LIPSCHITZ SPACES AND SPACES OF HARMONIC FUNCTIONS IN THE UNIT DISC

Miroslav Pavlović

1. Introduction and the main result. In a series of papers [6; 7; 8] Shields and Williams studied the class $h_{\infty}(\psi)$ consisting of those functions u harmonic in the unit circle for which

(1)
$$u(z) = O\left(\psi\left(\frac{1}{1-r}\right)\right), \quad r = |z| \to 1^-,$$

where $\psi(x)$, $x \ge 1$, is a positive real function that grows more slowly than some power of x. In the present paper we solve Problem C of [7] by showing that each $h_{\infty}(\psi)$ is isomorphic, via a multiplier transform, to some space of functions continuous on the unit circle satisfying a modulus of continuity condition. Of course, our solution generalizes the classical theorems of Hardy and Littlewood and of Zygmund (see [2, Chap. 5, §§1, 2]), and is motivated by them.

Before stating our main result we recall some definitions and facts.

Moduli of continuity. For a complex-valued function h, defined on the real line, let $\Delta_t^n h$ (n is a positive integer, t is a real number) denote the nth difference with step t:

$$(\Delta_t^1 h)(\theta) = \Delta_t^1 h(\theta) = h(\theta + t) - h(\theta) \quad (\theta \text{ real}),$$

$$\Delta_t^n h = \Delta_t^1 \Delta_t^{n-1} h, \quad n \ge 2.$$

If g is a complex-valued function defined on the unit circle T, then $\Delta_t^n g$ is defined by

$$\Delta_t^n g(e^{i\theta}) = \Delta_t^n h(\theta), \qquad h(\theta) = g(e^{i\theta}).$$

For fixed n and t, Δ_t^n is a linear operator which preserves C(T), the space of continuous functions on T. Furthermore,

$$||\Delta_t^n g|| \le 2^n ||g||, \quad g \in C(T),$$

where $\|\cdot\| = \|\cdot\|_{\infty}$ stands for the maximum norm in C(T). The modulus of continuity of order n is defined by

$$\omega_n(g, t) = \sup\{\|\Delta_s^n g\| : |s| < t\}, \quad t > 0, \ g \in C(T).$$

Lipschitz spaces. For the sake of convenience we assume that all harmonic functions under consideration vanish at the origin. Similarly, if $g \in C(T)$ we assume that $\hat{g}(0) = 0$, where \hat{g} is the Fourier transform of g. Let $h(\Delta)$ be the class of all complex-valued functions harmonic in the unit disc Δ , and let $hC(\Delta)$ be the subspace of $h(\Delta)$ consisting of functions continuous on the closed disc. It is well known that the map $u \to u^*$, $u \in hC(\Delta)$, where u^* is the boundary function

Received October 5, 1987.

Michigan Math. J. 35 (1988).

of u, is a linear isometry of the space $hC(\Delta)$ (endowed with the maximum-norm) onto C(T). Thus any subclass of C(T) may be regarded as a subclass of $hC(\Delta)$, and conversely.

Let ϕ be a positive function on (0,1] and let n be a positive integer. The Lipschitz space $\operatorname{Lip}_n \phi$ consists of those $u \in hC(\Delta) = C(T)$ for which

(2)
$$\omega_n(u^*,t) = O(\phi(t)), \quad t \to 0,$$

and is normed by

$$||u||_{\phi,n} = \sup \{\omega_n(u^*,t)/\phi(t): 0 < t \le 1\}.$$

The spaces $h_{\infty,n}(\psi)$. Let ψ be a positive function on $[1,\infty)$. For $u \in h(\Delta)$ let

$$||u||_{\psi} = \sup\{M(u,r)/\psi(1/(1-r)): 0 < r < 1\},$$

where

$$M(u,r) = M_{\infty}(u,r) = \max\{|u(z)|: |z| = r\}.$$

We define

$$h_{\infty, n}(\psi) = \{u \in h(\Delta) : ||D^n u||_{\psi} < \infty\}, \quad n = 0, 1, 2, ...,$$

where

$$(D^n u)(re^{i\theta}) = \frac{\partial^n u}{\partial \theta^n}(re^{i\theta}) = \sum_{j=-\infty}^{\infty} (ij)^n \hat{u}(j) r^{|j|} e^{ij\theta}, \quad re^{i\theta} \in \Delta.$$

