(z, f(z))— (&, f(§))| < e~"& GD,

With C as in 1.1(2) for p we get g(§) <Cq(z)+C.

As s=0(q), 1.1(2) holds for q. It is easy to check (with the mean value theo-
rem) that s is an inductive weight function.

If we have proved the following claim, we can combine it with 1.3(2) to obtain
(ML) for q:
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(*) For each e >0 the polynomials in z and f(z) are dense in B, , with respect
to the norm |-|2ck(p)e, 4-

By 1.5 each fe B, ,, seen as a function on the graph I':={(z, w)| f(z)=w},
can be extended to an f € Wy¢,, ,. By [13, Prop. 2.8], f can be approximated with
polynomials in z, w with respect to |-|,c, »» and hence a fortiori with respect to
|12ck(p)e, p- The restriction of this approximation to I" gives (*). O

The main result of this section is the following.

THEOREM 2.4. There exists g € A?,| with infinitely many zeros, each of order 1,
such that the ideal I(g) in Ag is closed, localized, and complemented in Ag. Fur-
thermore, Ag /1(g) is isomorphic to a power series space of finite type.

It is easily checked that, for each polynomial f € H(C), there is a radial weight
function j: C — [0, o) as in 1.13(1) such that Ag and Ag are isomorphic as locally
convex algebras. Hence by 1.13 A% = H(C), and because of 1.14 there is no way
to find a g as in 2.4 for this ¢g. Indeed, [14, 3.4] shows that there are no closed
complemented infinite-codimensional ideals in Ag at all.

Lemmas 2.5 to 2.7 make up the greater part of the theorem’s proof.

LEMMA 2.5. Take t >0, K:={ze C| 3t <|z|<2t}, C>0, D=0, and h a real-
valued function on 6K, integrable with respect to the arc-length. Define T":=
{%tei¢|a—7r/CS<pSa+7r/C} [or I':={2te’ |a —7/C<p=<a+m/C}].

If hlr <D and h|sx\r < C, then for all z € K with argz = o and 3t <|z| <
3t + 3C % [or 2t — ;C 2t < |z| < 21] the harmonic extension h of h to K ful-
fills h(z) <24 D.

To prove the lemma, one transforms the problem into an equivalent one on the
unit disk and verifies the estimate by straightforward calculations involving the
Poisson kernel or the related Mobius transformations.

The main trick in proving 2.4 is contained in the following.

LEMMA 2.6. There exists a sequence (a;);cn in C with |a;| unbounded and in-
creasing, a sequence (s;)jen in Ry with

(1) —log(s;) =0(q(4)),
and a sequence (¢;) ;<N 0f continuous, plurisubharmonic functions on C bound-
ed from below with the property

(2) VkeN, 3 Cy<oand m(k)eN V jeNandz,yeC with |y—z|<s;:

0/(2) + i (@) < Cot 1) +410).
Proof. As f is not a polynomial and r(z) =F log(1+|z|?), we can find a se-
quence (c;)jen in C with rj:=|c;| unbounded and increasing and log|f(c;)| <
—r(2r;). In the sequel we will drop a finite number of ¢; in a finite number of
steps without changing the notation.
For M(t):=supy,=,|f(¢)| we have log, r;=o(log, M(r;)).
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We define A;:={ze C| %rj <|z|<2r;}. Using Harnack’s inequality we find an
R < oo such that for all j € N, 4 harmonic and positive on 4;, and |z;|=|z;| =1,
we have the estimate

R _lh(Zl) =< h(Zz) SRh(ZI).
Furthermore, we define

¥j(z):=sup{g(z)|g subh. on C, ¥ z ¢ 4;: g(z) =max(log| f(z)|, —r(2r;))}.

Y; is harmonic on 4;. Without loss of generality, y; > —r(2r;) on A; for all
J €N. On C, y; is continuous and subharmonic, and ¢; = —r(2r;). Therefore we
have y;(c;)+r(2r;) = R ~!(log M(r;) +r(2r;)). Hence, again without loss of gen-
erality, -

(1) ¥;(c;)=3R'log M(r;) for all jeN.

Let a; be a point in C where

z = ¥;(z) —max(log| f(z)|, —r(2r;))

takes its maximum. The following claims hold:

(2) a;e A;, with obvious argument.
From the maximum principle we get

() |f(a;)|=e "%, as max(log|f(z)|, —r(2r;)) is harmonic in all points ex-
cept those where | f(z)|=e "}, while y; is harmonic on A;.

