LIPSCHITZ SPACES AND SPACES OF
HARMONIC FUNCTIONS IN THE UNIT DISC

Miroslav Pavlovié

1. Introduction and the main result. In a series of papers [6; 7; 8] Shields and
Williams studied the class 4. (¥) consisting of those functions # harmonic in the
unit circle for which

(1) u(z) = 0<¢(—1—}7>), r=|z|—1-,

where ¥ (x), x =1, is a positive real function that grows more slowly than some
power of x. In the present paper we solve Problem C of [7] by showing that each
h.(¥) is isomorphic, via a multiplier transform, to some space of functions con-
tinuous on the unit circle satisfying a modulus of continuity condition. Of course,
our solution generalizes the classical theorems of Hardy and Littlewood and of
Zygmund (see [2, Chap. 5, §§1, 2]), and is motivated by them.

Before stating our main result we recall some definitions and facts.

Moduli of continuity. For a complex-valued function 4, defined on the real
line, let A7h (n is a positive integer, ¢ is a real number) denote the nth difference
with step ¢:

(ALh)(0) = A h(0) =h(0+1t)—h(B) (O real),
ATh=A A""1h, n=2.
If g is a complex-valued function defined on the unit circle 7', then A’ g is defined
by
ATg(e’%) = ATh(0), h(0) =g(e’).

For fixed n and ¢, A7 is a linear operator which preserves C(T’), the space of
continuous functions on 7. Furthermore,

|A7gl=2"|g|, geC(T),

where ||| = ||« stands for the maximum norm in C(7). The modulus of conti-
nuity of order » is defined by

wp(g, t) =sup{|Aig|:|s|<t}, >0, geC(T).

Lipschitz spaces. For the sake of convenience we assume that all harmonic
functions under consideration vanish at the origin. Similarly, if g e C(T) we as-
sume that g(0) =0, where g is the Fourier transform of g. Let #(A) be the class
of all complex-valued functions harmonic in the unit disc A, and let #C(A) be
the subspace of #(A) consisting of functions continuous on the closed disc. It is
well known that the map v — u*, ue hC(A), where u* is the boundary function
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of u, is a linear isometry of the space #C(A) (endowed with the maximum-norm)
onto C(7T). Thus any subclass of C(7') may be regarded as a subclass of AC(4),
and conversely.

Let ¢ be a positive function on (0, 1] and let n be a positive integer. The Lip-
schitz space Lip, ¢ consists of those u e hC(A)= C(T) for which

(2) wp(u*, 1) =0(9(2)), -0,
and is normed by
lelg,» = supfw,(u*, 1) /6(2): 0<t=<1).
The spaces h, ,(¥). Let ¥ be a positive function on [1, ). For u € 2(A) let
|uly =sup{M(u, r)/Y(1/(1—r)): 0<r <1},

where

M(u,r)= M, (u,r)=max{|u(z)|: |z|=r].
We define

R, n(¥)={ueh(A): |D"u|y<oo}, n=0,1,2,...,

where

. 0"u . Qi s .

(D”u)(re’9)=aen (re?®y= Y (ij)ra(j)rlileis, reifeA.
J=—o0

It is clear that the space A, ,(¥), normed by |D"u|,, is isometric to h(y)=
he, o(¥) via the multiplier transform D"

The hypotheses on Y, ¢. Bernstein [1] introduced the notion of almost increas-
ing and almost decreasing functions. A real function ¢ is almost increasing if
there is a positive constant C such that x < y implies ¢(x) =< Ceo(y). An almost
decreasing function is defined similarly. Throughout the paper we assume that y
is almost increasing and positive on [1, «), and satisfies the following condition:

(U) There is a constant C < oo such that y(2x) < Cy(x), x=1.

As is remarked in [8], (U) is equivalent to the existence of a positive number o
such that

(u,) ¥(x)/x%is almost decreasing for x > 1.