It is clear that the space $h_{\infty,n}(\psi)$, normed by $||D^n u||_{\psi}$, is isometric to $h_{\infty}(\psi) = h_{\infty,0}(\psi)$ via the multiplier transform D^n .

The hypotheses on ψ , ϕ . Bernstein [1] introduced the notion of almost increasing and almost decreasing functions. A real function φ is almost increasing if there is a positive constant C such that x < y implies $\varphi(x) \le C\varphi(y)$. An almost decreasing function is defined similarly. Throughout the paper we assume that ψ is almost increasing and positive on $[1, \infty)$, and satisfies the following condition:

(U) There is a constant
$$C < \infty$$
 such that $\psi(2x) \le C\psi(x)$, $x \ge 1$.

As is remarked in [8], (U) is equivalent to the existence of a positive number α such that

$$(U_{\alpha})$$
 $\psi(x)/x^{\alpha}$ is almost decreasing for $x \ge 1$.

We also assume that ϕ is positive and almost increasing on (0,1] and, for some $\beta > 0$,

$$(U_{\beta}^{0})$$
 $\phi(t)/t^{\beta}$ is almost decreasing for $0 < t \le 1$.

Our solution of the Shields-Williams problem is as follows.

THEOREM 1. Let n be a positive integer and assume that ψ satisfies (U) and that ϕ satisfies (U_n⁰). Then the following conditions are equivalent:

- (a) $\operatorname{Lip}_n \phi = h_{\infty,n}(\psi)$;
- (b) there are constants α ($\alpha < n$) and C ($0 < C < \infty$) such that ψ satisfies (U_{α}) and $\phi(t)/C \le t^n \psi(1/t) \le C\phi(t)$, $0 < t \le 1$.

In particular, if $\phi(t) = t^n \psi(1/t)$ and ψ satisfies (U_α) , $\alpha < n$, then $\text{Lip}_n \phi = h_{\infty,n}(\psi)$.

REMARK. The condition (U_n^0) is not restrictive. See Lemma 4.

It follows from Theorem 1 that each $h_{\infty}(\psi)$ (with ψ satisfying (U)) is naturally isomorphic to some $\operatorname{Lip}_n \phi$. Conversely, if ϕ is a *normal* function in the sense of Shields and Williams [6; 8], that is, if

(N) there is a positive number
$$a$$
 such that $\phi(t)/t^a$ is almost increasing for $0 < t \le 1$,

then (by Theorem 1) $\operatorname{Lip}_n \phi = h_{\infty,n}(\psi)$, where ψ is defined by $\psi(x) = x^n \phi(1/x)$. On the other hand, we do not know any multiplier transform which maps the space $\operatorname{Lip}_1 \phi$, $\phi(t) = 1/\log(et)$, onto one of the spaces $h_{\infty}(\psi)$. Further remarks are contained in §5.

The proof of the implication (b) \Rightarrow (a) is based on the following lemmas which are of some independent interest.

LEMMA 1. *If* $u \in hC(\Delta)$ *then*

(3)
$$M(D^n u, r) \le C(1-r)^{-n} \omega_n(u^*, 1-r), \quad 0 < r < 1,$$

where $C < \infty$ is a constant depending only on $n \ (n = 1, 2, ...)$.

Since $\omega_n(u^*, 1-r) \le 2^n \|u^*\|$, it follows that (3) improves the classical inequality $M(D^n u, r) \le C(1-r)^{-n} \|u^*\|$.