(@ ¥;(a;) = ;R ~'log M(r;) because of (1).

(5) ¥j(aj)=o0(pl(a;)) follows from y;(a;) <sup;es4; log.|f(2)], log,|f(z)|=
o(p|), and sup;esq; P|(z) < A*pl(a;)+ AB+B.

(6) —logd(a;,0A4;)=o0(p|(a;)). To prove this, we define (D;); so that

sup | f(z)], sup|df(z)|,e<D; (jeN), D;=o(pl(a))).
ZEAJ' ZEAJ'
This is possible because of 2.1(1). Set C;:=4xr; D;, and suppose there exists a sub-
sequence of (a;);<n (which we call (g;); as well) such that d(a;,84;) < ir,C;2.
For |y—a;|<4r;nC;" we would get ||l f(")|—|f(a;)||=|y—a;|D;=<1. Because
|f(a;)| =1, for «; := arc a; we have on [%rje"*”[aj ~7/C;< ¢ <a;j+7/C;} [or
{2r;e’|a;—7w/C;=< ¢ < o;+m/C;}] the estimate log .| f| <log 2. Combined with
2.5, this yields ¥;(a;) =2 +log 2, contradicting (4). Thus, for all j large enough,
—log d(a;, 8A4;) <log(4C}ri’') = o(p|(a;)).
For =1 from 2.2, we pick s with 0 <s <1/« and define
bj:=pl(a;) (¥j(a;)) 1.

From (5) we get b; — oo; hence, without loss of generality, b;>1 for all j e N.
Finally, we may put:
s;:=|a;|~%d(a;, 6A;),

0;j(z)=b;y;(z)—b;s1(log b;—log s),
p;j(z):=b; max(log| f(z)|, —r(2r;))—b;s ~'(log b; —log s).
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2.6(1) is an immediate consequence of (6). To prove 2.6(2), we also need the
estimates:

(7) |f(z)|*=p;(z) for all j e N and z € C. This follows from the elementary in-
equality @ = b log, a —bs ~1(log b—log s), which holds fora=0, b=1,1>s>0.

_(r@2r;)  (logb;—logs) _ .
®  —n@)=(Go G )pla) =ota),
which follows immediately from log p|(a;) = O(log|a;|) and (4).
Hence, by omission of finitely many J,
9 pl(aj)=¢;(a;) = 1p|(a;) (jEN).
¥;+r(2r;) is positive and harmonic on {y||y—a;|<d(a;, 6A4;)}; hence Har-
nack’s inequality (on disks) yields, for |y —a;| <sj,

ej(a;)— @i (¥)=b;(Yj(a;)+r(2r;))—bi(¢;(¥)+r(2r;))
| rr)\(, _(1=lai=\?
Spl(aj)(l—i- ¢j(aj))(l (1+]aj|““) )

r(2r;) 4|a;|~ )
=pl(a;)(1 /! ! =:E;.
pl(aj)( * ‘I/j(aj))<(|aj|a+l)2 /

(E}j)jen is bounded by E < oo because of 2.2 and (4).
Now we define, for ke N:

Cy,kt —maX(If(z)ls— —q(z)) <o (ass<l/a),

zeC

Co pi= max(—p(a,)— — I( )) <o (because of (8)),

jeN
m(k):=3kA2C (C from 1.1(2)),
Cyri=Cp 3% +Cp 3 +E+(A+1)B+C (A, B from 2.1(1)).

We now verify 2.6(2).
First case. If z € A; then the following inequalities hold:

(A) 0j(2)—pj(z) = pj(a;)—pj(a;)) <E+;(¥)—p;(a;),

(B) 0=0Cy, 3k+_ |< a;)“‘ﬂ,(ﬂ,)—cz 3k+31kQ(Z)+Pj(a,),

© pi(z)=|f(z)|s= —q(z)+C1 3ks

(D) I g(@) = = p(lg;l e D) = L pl(a;) +C
m(k) J 3kCA2 S 3kA2 J

1
SEQ(Z)+(A+I)B+C.

Addition of the leftmost and rightmost terms of these inequalities yields 2.6(2).