We also assume that ¢ is positive and almost increasing on (0, 1] and, for some
B8>0,

(Ug) ¢ (t)/t8 is almost decreasing for 0 < r <1.
Our solution of the Shields-Williams problem is as follows.

THEOREM 1. Let n be a positive integer and assume that y satisfies (U) and
that ¢ satisfies (UL). Then the following conditions are equivalent:

(@) Lipn b= hoo,n(‘tb);
(b) there are constants a (e <n) and C (0 < C < o) such that y satisfies (U,)
and ¢(t)/C=t"Yy(1/t)=C¢(t), 0<t=1.

In particular, if (t) = t"y(1/t) and y satisfies (U,), a < n, then Lip,, ¢ = he o({).
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REMARK. The condition (U?) is not restrictive. See Lemma 4.

It follows from Theorem 1 that each A, (¢) (with ¥ satisfying (U)) is naturally
isomorphic to some Lip, ¢. Conversely, if ¢ is a normal function in the sense of
Shields and Williams [6; 8], that is, if

there is a positive number a such that
¢ (¢)/t%is almost increasing for0 <z <1,

then (by Theorem 1) Lip, ¢ = A _,(¥), where ¢ is defined by ¢ (x) =x"¢(1/x).
On the other hand, we do not know any multiplier transform which maps the
space Lip; ¢, ¢(¢) =1/log(et), onto one of the spaces 4,(y). Further remarks
are contained in §5.

The proof of the implication (b) = (a) is based on the following lemmas which
are of some independent interest.

(N)

LEMMA 1. If ue hC(A) then
3) MDu,ry=C(l—r)"w,(u*,1—-r), 0<r<i,
where C < o is a constant depending only onn (n=1,2,...).

Since w, (u*,1—r) <2"|u*|, it follows that (3) improves the classical inequality
M(D"™u, ry< C(—r)="|u*|.

Our proof of Lemma 1, given in §3, differs from the standard proofs of similar
results (see [2; 5]) and is independent of any pointwise estimate for the Poisson
(or Cauchy) kernel.

LEMMA 2. If ue h(A) and
@) S:) (1—r)"="M(D"u, r) dr < o,
then ue hC(A) and
(5) w, (1*, 1) < CSI_{ (1—r)"=\M(D"u,rydr, 0<t<l,

where C depends only on n.

The proof of this lemma (§4) resembles the proof of the Hardy-Littlewood
theorem [2, Thm. 5.1], but there is a difference.
In the last section we give some generalizations of Theorem 1.

2. Proof of Theorem 1. Throughout this section, # will denote a positive inte-
ger. The condition (U, ), mentioned in the introduction, can be written in the form

(Ua) v =C/x)*yY(x), y=x=1.
Using this, one easily proves that if a <#n then (U,) implies

(Ar) [Tvoyrtay=cx-mypx), x=1,

where C is a constant.
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REMARK. We use the letters C, ¢ to denote positive constants which may vary
from line to line.

The following lemma is proved in the same way as Lemma 2 of [8]. We sketch
a proof for completeness.

LEMMA 3. ¢ satisfies (A,,) if and only if there is o < n such that v satisfies (U,).

Proof. We have to prove that (A,) implies (U,) for some a < n. Let y satisfy
(A,) and let '

F(x)=§;°¢(y)y—"—1dy, x=1.

It is easily seen that cF(x) = x "y (x) < CF(x), x =1, and this shows that it suf-
fices to find b > 0 such that x2F(x) is nonincreasing for x = 1. We choose b so
that F(x) < (1/b)y(x)x ~", x =1, which can be written as F(x) = —(1/b)xF'(x),
x =1, where F’ stands for the derivative of the (absolutely continuous) function
F. This implies that the derivative of the function x2F(x) is <0, and this con-
cludes the proof of Lemma 3. O

The implication (b) = (a) of Theorem 1 is an immediate consequence of Lem-
mas 1, 2, and 3 together with the identity

o 1

[” vory=rrtay={_ a-ry-wa/a-mar, 0<i<l.
it -t

In order to prove the implication (a) = (b), we need some further lemmas.

