ANALYTIC CONTINUATION OF BIHOLOMORPHIC MAPS

Eric Bedford and Sergey Pinchuk

In this note we give another proof of the following result of Baouendi, Jacobowitz, and Treves [1].

THEOREM. Let $\Omega_1, \Omega_2 \subset \mathbb{C}^n$ be domains with real analytic boundaries, and let $f: \Omega_1 \to \Omega_2$ be a biholomorphism which extends as a diffeomorphism $f: \overline{\Omega}_1 \to \overline{\Omega}_2$. If $p \in \partial \Omega_1$ and if there is no nontrivial complex variety in $\partial \Omega_2$ passing through f(p), then f extends holomorphically to a neighborhood of p.

More general results have been obtained by several authors; see Baouendi and Rothschild [2] and Diederich and Fornaess [4] and the references there. The proof given here applies in more general situations. It is evident, for instance, that the proof applies most naturally to the condition that $\partial\Omega_2$ have essentially finite type at p.

We let $\Gamma_f \subset \Omega_1 \times \Omega_2$ denote the graph of f. In what follows, we will show that there is a germ V of an n-dimensional variety in $\mathbb{C}^n \times \mathbb{C}^n$ containing (p, f(p)) and Γ_f . It will then follow from Lemma 1 of [3] that f extends holomorphically past p.

We may assume that $p = \underline{0}$ and that $\partial \Omega_1 = \{\varphi(\zeta, \overline{\zeta}) = 0\}$ near 0, where $\varphi(\zeta, \overline{\eta})$ is analytic in ζ and $\varphi(\zeta, \overline{\eta}) = \varphi(\eta, \overline{\zeta})$. We may assume also that $\varphi = \frac{1}{2}(\zeta_n + \overline{\eta}_n) + \cdots$, so that $\{\text{Re } \zeta_n = 0\}$ is the tangent plane to $\partial \Omega_1$ at 0. Thus

$$E = \{\operatorname{Re} \zeta_1 = \dots = \operatorname{Re} \zeta_{n-1} = 0\} \cap \Omega_1$$

is a totally real *n*-manifold, and the reflection about E is given by solving the complexification of the real defining equations: $\zeta_j + \overline{\zeta}_j^* = 0$, $1 \le j \le n-1$, and $\varphi(\zeta, \overline{\zeta}^*) = \frac{1}{2}(\zeta_n + \overline{\zeta}_n^*) + \cdots = 0$.

Thus the reflection about E is an antiholomorphic map of the form:

$$(\zeta_1^*,\ldots,\zeta_n^*)=-(\bar{\zeta}_1,\ldots,\bar{\zeta}_n)+\cdots.$$

We let Ω_1^* denote the image of Ω_1 under this reflection so that $E \subset \partial \Omega_1 \cap \partial \Omega_1^*$ and $T_0 \partial \Omega_1^* = T_0 \partial \Omega_1$, although the outward normals point in opposite directions at 0.

Let us start with $\tilde{X}_j = \partial_{z_j} - (\varphi_{z_j}/\varphi_{z_n})\partial_{z_n}$, $1 \le j \le n-1$, and $\tilde{X}^{\alpha} = \tilde{X}_1^{\alpha_1} \cdots \tilde{X}_{n-1}^{\alpha_{n-1}}$. We then define X_j and X^{α} by setting $X_j = \tilde{X}_j$ and $X^{\alpha} = \tilde{X}^{\alpha}$ on E, and extending them from E by making the coefficients holomorphic in a neighborhood of E. Thus X^{α} is tangential to $\partial \Omega_1$ at points of $\partial \Omega_1 \cap E$. Although $X^{\alpha} \ne (X_1)^{\alpha_1} \cdots (X_{n-1})^{\alpha_{n-1}}$, the highest-order parts of both operators are equal to $\partial_{\alpha}^{\alpha}$ at 0.

Now let f(0) = 0, and let $\psi(w, \overline{w})$ be a defining function for Ω_2 . It follows that the (antiholomorphic) operators \overline{X}^{α} annihilate $\psi(f(z), \overline{f(z)})$ along E. By the chain rule, we obtain an expression of the form:

$$\bar{X}^{\alpha}\psi(f(z),\overline{f(z)}) = \sum \partial_{\bar{w}}^{\gamma}\psi P_{\gamma}(\bar{X}^{\alpha_i}f_i(z)),$$

Received August 28, 1987. Revision received February 3, 1988. Michigan Math. J. 35 (1988).

where P_{γ} represents a polynomial in the terms $\overline{X^{\alpha_i}f_j}$, with holomorphic coefficients. We use the right-hand side of this expression to define

$$\phi^{\alpha}(w,z) := \sum \partial_{\overline{w}}^{\gamma} \psi(w,\overline{f(z)}) P_{\gamma}(\overline{X^{\alpha_i} f_i(z)})$$

for $|w| < \epsilon$ and $z \in \Omega_1 \cap \{|z| < \delta\}$. We note that ϕ^{α} is holomorphic in w and antiholomorphic in z, and that $\phi^{\alpha}(w, z) = 0$ for $z \in E$ and w = f(z).