464 JURGEN WOLTER

Second case. If 7 ¢ A; then we have:
(A) 0i(2) =p;j(2) = |f(2)|* =< —q(z)+C1 3%

(B) - a(e) =5 a(@) = —ep(lgl, —r2r)

m(k)

< 5p|(a,-)+05¢j(aj)+05¢j(y)+E+c,

©) 0<—Q(Z)+Cz 3+ (A+1)B.

Addition of the leftmost and rightmost terms of these again yields 2.6(2). O

Now we construct entire functions g; whose modulus has about the same growth
estimates from above as e%.

LEMMA 2.7. There exist a sequence (aj )jen in C with |a;| unbounded and in-
creasing, and a sequence (g;)jenN in A with

(1) gi(a;))=1(jeN);

2) vkeN,3 D, <o and m(K)eNVvjeNandzeC:

s )q(a,>]

Proof. For D:= {z]||z| <1} we find ye C=(C) with 0 <y =<1, v|yzp =1,
¥ Ipe =0 and put D :=sup,.p|dy(z)|. Take (a;);, (5;);, (¢;); from 2.6 and as-
sume without loss of generahty that s; <1 (j eN).

We define v;(z):=vy(s;” Wz— a;)). Using [7, Thm. 4.4.2] we obtain functions
(v;); on C with dv;(z) = (z—a;)1d7v;(z) and the estimate

18;(2)| <Dy exp[ 22)—

(x) SC lv;(2)|Pe "2 D (1 +|z|*)2d\z) = SC |z—a;|72|3v;(z)|2e 24 d\(z).

For g;(z):=v;(z)—(z—a;)v;(z) we have, by the Sobolev lemma, g;e H(C)
and g;(a;) =v;(a;) =1. It follows from (x) and the elementary estimate

dj:=14(1+]|a;|)? = sup lz=a;*
! ! _zeC 1+|Z|2
that
1/2
o0 (Sclg,-cznze-wz’u+|z|2>‘3d“"’))

—2¢;(2) d\ 172
e{z”z a|<s} (Z)
1/2
+(§C |Uj(Z)|23_2‘°f(Z)(l+|z|2)—3|z—aj|2d)\(z)>

~2 1/2
=(1 +2Dsj‘2dj)<g et e <) dk(z)) =<
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<(s;j+2Ds;"'d;)yme ™4,

where ¢;:=inf{p;(¥)||y —a;| <s;}.
2.6(2) states that:

1 1 .
—70(2)5—sﬂj(Z)—mCJ(aj)’f‘Cl‘i'fj (/,jeN);
hence we can apply 1.3(2) and (xx) to get:

, 5 1/2
1&ilik,q =< C(k)(sC g exp[— Rk q] d>\>

1 1/2
st<SC |gj(z)|zexp[— O q(z)](1+|z|2)‘3 d)\(z)>

- 1
SLk(Sj +2Dd1SJ 1)\/7_I' exp[CZK(q)k—— ITZ(T(C])IC)Q(‘IJ)] s

where C(k) and L are independent of j. From 1.1(3), 2.6(1), and s; <1 we finally
obtain (Dy)en independent of j such that:

1
[" 2m@K@)k) 1% )]' -

Proof of 2.4. (A similar construction with a radial weight function and much
simpler g; can be found in [16].)

\&;l1/k, g < Di €xp

I. Construction of g. We choose K =1 and a subsequence of the (a;);¢n from
2.7 (which we again write as (a;);<n) such that, for

2(z):=KT]] (1-— i),
j=1 a;
the following hold:

(1) |a1|21;

(2) |a;+1|=10]a;| for all jeN;

(3) max;.n(log|g(z)(1—z/a;)~ 1) =O(r(z)) = 0o(p|(z))
(where r is from 2.3 for q);

4) |6g(aj)|=|K/aj|Hj¢k|l—aj/ak|zl for alljeN.

II. Choose r according to 2.3 and put
p(2):=r(z)+log(1+|z|?)+log 5.
It is elementary to check that

S,,(g)c{z:||z|s|al|]uku2 (z]|z—a| <e—T].

III. Define w: A —CNby f(f(a;));. Then

(1) kerr=1I(g) and

2) Im=w =Ag:= [(zj)jlfor all ke N: "(zj)j"k:= sup; |z,-|e““/k)q‘”j) < oo},

To prove (1) we must show that, for all fe A5 with f|(,) = 0, we have
/g eAg. This is an easy consequence of the maximum-modulus principle, ap-
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plied to f/g on S,(g) (see [1, proof of Prop. 3] for the idea). Hence I(g) is local-
ized and closed.