LEMMA 4. If ge C(T) then the function w,(g,t)/t" is almost decreasing for
t>0.

Proof. This fact is a consequence of the known inequality
(6) w,(8,21) <2"w,(g,t), t>0.

Namely, if A\=2" (m=0,1,2,...) then (6) implies w, (g, \t) < N'w,(g,?), t>0.
If A >1is arbitrary, we choose an integer m =0 so that 2” <\ <27+l and then
w, (g, Nt) < w,(g,2m+t1t)y<2mtng (g 1) <2"Nw,(g, ).

The easiest way to prove inequality (6) is to use the identity

) tg(e’®) =3 g(j) (e —1)ne'st,
J
2 being a trigonometric polynomial. Hence

5:8(e®) =3 g(j) (e’ +1)" (e —1)"
J

n /n .

=3 Afg(el0+kn),
k=0 k

and this implies (6). ]

LEMMA 5. If g C(T) and gi(w) =g(w*), where we T and k=1,2,..., then

0, (&k> 7/k) = | 8 -
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Proof. 1t follows from (7) that

(—D"g(w) = —217; S:{ (A"g)(w)dt, weT.

(Recall that we assume g(0) =0 for ge C(T').) Hence

1
"g"co——’ES "A’;g"codtswn(g"’r)=wn(gk’ W/k)- D

LEMMA 6. Let X be one of the spaces Lip, ¢, hy ,(¥).

(i) X is a Banach space.
(ii) If {u,,} is a norm convergent sequence in X, u,,— u, then u,,(z)— u(z)
uniformly on each compact subset of A.

Proof. In the case of h,,_,(¢) the result is a consequence of Proposition 1 of
[7]. If X =Lip,, ¢ then, by Lemmas 5 (k=1) and 4,

lulx = wu(u*, ) /d(1) = clu*|w=|u|., ueX.

This shows that X is continuously embedded into AC(A) = C(T), and this implies
(ii). Also, it is easy to deduce the completeness of Lip,, ¢ from the completeness
of C(T') and the embedding Lip, ¢ C C(T).

LEMMA 7. Let ¥, ¢ satisfy (U) and (UD), respectively. Let u,(z) =z*, where
|z|<land k=1,2,.... Then

(8) "Dnllk",//h’kn/lﬁ(k), k=1,2,...,
) lule, nR1/6(1/k), k=1,2,....

REMARK. For two nonnegative functions Fj, F, defined on a set S we write
Fi(s) R F(s), s € S, if there are constants C and ¢ such that cF(s) < F,(s) <
CFi(s), seS.

Proof of Lemma 7. The proof of (8) is contained in [8, p. 22]. To prove (9) we
use the equality

(ATug) (w)=wk(eikt—~1)", weT.
Hence
w, (Ug, 1) =27 supf|sin(ks/2)|": 0<s=<t}, (>0,

and therefore
lek) o, n =27 supf|sin(ks/2) |"/Pp(s):s<t=<1,0<s=<1}.
Since ¢(¢) = ¢(s)/C for 0<s=<t =<1, we have
lxls, n = C supi|sin(ks/2)|"/#(s): 0 <s =1},
where C is independent of k. If 1/k<s =<1, then
|sin(ks/2)|"/¢(s) < C/d(1/k)
because 1/¢ is almost decreasing. If 0 <s =<1/k, then
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[sin(ks/2)|"/d(s) =2~ "k"s"/¢(s) < Ck"(1/k)"/d(1/k)
because s”/¢(s) is almost increasing. Thus |uy|s ,< C/$(1/k). The inequality
lul g, n=c/d(1/k) is simple, and the lemma is proved. 0