We are thus led to define the extension of the graph Γ_f over Ω_1^* as

$$V^* = \bigcap_{\alpha} \{(z^*, w) \in \Omega_{1,\delta}^* \times \{|w| < \epsilon\} : \phi^{\alpha}(w, z) = 0\},$$

where $\Omega_{1,\delta}^* = \Omega_1^* \cap \{|z| < \delta\}$. Let $\pi_1 : \mathbb{C}^n \times \mathbb{C}^n \to \mathbb{C}^n$ denote projection onto the first copy of \mathbb{C}^n . Since $\phi^{\alpha}(w,z^*)$ is holomorpic, V^* is an analytic variety. Without loss of generality, we may assume that the strongly pseudoconvex points of $\partial\Omega$ are dense in E. It is well known (see [5; 6]) that f extends past strongly pseudoconvex boundary points. Thus we have $\bar{V}^* \supset \bar{\Gamma}_f \cap \pi_1^{-1} E$, and in particular V^* is nonempty.

CLAIM. The projection $\pi_1: V^* \to \Omega_{1,\delta}^*$ is proper for $\delta > 0$ sufficiently small.

To prove the claim, it suffices to show that the fiber over the point 0 (i.e., $\{w \in \mathbb{C}^n \colon |w| < \epsilon \text{ and } \phi^{\alpha}(w, 0) = 0 \text{ for all } \alpha\}$) is discrete. The claim is an immediate consequence of the three lemmas below. In them, we will assume that ψ satisfies the condition $\psi(w, 0) = w_n$. This may be achieved by setting $\tilde{w}_j = w_j$, $1 \le j \le n-1$, $\tilde{w}_n = \psi(w, 0)$ so that in these coordinates $\psi(\tilde{w}, \bar{\tilde{w}}) = \tilde{w}_n + \bar{\tilde{w}}_n + \text{mixed terms}$.

LEMMA 1. The variety $W = \{w \in \mathbb{C}^n : |w| < \epsilon \text{ and } \partial_{\overline{w}}^{\alpha} \psi(w, 0) = 0 \text{ for all } \alpha = (\alpha_1, ..., \alpha_{n-1}, 0)\}$ is discrete for $\epsilon > 0$ small.

Proof. We note that since ψ is real analytic, it is given by the power series

$$\psi(w, \bar{w}) = \sum \frac{\bar{w}^{\alpha}}{\alpha!} \partial_{\bar{w}}^{\alpha} \psi(w, 0).$$

By the remark above, we see that $W \subset \{\psi(w,0)=0\} = \{w_n=0\}$. If the Lemma does not hold, there is a nontrivial germ W' of a variety $0 \in W' \subset W$. For $w_n=0$, the power series remains valid if we sum only over $\alpha = (\alpha_1, ..., \alpha_{n-1}, 0)$. Thus it follows that $W' \subset \{\psi(w, \overline{w}) = 0\}$, which contradicts the hypothesis of the Theorem.

LEMMA 2.
$$X^{\alpha} f_n(0) = 0$$
 for all $\alpha = (\alpha_1, ..., \alpha_{n-1}, 0)$.

Proof. We note that

$$\phi^{\alpha}(w,0) = \psi_{\bar{w}_n}(w,0)(\overline{X^{\alpha}f_n(0)}) + \sum \partial_{\bar{w}}^{\beta}\psi(w,0)P_{\beta}(\overline{X^{\alpha_i}f_j(0)}),$$

where the P_{β} denotes a polynomial in terms of the form $X^{\alpha_i}f_j$, and $|\alpha_i| \leq |\alpha|$; when j = n, $|\alpha_i| < |\alpha|$. With the normalization of ψ , we have $\partial_{\overline{w}}^{\beta}\psi(0,0) = 0$ for $\beta \neq (0, ..., 0, 1)$. Further, $P_{\beta}(0) = 0$. Since $\phi^{\alpha}(0, 0) = 0$, an induction argument gives us $X^{\alpha}f_n(0) = 0$.

LEMMA 3. Consider only indices α , β with $\alpha_n = \beta_n = 0$. If w_0 satisfies $\phi^{\beta}(w_0, 0) = 0$ for $|\beta| \le |\alpha|$, then $\partial_{\bar{w}}^{\beta} \psi(w_0, 0) = 0$ for $|\beta| \le |\alpha|$.