It is obvious that Im 7 C Ay. On the other hand, take (z;); € A and define a
holomorphic function on ¥ (g) by f(a;):=z;. From 1.5 we have that

0— gWoe g (fEW, 4 +8Wae gl Tf €A} Ag— 0

is an exact sequence for each € > 0. (Note that, by a similar argument as for II1(1),
feW, , and wf =0 together imply f/g e W, ,.) Endowing gW,, , with the Hil-
bert space tOpology of Wy, 4, we then can apply 1.6 because ¢ has (ML) by 2.3.
Hence m: Ay =50 W, ¢ — Ag is surjective.

IV. With the topology induced by the ||, Ao becomes a Fréchet space. As
7: A% > Ay is obviously continuous, it follows from the open mapping theorem
that A% /I(g) = Ao. Hence A, is nuclear. As a consequence of [17, 10.1.4 and 10.2.1)
Ay is equal to Ag((g(a;));).

We now define £: A —>A by
- g(z)
£(2)),)(z) '_J-gl Y z=a)g(a;

where the g; are taken from 2.7. From 2.7(2) and 1(4) we deduce that, for all /eN,

)g,-(z),

sup|£((z;);)(z)| exp[— —q(z)]

zeC
g( ) [ ] [ 1 ]
exp|—=549(z) ||z;| 18;(z)| exp| — 57 q(2)
=B/ D, '21 |z;] exp[ mah ———q(a; )} B, Dy |(z)) il meny»
where =
B;: —supK|aJ| 111 - = exp[—iq(z)]<
jz k#j a; 21

because of 1(3).

We just proved that £ is well defined and continuous, and it is easy to check
that we£=id on A,. O

In [14] and [26] there are more general criteria for an ideal 7 to be localized or
closed in Ag, as well as more general results concerning the structure of 49 o/T.

3. Noncomplemented principal ideals. In this section we prove the theorem
stated in the introduction. In fact, we give a proof for more general weight func-
tions.

We recall that p, q, r, f, pl, ... are defined as in 2.1, unless stated otherwise.

The proof of [4, Prop. 18] shows that the following holds.

PROPOSITION 3.1 ([4]). Let p: CN—> [0, ) be a componentwise radial pro-
Jective weight function with property 1.13(1). Any ideal I in A generated by fi-
nitely many polynomials is closed, localized, and complemented in AO
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The next proposition gives the relation of complementation to products of
principal ideals.

PROPOSITION 3.2. Let p be any projective weight function, take F, G eA% \ {0},
and let one of the ideals I(F), I1(G), I(FG) be closed.
(1) Then all three are closed if and only if two of them are closed.
(2) This being assumed, I(FG) is complemented if and only if both I(F) and
I(G) are complemented.

Proof. For H e A%, define My: A)— A} by f~ Hf and define T}, as its trans-
posed map. Because of the open mapping theorem, I(H) is closed if and only if
My, is a topological isomorphism onto I(H); (1) is easily deduced from this. To
prove (2), one must check that TgeTr=Tgr= TFG = TFoTG, and that a closed
I(H) is complemented in A0 if and only if T :(A ) j — (A 5)5 has a continuous
linear right inverse Ry;. This done, if there exists an R rc then TgeRps and TroRpg
are continuous linear right inverses for 7 and 7T, respectively. If R and R exist,
then Rp°Rg is a continuous linear right inverse for 7. O]

We are now going to prove several theorems showing that certain ideals are not
complemented in AO. To prepare them, we prove the following.

PROPOSITION 3.3. For any feA , f#0, V(f) infinite, and F(z,w):= f(2),
I(F) is not complemented in A

Proof. Define ®: A) — A% by ®(g)(z,w) := g(z) and define ¢: A% — 49 by
o(G)(z,w):=G(z,0). Both ® and ¢ are continuous and linear. It is easily checked
that Im® + I(F) = (Id—¢)~1I(F), hence Im ® + I(F) is closed because of 1.11.

For ©: A% — A% /I(F) the canonical quotient map, we have ker(©+®) =I(f)
and A% /I( f) = (Im ® + I(F))/I(F), the latter being closed in A)/I(F).