Now we are ready to prove the implication (a) = (b) of Theorem 1. Let Lip, ¢ =
he,n(¥). It follows from Lemma 6 and the closed graph theorem that |D"uy|, %
|t4x] s, n» k=1, where u; are as in Lemma 7. Hence, by Lemma 7,

d(1/k) = (1/k)"Y(k), k=1,2,....
This yields, by the properties of Y and ¢,
(10) o)kt /t), 0<t=l,

and this is part of (b).
In order to prove that (a) implies (U,) for some o < n, we define the functions

U, (k=1,2,...) by
Ur(z) =k —"Y(k)zk+ iz ()" (k)= ((J—1Dk))zk, zeA.
=

Assume, without loss of generality, that y is nondecreasing. By direct differen-
tiation we have, for 0<r<1,

MD"Up, ) <YWkt 35 ($0K) =G = DR)r*
j=

© Jk—1
sYKIrk+ Y Y (Wp+1)—yY(p))reH!

J=2p=0-Dk

=Y(rk+ 3 (Wp+ D= Y(p)ret!
Jj=

=(1-r) 3 v(p)re.
p=k

By applying Lemma 1(iii) of [8] we find
MD"U,,ry=sCy(1/(1-r)), 0<r<li,

where C is independent of &, r. This means that {U}} is a norm bounded sequence
in A, ,(¥). Now we use the inclusion /., ,(¥) C Lip, ¢ to conclude that U, are
continuous on the closed disc and

(11) w (UL =Co(t), 0<t=<l,

where C is independent of ¢, k.
On the other hand, by Lemmas 4 and 5,

Cw,(Uf, 1/k) = w, (U, n/k) = |Ux|

= kTR 3 WU~ Y = DK)

J:

=k S (=G +D)MYUk), k=1,2,....

i=1
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Hence, by (11), (10), and (U),
k" _§lj‘"“¢((j+ k) =Co(1/k) = Ck "y (k)
J=
and therefore

[~ y=tyondy=k={"y-r-tyirdy

<k=n 3 jorlY((+Dk) = Clk+1)-"W(k), k=1,2,....

ji=1
It is easily verified that this implies (A,,). Thus ¢ satisfies (U, ) for some o <n (by
Lemma 3), and this concludes the proof of Theorem 1. ]

3. Proof of Lemma 1. Without loss of generality, we can assume that « is har-
monic in |z|< R for some R > 1. For fixed r (0<r<1) let

h(0)=u,(0)=u(re%) (0 real).

By induction,

(12) (A"h)(8) = S{E ROV (04 x,+ -+ +x,) dxy++- dx,,

where ¢E (¢t > 0) is the n-dimensional cube [0, #]”. Hence

hM (@)t = (D"u)(reif)tn

=(A’,’h)(9)—StE(h(")(0+x1+ e X)) — B (0)) dx, -+~ dx,.
Since
|h (0 +x) — R ()| = |S:h("+”(9+y)dy <M(D"u, r)x,
xX=x;+:-++x,, we obtain

M(D"u, r)t" < | A", | + StE M(D"+u, 1) (x,4 -+ 4+x,) dx; -+~ dx,

= |A%u, | + (1/2)M(D"*+lu, r)e"+), 0<r=<l1, >0.

The function Afu defined by (Afu)(rei®) = (A%u,)(0) is harmonic in |z| <1, and
therefore
AT | < | AT U |0 = wn(u*, 1), £>0.
These inequalities together with the familiar estimate
MD"ly, ry=sCA—r)y"\MD"u,(1+r)/2), 0<r<li
(see [2, p. 80]), yield
a3 M(D"u,r) <t "w,(u*, 1)+ Kt(1—r)" "MD", (1+r)/2),
o<r<li, t>0,
where K <o depends only on n. Let

ArN=A0-rY"M(D"u,r), 0<r<l.
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it follows from (13) that
A(ryst="(1—r)"w(t)+2"Kt(1—r)"1A((1+r)/2),

where w(?) = w,(u*, t). Let m be the smallest integer such that 27K < (1/4)2" and
take t =a(l—r), a=2—-". Then we have