Our proof of Lemma 1, given in §3, differs from the standard proofs of similar results (see [2; 5]) and is independent of any pointwise estimate for the Poisson (or Cauchy) kernel.

LEMMA 2. If $u \in h(\Delta)$ and

(4)
$$\int_0^1 (1-r)^{n-1} M(D^n u, r) \, dr < \infty,$$

then $u \in hC(\Delta)$ and

(5)
$$\omega_n(u^*,t) \leq C \int_{1-t}^1 (1-r)^{n-1} M(D^n u,r) dr, \quad 0 < t < 1,$$

where C depends only on n.

The proof of this lemma (§4) resembles the proof of the Hardy-Littlewood theorem [2, Thm. 5.1], but there is a difference.

In the last section we give some generalizations of Theorem 1.

2. Proof of Theorem 1. Throughout this section, n will denote a positive integer. The condition (U_{α}) , mentioned in the introduction, can be written in the form

$$(U_{\alpha}) \qquad \qquad \psi(y) \leq C(y/x)^{\alpha} \psi(x), \quad y \geq x \geq 1.$$

Using this, one easily proves that if $\alpha < n$ then (U_{α}) implies

$$(A_n) \qquad \int_{x}^{\infty} \psi(y) y^{-n-1} dy \le C x^{-n} \psi(x), \quad x \ge 1,$$

where C is a constant.

REMARK. We use the letters C, c to denote positive constants which may vary from line to line.

The following lemma is proved in the same way as Lemma 2 of [8]. We sketch a proof for completeness.

LEMMA 3. ψ satisfies (A_n) if and only if there is $\alpha < n$ such that ψ satisfies (U_α) .

Proof. We have to prove that (A_n) implies (U_α) for some $\alpha < n$. Let ψ satisfy (A_n) and let

$$F(x) = \int_{x}^{\infty} \psi(y) y^{-n-1} dy, \quad x \ge 1.$$

It is easily seen that $cF(x) \le x^{-n}\psi(x) \le CF(x)$, $x \ge 1$, and this shows that it suffices to find b > 0 such that $x^bF(x)$ is nonincreasing for $x \ge 1$. We choose b so that $F(x) \le (1/b)\psi(x)x^{-n}$, $x \ge 1$, which can be written as $F(x) \le -(1/b)xF'(x)$, $x \ge 1$, where F' stands for the derivative of the (absolutely continuous) function F. This implies that the derivative of the function $x^bF(x)$ is ≤ 0 , and this concludes the proof of Lemma 3.

The implication (b) \Rightarrow (a) of Theorem 1 is an immediate consequence of Lemmas 1, 2, and 3 together with the identity

$$\int_{1/t}^{\infty} \psi(y) y^{-n-1} dy = \int_{1-t}^{1} (1-r)^{n-1} \psi(1/(1-r)) dr, \quad 0 < t < 1.$$

In order to prove the implication (a) \Rightarrow (b), we need some further lemmas.

LEMMA 4. If $g \in C(T)$ then the function $\omega_n(g, t)/t^n$ is almost decreasing for t > 0.

Proof. This fact is a consequence of the known inequality

(6)
$$\omega_n(g, 2t) \le 2^n \omega_n(g, t), \quad t > 0.$$

Namely, if $\lambda = 2^m$ (m = 0, 1, 2, ...) then (6) implies $\omega_n(g, \lambda t) \le \lambda^n \omega_n(g, t)$, t > 0. If $\lambda > 1$ is arbitrary, we choose an integer $m \ge 0$ so that $2^m \le \lambda \le 2^{m+1}$, and then $\omega_n(g, \lambda t) \le \omega_n(g, 2^{m+1}t) \le 2^{(m+1)n}\omega_n(g, t) \le 2^n\lambda^n\omega_n(g, t)$.