By [14 2.8] A (/I(f) is a power series space of finite type, and hence A o/ I(F)
cannot be 1somorph1c to a closed subspace of AO because of 1.13 and 1. 14 ]

LEMMA 3.4. Let Fe A), be of the form
F(z,w)=f(z)—v(z, W)= f(2)+wpy(2)+---+w"Ip,_(z)+w", m=]1,

with v, p; polynomials (j =1, ..., m—1) but f not a polynomial. Then the follow-
ing hold:

(1) any polynomial dividing F is constant;

2) V(a,F, F) is discrete;

(3) He AS is in I(F) if and only if H |y =0.

Proof. (1) Assume QH = F, where Q is a polynomial. Then

Q(z, W) =qo(2) +wq (z)+ -+ +w/q(z), q,#0,
H(z,w)=ho(z)+wh|(2)+---+W"h,(2), n+l=m.

If /=0, we have 1 =g¢4,,, hence g, is constant.
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For />0, we could conclude by induction that

q:h,=1=h, is a polynomial,
qi-1hn+qihy_y=pm_1=h,_, is a polynomial,

qi_nhy+ - +qhg=p;= hy is a polynomial.

Hence f=gqgyh, had to be a polynomial, contrary to our hypothesis.

(2) Define V:={aeV(d, F, F)|dim V(d, F, F)|,=1}. Then Vis a 1-dimensional
subvariety of V' (9, F), which again is algebraic by virtue of the theorems of Chow
or Stoll. If V'#@, by the Hilbert Nullstellensatz we can find a nonconstant poly-
nomial Q dividing @, F such that QC[z, w] = {H € C[z, w]|H |y = 0}. By [19,
Prop. 4] this means that Q divides F, which contradicts (1).

(3) “="1is trivial. “<”: If F|, is reducible, then a € V(9, F, F); this set is dis-
crete by (2). H/F is well defined and holomorphic outside of V (3, F, F) for each
H eA0 with H |y =0. Hence it can be extended to an entire function (see e.g.
[s, Chap I, §C.6]), which because of 1.9 is in A9, too. 7

For the theorems of Stoll and Chow see [20]; for the Hilbert Nullstellensatz see
[8, §1.8, Thm. 16].
Now we state our main results.

THEOREM 3.5. Take p, p| as in 2.1. For f € AS and F(z, w) := f(z) — w"
(meN), I(F) is complemented in A0 if and only if f is a polynomial.

THEOREM 3.6. Assume that p, in addition to 2.1, has the property:
(1) there exists C < oo such that, for all z, & € C? with |z —£| <1,

p(§)=Cp(z)+C.

ThenforfeAg, v a polynomial in w, and F(z,w):= f(z) —v(w), the ideal I(F)
is complemented in AO if and only if one of the following statements is true:
@) fisa polynomzal or
(b) v is constant and z~ f(z)—v has at most finitely many zeros.

THEOREM 3.7. Assume that p, in addition to 2.1, is radial. Take f e A9 and
set v(z, W)= j<m @i, 2w/ (@o,m#0). Then, for F(z,w):= f(z)—v(z, w), the
ideal I(F) is complemented in Ag if and only if one of the following statements
holds:

(a) fis a polynomial; or

(b) m=0and z~ f(z)—ag,o has at most finitely many zeros.

REMARK 3.8. Each of the Theorems 3.5, 3.6, and 3.7 states that the 7(F) con-
sidered are complemented if and only if they are generated by a polynomial.

We now prove Theorem 3.7. The proofs of Theorems 3.5 and 3.6 are analo-
gous, but as v is simpler we have less restrictions on p and the required estimates
are easier to obtain.

Proof of Theorem 3.7. “ <" follows immediately from 3.1.
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“=": In the case that v is constant, we have from 3.3 that V(f—v) in C s fi-
nite. So the only case left to consider is: f is not a polynomial, m:=degv > 0.
For this case we shall show that Ag /I(F) contains a closed subspace isomorphic
to a power series space of finite type. Because of 1.13 and 1.14 this proves our
theorem.

We define

T:=(H e A} |there is a G € H(C?) with H(z, w) = G(z, v(z, w)) (z, we C)}.

and p’(z, w):=p(z, |w|/m). 1t is easily checked that p” fulfills 2.1. &: A}, —» A4J ,
defined by ®(G)(z, w) := G(z, v(z, w)), is continuous, and Im ® C T because
|z|>+|v(z, w)|?/" has the same growth as C,|z|2+ C,|w|? for certain C;, C;eR,..
IfO: Ag —>A2/I(F) is the quotient map and F’(z, w):= f(z) —w, then ker(G-®) =
I(F’) in AY.. .