Proof. We may make a linear change of coordinates in the range so that $X_i f_i(0) = \delta_{ij}$ for $1 \le i, j \le n-1$. Thus

$$\phi^{\alpha}(w,0) = \partial_{\overline{w}}^{\alpha}\psi(w,0) + \sum_{|\beta| < |\alpha|} c^{\beta}\partial_{\overline{w}}^{\beta}\psi(w,0)$$

for all multi-indices $\alpha = (\alpha_1, ..., \alpha_{n-1}, 0)$. By Lemma 2, we only sum over β of the form $(\beta_1, ..., \beta_{n-1}, 0)$. The Lemma then follows by induction.

Now we observe that $\Omega_{1,\delta}^*$ and V^* were determined by the choice of totally real manifold E. For real a_1, \ldots, a_{n-1} , we may work with

$$E_a = \{x_1 = a_1, \dots, x_{n-1} = a_{n-1}\} \cap \partial \Omega_1.$$

The vector fields X_j , X^{α} , the domain Ω_1^* , and the functions ϕ^{α} all depend real analytically on a. Since

$$\{|w| < \epsilon : \phi_a^{\alpha}(w, 0) = 0 \text{ for all } \alpha\}$$

is discrete for a = 0, it follows that it is discrete for |a| small. Thus the projection $\pi_1: V_a^* \to \Omega_{1,\delta}^*(a)$ is proper for |a| small, and so π_1 has a constant number of preimages (with multiplicity)

$$\pi_1^{-1}(z) = \{W_a^1(z), \dots, W_a^q(z)\}.$$

Now let $P_j(z_1,...,z_n,w_j)$ be

$$P_{j} = \prod_{i=1}^{q} (w_{j} - (W_{a}^{i}(z))_{j})$$

$$= w_{j}^{q} + A_{j}^{1}(z)w_{j}^{q-1} + \dots + A_{j}^{q}(z),$$

which vanishes on V_a^* . It follows that $A_j^i(z)$ is holomorphic on $\Omega_{1,\delta}^*(a)$ and smooth on the closure. Thus the functions $W_a^k(z)$ are smooth on an open dense subset of E_a . As was observed above, w = f(z) must belong to $\pi_1^{-1}(z)$. Now we may take an irreducible component of V_a^* if necessary to obtain that: V_a^* is irreducible for an open dense set of $\{|a| < c\}$, V_a^* varies continuously with a, and V_a^* gives an analytic continuation of Γ_f over a dense open subset of E_a .

We conclude from this that V_a^* is independent of a. Thus $\tilde{V}^* = \bigcup_{|a| < c} V_a^*$ is an analytic subvariety of $\pi_1^{-1} \bigcup_{|a| < c} \Omega_{1,\delta}^*(a)$. Thus if P_j is as above, then it follows that the coefficients $A_j^k(z)$ are holomorphic in $({}^c\Omega_1) \cap \{|z| < \delta\}$. By a result of Trépreau [4], we conclude that $A_j^k(z)$ extends holomorphically to a neighborhood of 0. Thus

$$V = \{(z, w): P_j(z, w_j) = 0, 1 \le j \le n\}$$

is a germ of an *n*-dimensional variety containing Γ_f .

REFERENCES

- 1. M. S. Baouendi, H. Jacobowitz, and F. Treves, *On the analyticity of CR mappings*, Ann. of Math. (2) 122 (1985), 365-400.
- 2. M. S. Baouendi and L. Rothschild, Germs of CR maps between real analytic hypersurfaces, preprint.

- 3. E. Bedford and S. Bell, *Extension of proper holomorphic mappings past the boundary*, Manuscripta Math. 50 (1985), 1–10.
- 4. K. Diederich and J.-E. Fornaess, Proper holomorphic mappings between real-analytic pseudoconvex domains in \mathbb{C}^n , preprint.
- 5. H. Lewy, On the boundary behavior of holomorphic mappings, Accad. Naz. Lincei 35 (1977), 1-8.
- 6. S. Pinchuk, On the analytic continuation of holomorphic mappings, Mat. Sb. (N.S.) 98(140) (1975), Math. USSR Sbornik 27 (1975), 375–392.
- 7. J.-M. Trépreau, Sur le prolongement holomorphe des fonctions C-R définies sur une hypersurface réelle de classe \mathbb{C}^2 dans \mathbb{C}^n , Invent. Math. 83 (1986), 583-592.

Department of Mathematics Indiana University Bloomington, IN 47405

Department of Mathematics Bashkirian State University Ufa USSR