The easiest way to prove inequality (6) is to use the identity

(7)
$$\Delta_t^n g(e^{i\theta}) = \sum_j \hat{g}(j) (e^{ijt} - 1)^n e^{ij\theta},$$

g being a trigonometric polynomial. Hence

$$\begin{split} \Delta_{2t}^{n} g(e^{i\theta}) &= \sum_{j} \hat{g}(j) (e^{ijt} + 1)^{n} (e^{ijt} - 1)^{n} \\ &= \sum_{k=0}^{n} \binom{n}{k} \Delta_{t}^{n} g(e^{i(\theta + kt)}), \end{split}$$

and this implies (6).

LEMMA 5. If $g \in C(T)$ and $g_k(w) = g(w^k)$, where $w \in T$ and k = 1, 2, ..., then $\omega_n(g_k, \pi/k) \ge \|g\|_{\infty}$.

Proof. It follows from (7) that

$$(-1)^n g(w) = \frac{1}{2\pi} \int_{-\pi}^{\pi} (\Delta_t^n g)(w) dt, \quad w \in T.$$

(Recall that we assume $\hat{g}(0) = 0$ for $g \in C(T)$.) Hence

$$\|g\|_{\infty} \leq \frac{1}{2\pi} \int_{-\pi}^{\pi} \|\Delta_t^n g\|_{\infty} dt \leq \omega_n(g, \pi) = \omega_n(g_k, \pi/k). \qquad \Box$$

LEMMA 6. Let X be one of the spaces $\operatorname{Lip}_n \phi$, $h_{\infty,n}(\psi)$.

- (i) X is a Banach space.
- (ii) If $\{u_m\}$ is a norm convergent sequence in X, $u_m \to u$, then $u_m(z) \to u(z)$ uniformly on each compact subset of Δ .

Proof. In the case of $h_{\infty,n}(\psi)$ the result is a consequence of Proposition 1 of [7]. If $X = \text{Lip}_n \phi$ then, by Lemmas 5 (k=1) and 4,

$$||u||_X \ge \omega_n(u^*, 1)/\phi(1) \ge c||u^*||_{\infty} = ||u||_{\infty}, \quad u \in X.$$

This shows that X is continuously embedded into $hC(\Delta) = C(T)$, and this implies (ii). Also, it is easy to deduce the completeness of $\operatorname{Lip}_n \phi$ from the completeness of C(T) and the embedding $\operatorname{Lip}_n \phi \subset C(T)$.

LEMMA 7. Let ψ , ϕ satisfy (U) and (U_n⁰), respectively. Let $u_k(z) = z^k$, where $|z| \le 1$ and k = 1, 2, Then

(8)
$$||D^n u_k||_{\psi} || k^n / \psi(k), \quad k = 1, 2, ...,$$

(9)
$$||u_k||_{\phi,n} \times 1/\phi(1/k), \quad k=1,2,\ldots.$$

REMARK. For two nonnegative functions F_1, F_2 defined on a set S we write $F_1(s) \times F_2(s)$, $s \in S$, if there are constants C and c such that $cF_1(s) \leq F_2(s) \leq CF_1(s)$, $s \in S$.

Proof of Lemma 7. The proof of (8) is contained in [8, p. 22]. To prove (9) we use the equality

$$(\Delta_t^n u_k^*)(w) = w^k (e^{ikt} - 1)^n, \quad w \in T.$$

Hence

$$\omega_n(u_k^*, t) = 2^n \sup\{|\sin(ks/2)|^n : 0 < s \le t\}, \quad t > 0,$$

and therefore

$$||u_k||_{\phi,n} = 2^n \sup\{|\sin(ks/2)|^n/\phi(s): s \le t \le 1, 0 < s \le 1\}.$$

Since $\phi(t) \ge \phi(s)/C$ for $0 < s \le t \le 1$, we have

$$||u_k||_{\phi, n} \le C \sup\{|\sin(ks/2)|^n/\phi(s): 0 < s \le 1\},$$

where C is independent of k. If $1/k \le s \le 1$, then

$$|\sin(ks/2)|^n/\phi(s) \le C/\phi(1/k)$$

because $1/\phi$ is almost decreasing. If $0 < s \le 1/k$, then

$$|\sin(ks/2)|^n/\phi(s) \le 2^{-n}k^ns^n/\phi(s) \le Ck^n(1/k)^n/\phi(1/k)$$

because $s^n/\phi(s)$ is almost increasing. Thus $||u_k||_{\phi,n} \le C/\phi(1/k)$. The inequality $||u_k||_{\phi,n} \ge c/\phi(1/k)$ is simple, and the lemma is proved.