By [14, 2.3] we find a radial inductive weight function § such that fe A;, §=
o(p|). With s(z, w):=5(z)+log(l +|w|?) we have

2
—-log( > |8:F'(z, w)l) <=0=<0(s(z,w)).
i=1

By 1.5 we have that, for q’(z):=p’(z, f(z)) and 7(G)(z):=G(z, f(z)),
0> F' Wy > {GeW, ,y+F' W) | 7(G)e A%} > A >0

is an exact sequence for each € > 0. Because of 1.6, [14, 1.16] (see 1.8) and the open
mapping theorem, 7 induces an isomorphism : Ag, JI(F") —+Ag, of locally con-
vex algebras.

We write [L] for the equivalence class in A% /I(F) of an L € A). For a sequence
([H;1); in (T+I(F))/I(F) which converges in A?, /I(F), we can assume that (H});
converges to an HeAg (see [11, v. 2, §33.4(2)]). For all (z,w), (z, w)eV(F)itis
obvious that H(z, w) =H(z, w’).

We can define

g(z):=H(z,w) if (z,w)eV(F)

because, for each z € C, f(z)—v(z, -) has a zero w. For 5: (z, w)+~z it is easy to
see that (V(F), 5, C) is an analytic cover in the sense of [5, Chap. III, §B.3] and
hence g € H(C). Indeed ge A%, as for all e >0

sup|g(z)| exp[—ep(|z|, | f(z)|/™)]

zeC
= Sup |H(Z, W)I exp[—fp(\/|Z|2+|v(z, W)IZ/m )]
(z,w)eV(F)
< sup |H(z,w)|exp[—eKp(|z], |w|)+eK] <
(z,w)eV(F)

with suitable K < 0. As w: A% /I(F’') — A} is an isomorphism, there exists
G eAg: such that g(z) = G(z, f(z)) (z€ C). Hence ®(G) € [H ] because of 3.4(3)
and [H]e(T+I(F))/I(F).

We have shown that (T+I(F))/I(F) is closed in A?, /I(F) and that

(T+I(F)/I(F) =A% /I(F') =AY
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By 2.4, A0 has a closed subspace isomorphic to a power series space of finite
type, so the same holds for 4° »/I(F) and our theorem is proved. [l

The theorem in the introduction obviously is a combination of 3.1, 3.2, and 3.7
for the special case p(z):=|z|*.

One might conjecture from these theorems that, for p(z)=|z|* a principal
ideal in A0 is complemented if and only if it is generated by a polynomial. This is
true for AO(C), as is shown in [14]. However, in AO(CZ) we can give neither a
proof nor a counterexample.

Before we consider applications, we should mention another formulation of
our main results.

REMARK 3.9. Because of 1.13, all our A0 have the linear topological invariants
(DN) of Vogt [24] and (2) of Vogt and Wagner [25]. Any principal ideal 7 in A0
is isomorphic to A° because of 1.11. Hence the splitting theorem [25, 1.4] states
that 7 is complemented if and only if A% »/I has (DN).

The Ag from Section 2 thus provide a collection of examples of weighted (FN)-
algebras not having (DN), added to those with radial weight functions from [16].

4. Right inverses of convolution operators. In this section we outline the con-
sequences of our results for convolution operators on certain A,, obtained by
Fourier-Borel transformation.

DEFINITION 4.1. For a convex, continuous, componentwise radial inductive
weight function g: CN— [0, ) with |z|=0(g(z)), we define the Young conju-
gate g* by

q*(z):=sup{{t,s)—q(s)|s € [0, )V},

where #:=(|z4], ..., |2n]) e RN
It is easy to check that ¢* is well-defined and real-valued.

REMARK 4.2. Take g as in 4.1 with the property
(1) there exist 1< D<A;<A; <o and B;, B, < with

A1q(z)—B;=q(Dz)<A,q(z)+B, forall zeC¥V,

Then g* is a convex, componentwise radial projective weight function having
property (1) (with different constants in general). Furthermore, we have (g*)*=
g, and g and g* have the property 3.6(1).