Ary=a-"w(l-r)+1/4)A((1+r)/2), 0<r<l.
Since u is harmonic in the closed disc, A is bounded near 1 and therefore A e
L1(0,1). Thus we have, for 0< p<1,

Sl A(rydr=a-m S;_pw(l‘) dt+(1/4)§1 A((1+r)/2) dr
o p

1—
g SO ? w(t) a’t+(1/2)s LAY dr

1
(1+p)

1—p 1
<g-m SO w(t)dt+(1/2)§ A(r) dr.
o

Hence
(I/Z)S:A(r) drsa""50~pw(t) dt <a-"(1—p)a(l—p).
Since
M(D"u,p)(l—p)”“s(n+1)S:A(r)dr, 0<p<l,
the lemma is proved. ]

4. Proof of Lemma 2. We assume, without loss of generality, that « is a real-
valued function harmonic in A, #(0) =0. Then u is the real part of an analytic
function f with f(0) =0. We have, by Taylor’s formula,

n (k)
f)=% f—ﬂzk(l—r)“%Sl(l—s)"z"+1f<"+“(sz>ds,

14 - k!
() k=0 |z|<1, O0<r<l1.
Denoting the sum by f, , we have

@ —fru@]= oo [ A=y, sy ds, |z]<1.

Now we use the familiar estimate
(15) M(f+) sy <CA—s)" MD"u,(1+s)/2), 0<s<l,
(see Remark 1 below) to conclude that (4) implies

|f =Frnle—0 (r—17).

(Here, as usual, |F| = sup;j<i|F(z)|.) Since f, , (r <1) is continuous in |z| <1,
we see that (4) implies the continuity of f, and consequently of u, in |z|<1.

In order to prove the inequality (5) let u,(8) = u(ref®) for 0 =r < 1. Then (5) is
equivalent to
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1
(16) ||A',’u1||wsCSl (1—s)"~1M(D"u,s)ds, 0<t<l.
—t

Let r=1-2¢, 0<t<1/4. Then
[ ATy = [AT(uy—u,) | + [ ATu,|.

It follows from (12) and the increasing property of M(D"u, r) that
1
[A%u,| < t"M(D"u, r) <n SI (1—s)"~'M(D"u, s) ds,
—t

and therefore we have to prove that |A7(#;—u,)| is dominated by the right-hand
side of (16). Since |AT(u;—u,)| < |AY(f1—1)|, where f,(0) = f(re'?), it is enough
to prove that
1
[ati—Sl=C | a—s)iM(Dru,s) ds.

To prove this write (14) in the form

J1(0)—f,(6)=H(0) +k§_31 he(0)(1—r)%/k!,
where -
1

1 . .
H(0) = —+ Sr (1—s)neitn+10 £ (n+1)(5ei%) ds,

hi(0) = f B (reif)e’*®,
We have
n
!

2 1
|atH| =27 H]| = | (1=5)"M(/ #+D,5) ds

1
scS (1—s5)"=M(D"u, (1+5)/2)ds (by (15))
r
1
=21C Sl (1—5)"~'M(D"u, s) ds.
—t
In order to estimate |A%h;| let m=n—k+1 (1 <k <n) and observe that
|ATh] = AT AT B | < 281 AT By | < 2612 m| (|
(see (12)). Now we use the inequality (see Remark 1 below)
(19) |7 = CA=r)='M(D"u, (1+7r)/2)
to obtain
1
|A"h,| < Ctn—*M(D"u,1—t) < Ct —* Xl (1—s)"=1M(D"u, s) ds,
—t
where C is independent of /. Combining all the above results yields (5) for 0 <

t<1/4.1f 1/4 =t <1, then we use Lemma 4 to reduce (5) to the case r <1/4, and
this completes the proof of Lemma 2. ]
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REMARK 1. Although the inequalities (15) and (19) are well known (see [2,
Chap. 5]) we shall sketch a proof of (19). The inequality (15) is proved similarly.