Now we are ready to prove the implication (a) \Rightarrow (b) of Theorem 1. Let $\operatorname{Lip}_n \phi = h_{\infty, n}(\psi)$. It follows from Lemma 6 and the closed graph theorem that $\|D^n u_k\|_{\psi} \times \|u_k\|_{\phi, n}$, $k \ge 1$, where u_k are as in Lemma 7. Hence, by Lemma 7,

$$\phi(1/k) \times (1/k)^n \psi(k), \quad k = 1, 2, \dots$$

This yields, by the properties of ψ and ϕ ,

$$\phi(t) \times t^n \psi(1/t), \quad 0 < t \le 1,$$

and this is part of (b).

In order to prove that (a) implies (U_{α}) for some $\alpha < n$, we define the functions U_k (k = 1, 2, ...) by

$$U_k(z) = k^{-n}\psi(k)z^k + \sum_{j=2}^{\infty} (jk)^{-n}(\psi(jk) - \psi((j-1)k))z^{jk}, \quad z \in \Delta.$$

Assume, without loss of generality, that ψ is nondecreasing. By direct differentiation we have, for 0 < r < 1,

$$\begin{split} M(D^{n}U_{k},r) &\leq \psi(k)r^{k} + \sum_{j=2}^{\infty} (\psi(jk) - \psi((j-1)k))r^{jk} \\ &\leq \psi(k)r^{k} + \sum_{j=2}^{\infty} \sum_{p=(j-1)k}^{jk-1} (\psi(p+1) - \psi(p))r^{p+1} \\ &= \psi(k)r^{k} + \sum_{j=k}^{\infty} (\psi(p+1) - \psi(p))r^{p+1} \\ &= (1-r) \sum_{p=k}^{\infty} \psi(p)r^{p}. \end{split}$$

By applying Lemma 1(iii) of [8] we find

$$M(D^n U_k, r) \le C \psi(1/(1-r)), \quad 0 < r < 1,$$

where C is independent of k, r. This means that $\{U_k\}$ is a norm bounded sequence in $h_{\infty,n}(\psi)$. Now we use the inclusion $h_{\infty,n}(\psi) \subset \operatorname{Lip}_n \phi$ to conclude that U_k are continuous on the closed disc and

(11)
$$\omega_n(U_k^*,t) \leq C\phi(t), \quad 0 < t \leq 1,$$

where C is independent of t, k.

On the other hand, by Lemmas 4 and 5,

$$C\omega_{n}(U_{k}^{*}, 1/k) \ge \omega_{n}(U_{k}^{*}, \pi/k) \ge \|U_{k}^{*}\|_{\infty}$$

$$= k^{-n}\psi(k) + k^{-n} \sum_{j=2}^{\infty} j^{-n}(\psi(jk) - \psi((j-1)k))$$

$$= k^{-n} \sum_{j=1}^{\infty} (j^{-n} - (j+1)^{-n})\psi(jk), \quad k = 1, 2, \dots$$

Hence, by (11), (10), and (U),

$$k^{-n} \sum_{j=1}^{\infty} j^{-n-1} \psi((j+1)k) \le C\phi(1/k) \le Ck^{-n} \psi(k)$$

and therefore

$$\int_{k}^{\infty} y^{-n-1} \psi(y) \, dy = k^{-n} \int_{1}^{\infty} y^{-n-1} \psi(yk) \, dy$$

$$\leq k^{-n} \sum_{j=1}^{\infty} j^{-n-1} \psi((j+1)k) \leq C(k+1)^{-n} \psi(k), \quad k = 1, 2, \dots.$$

It is easily verified that this implies (A_n) . Thus ψ satisfies (U_α) for some $\alpha < n$ (by Lemma 3), and this concludes the proof of Theorem 1.