Proof. For s € [0, )N we have
A
(+) q*(f-ﬁ)=sum<Als,r>—q(Dr)}ssup{A1<s,r>—A1q(r)}+Bl

=A1q*(s)+B1’

and, from an analogous estimate,

A,
 —=s)=A4,9*(s)—B,.
q (D S) 2q*(s)— B,
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Iterating (+) we find A,, B, < o such that
A - ~
q*(—is) <A,q*(s)+B,,
D
thus proving 4.2(1) for g*. ¢* obviously fulfills 1.1(1) and 1.1(3). For r, s € [0, o)V,
r—se[—1,11%, and v:=(|r;—sy], ..., |Frn—5n|), we obtain

g*(r)=sup{(s+(r—s), t)—q(t)} <sup{(s, t)—1q ()} +sup{{v, 1) — 1q()}
{ t t

=34*(2s)+1q*(2v) < Cgq*(s)+C

for a suitable C (independent of r,s) because g* is bounded on [0,2]" and (1)
holds. Standard theory of convex functions (see [18, Thm. 12.2, p. 104]) gives
(g*)*=q; hence we get 3.6(1) for q if we exchange g and ¢* in the previous argu-
ments. O

DEFINITION 4.3. For g as in 4.2 and e (A4,)’, we define the Fourier-Borel
transform F(u) by

F(n)(z):=(pg, e52) (zeCN).
PROPOSITION 4.4 ([21]). For q and p:=q* as in 4.2,
F:(A)p— A
is a linear topological isomorphism.

Proof. This is a special case of [21, Thm. 5.2]. To see this, one need only check
that (kq)*(z) = kq*((1/k)z) (z € C¥, k € N) and then apply 4.2(1) for g* The
proof of [14, 4.2] is also easily generalized to give us this proposition. O

DEFINITION 4.5. For g as in 4.2 and p,v € (4,)" we set
M,(v)i=pxv:=F S (W)F ).
7, is defined as the transpose A, — A, of the continuous linear map M,,.
Standard arguments yield the following.

PROPOSITION 4.6. For q as in 4.2 the following hold.

(1) (A,), endowed with the product * becomes a commutative (FN)-algebra
with the unit 6y: f~ f(0).

(2) For F(p)(w)=X;a;w! (ie (No)N) we have

T.(f)=3 a;0'+-3(f) forall feA,,
{
and this series converges in A,. Therefore T, is a linear differential operator with

constant coefficients, possibly of infinite order.
(3) Forall feA,, ne(A,), and zeCH,

T.()(2) =Lpg, f(E+2)).

Hence T, is the convolution operator associated with p.
(4) T, is surjective for all pe (A,)'\{0}.
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Note that (4) is just an interpretation of 1.11 by standard duality theory (see [11,
v. 2, §33.4(2)]).

The next proposition gives the connection between principal ideals in Ag and
convolution operators on A4,.

PROPOSITION 4.7. For q as in 4.2, p:=q*, pe (A,), and F:=F(p), F trans-
JSforms the exact sequence

0—(kerT,)t - (A,) = (A,)/(kerT,)+ -0
into
0 I(F)—A)— A5 /I(F)—0.

In particular, ker T, is complemented in A, if and only if I1(F) is complemented
in Aj.

Proof. 1t follows from standard duality theory that (ker 7,)* =Im(M,), and
by 4.4 that §(Im(M,,)) =I(F), which proves the proposition. OJ

It is now obvious how to apply 3.6 and 3.7 to obtain 4.8 and 4.9.

COROLLARY 4.8. Take g: C2— [0, o) as in 4.2 and a nonzero convolution
operator T: A, — A, of the form

S = F(8)f—=P(3)f

JSor a differential polynomial P(d,) and a linear differential operator F(9,) of pos-
sibly infinite order. Then T has a continuous linear right inverse if and only if
either FF(d,) is of finite order too, or P is constant such that F(z)— P has at most
finitely many zeros.

COROLLARY 4.9. Assume q: C?2— [0, «) is as in 4.2 and, in addition, is radi-
al. Take a nonzero convolution operator T: A;— A, of the form

S = P(31,0,)f—F(3).f

Jfor a differential polynomial P(0,, d,) and a linear differential operator F(8,) of
possibly infinite order. Assume P is of the form
P(al: az) = 2 a,-,jafaé', ao, m #0.
i+j<=m
Then T has a continuous linear right inverse if and only if either F(d,) is of fi-
nite order, or P =ay ( such that F(z)—ay o has at most finitely many zeros.

REMARK 4.10. Of course, the other results of Section 3 have analogues in this
setting also. We will omit them, as the way to deduce them should be clear.
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