Observe first that we have used (19) only for » =1/2. Thus for our purposes it
suffices to prove that

rf|rf™| = CA—r)y-'M(D"u, r'/2), 0<r<l1, m=n—k+1.

By using the relation f(z) =2 ¥, #(j)z’/ and Parseval’s formula,

k p (m) =2k! > [ J N Y AYY ij9=i 2w —
rkn(m (9) = 2k j§=:l<k>(lj) a(j)rieit = - SO U(x)V(0—x) dx,

where
u(0) = (D"u)(r'/2e),
V(0)=2k! 3 (;{)(ij)’"—”rf/ze"j".
j=1
Hence
rE || < |U | Vi =MD"u, r'22) |V],.
Since
j jm—n= -] Jl—k=J+O(1) j—-—>00
k k b b
we have

V(0)=2k! il=kr1/2ei0(1 —r1/2¢i0)2 4+ O((1—r)~Y), r—1-
uniformly in 0. This gives

D N ]
Vh=+- SO V(0)|do<C(1—r), 0<r<l,

and this completes the proof. (I

REMARK 2. In the case n =1 our proof of Lemma 2 is similar but not identical
to the proof of the Hardy-Littlewood theorem [2, Thm. 5.1]. The only difference
is that the second-order derivatives need not be used in the analytic case.

REMARK 3. The condition (4) is known to be independent of n. For more in-
formation see [3].

5. Some extensions of Theorem 1. An inspection of the proof of Theorem 1
shows that the following more general result is valid.

THEOREM 2. If ¥, ¢ satisfy (U) and (UD), respectively, then the following hold:

(i) Lip, ¢ Chw, ,(¥) if and only if ¢(t) = Oty (1/t));
(ii) he n(¥)CLip, ¢ if and only if {7 Y(y)y ~""1dy =0(¢(1/x)), x - co.

EXAMPLE. If (f)(l‘) = l/log(e/t), O<t= 1, then hco,l(\[/l) C Lip1 ¢ C hco,l(!pg),
where ¥,;(x) = x/(log(ex))? and ¥,(x) = x/log(ex), x = 1, and these inclusions
are best possible. It would be interesting to check whether this Lipschitz space is
isomorphic, via a multiplier transform, to some of the spaces /4.(y).
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It should be noted that condition (U?) in Theorems 1 and 2 is not restrictive.
Namely, if #%/¢(t) is not bounded, then Lip, ¢ = {0}. If #7/¢(¢) is bounded, we
define ¢, by

do(f)=1t" inf s 7¢(s)= inf s "¢P(st), O0<r=<1.
O<s<t¢ 0<s<l1
Then ¢, is positive and almost increasing on (0, 1], and satisfies (U,?). Further-
more, by using Lemma 4 one easily proves that Lip, ¢ = Lip,, ¢¢.

Some of our results can be generalized to the case of L? spaces and, more gen-
erally, to the class of homogeneous Banach spaces (see [4, p. 14]). For example,
the following theorem is a generalization of the implication (b) = (a) of Theo-
rem 1. Here: w,(g, ), =sup(|A%g|,:|s| <t} (£>0, ge LP(T)) and M,(U,r) =
1U |, (0<r<1, Ue h(A)), where U,(e?) = U(re'®) and ||, stands for the norm
in L?2(T).

THEOREM 3. Let ue h(A), p=1 and let ¢ satisfy (U,), o <n. Then ihe fol-
lowing are equivalent:

(@) u is the Poisson integral of a function ge LP(T) with
w,(8,t),=0"Y(1/1)), t—0;
(b) My(D"u,ry=01/(1=r))), r>1".

This theorem follows immediately from the corresponding generalizations of
Lemmas 1 and 2. The proofs are ess%ntially the same as in the case p =c. We
note that if f is analytic and # =Re f, then (4) (M =M,)) implies that f belongs
to the Hardy space H”. (This follows from (14) (r =0) and (15).) Therefore, if
(4) holds, then u is the Poisson integral of a function g € L#(T) (see [2, Chap. 3]).
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