3. Proof of Lemma 1. Without loss of generality, we can assume that u is harmonic in |z| < R for some R > 1. For fixed r (0 < r < 1) let

$$h(\theta) = u_r(\theta) = u(re^{i\theta})$$
 (θ real).

By induction,

(12)
$$(\Delta_t^n h)(\theta) = \int_{tE} h^{(n)}(\theta + x_1 + \dots + x_n) dx_1 \dots dx_n,$$

where tE (t > 0) is the *n*-dimensional cube $[0, t]^n$. Hence

$$h^{(n)}(\theta)t^{n} = (D^{n}u)(re^{i\theta})t^{n}$$

$$= (\Delta_{t}^{n}h)(\theta) - \int_{tE} (h^{(n)}(\theta + x_{1} + \dots + x_{n}) - h^{(n)}(\theta)) dx_{1} \dots dx_{n}.$$

Since

$$|h^{(n)}(\theta+x)-h^{(n)}(\theta)| = \left| \int_0^x h^{(n+1)}(\theta+y) \, dy \right| \le M(D^{n+1}u,r)x,$$

 $x = x_1 + \cdots + x_n$, we obtain

$$M(D^{n}u, r)t^{n} \leq \|\Delta_{t}^{n}u_{r}\|_{\infty} + \int_{tE} M(D^{n+1}u, r)(x_{1} + \dots + x_{n}) dx_{1} \dots dx_{n}$$
$$= \|\Delta_{t}^{n}u_{r}\|_{\infty} + (n/2)M(D^{n+1}u, r)t^{n+1}, \quad 0 \leq r \leq 1, \ t > 0.$$

The function $\Delta_t^n u$ defined by $(\Delta_t^n u)(re^{i\theta}) = (\Delta_t^n u_r)(\theta)$ is harmonic in $|z| \le 1$, and therefore

$$\|\Delta_t^n u_r\|_{\infty} \leq \|\Delta_t^n u^*\|_{\infty} \leq \omega_n(u^*, t), \quad t > 0.$$

These inequalities together with the familiar estimate

$$M(D^{n+1}u, r) \le C(1-r)^{-1}M(D^nu, (1+r)/2), \quad 0 < r < 1$$

(see [2, p. 80]), yield

(13)
$$M(D^n u, r) \le t^{-n} \omega_n(u^*, t) + Kt(1-r)^{-1} M(D^n u, (1+r)/2), \\ 0 < r < 1, \ t > 0,$$

where $K < \infty$ depends only on n. Let

$$A(r) = (1-r)^n M(D^n u, r), \quad 0 < r < 1.$$

It follows from (13) that

$$A(r) \le t^{-n}(1-r)^n \omega(t) + 2^n K t (1-r)^{-1} A((1+r)/2),$$

where $\omega(t) = \omega_n(u^*, t)$. Let m be the smallest integer such that $2^n K \le (1/4)2^m$ and take t = a(1-r), $a = 2^{-m}$. Then we have

$$A(r) \le a^{-m}\omega(1-r) + (1/4)A((1+r)/2), \quad 0 < r < 1.$$

Since u is harmonic in the closed disc, A is bounded near 1 and therefore $A \in L^1(0,1)$. Thus we have, for $0 < \rho < 1$,

$$\int_{\rho}^{1} A(r) dr \le a^{-m} \int_{0}^{1-\rho} \omega(t) dt + (1/4) \int_{\rho}^{1} A((1+r)/2) dr$$

$$= a^{-m} \int_{0}^{1-\rho} \omega(t) dt + (1/2) \int_{(1+\rho)/2}^{1} A(r) dr$$

$$\le a^{-m} \int_{0}^{1-\rho} \omega(t) dt + (1/2) \int_{\rho}^{1} A(r) dr.$$

Hence

$$(1/2) \int_{\rho}^{1} A(r) dr \le a^{-m} \int_{0}^{1-\rho} \omega(t) dt \le a^{-m} (1-\rho) \omega(1-\rho).$$

Since

$$M(D^n u, \rho)(1-\rho)^{n+1} \le (n+1)\int_{\rho}^1 A(r) dr, \quad 0 < \rho < 1,$$

the lemma is proved.

4. Proof of Lemma 2. We assume, without loss of generality, that u is a real-valued function harmonic in Δ , u(0) = 0. Then u is the real part of an analytic function f with f(0) = 0. We have, by Taylor's formula,

(14)
$$f(z) = \sum_{k=0}^{n} \frac{f^{(k)}(rz)}{k!} z^{k} (1-r)^{k} + \frac{1}{n!} \int_{r}^{1} (1-s)^{n} z^{n+1} f^{(n+1)}(sz) ds, \\ |z| < 1, \ 0 < r < 1.$$

Denoting the sum by $f_{r,n}$ we have

$$|f(z)-f_{r,n}(z)| \le \frac{1}{n!} \int_{r}^{1} (1-s)^{n} M(f^{(n+1)},s) ds, \quad |z| < 1.$$

Now we use the familiar estimate

(15)
$$M(f^{(n+1)}, s) \le C(1-s)^{-1}M(D^n u, (1+s)/2), \quad 0 < s < 1,$$

(see Remark 1 below) to conclude that (4) implies

$$||f-f_{r,n}||_{\infty} \to 0 \quad (r \to 1^-).$$

(Here, as usual, $||F||_{\infty} = \sup_{|z| < 1} |F(z)|$.) Since $f_{r,n}$ (r < 1) is continuous in $|z| \le 1$, we see that (4) implies the continuity of f, and consequently of u, in $|z| \le 1$.

In order to prove the inequality (5) let $u_r(\theta) = u(re^{i\theta})$ for $0 \le r \le 1$. Then (5) is equivalent to

(16)
$$\|\Delta_t^n u_1\|_{\infty} \le C \int_{1-t}^1 (1-s)^{n-1} M(D^n u, s) \, ds, \quad 0 < t < 1.$$

Let r = 1 - 2t, 0 < t < 1/4. Then

$$\|\Delta_t^n u_1\| \le \|\Delta_t^n (u_1 - u_r)\| + \|\Delta_t^n u_r\|.$$

It follows from (12) and the increasing property of $M(D^n u, r)$ that

$$\|\Delta_t^n u_r\| \le t^n M(D^n u, r) \le n \int_{1-t}^1 (1-s)^{n-1} M(D^n u, s) ds,$$

and therefore we have to prove that $\|\Delta_t^n(u_1-u_r)\|$ is dominated by the right-hand side of (16). Since $\|\Delta_t^n(u_1-u_r)\| \le \|\Delta_t^n(f_1-f_r)\|$, where $f_r(\theta) = f(re^{i\theta})$, it is enough to prove that

$$\|\Delta_t^n(f_1-f_r)\| \le C \int_{1-t}^1 (1-s)^{n-1} M(D^n u, s) ds.$$

To prove this write (14) in the form

$$f_1(\theta) - f_r(\theta) = H(\theta) + \sum_{k=1}^n h_k(\theta) (1-r)^k / k!,$$

where

$$H(\theta) = \frac{1}{n!} \int_{r}^{1} (1-s)^{n} e^{i(n+1)\theta} f^{(n+1)}(se^{i\theta}) ds,$$
$$h_{\nu}(\theta) = f^{(k)}(re^{i\theta}) e^{ik\theta}.$$

We have

$$\|\Delta_{t}^{n}H\| \leq 2^{n} \|H\| \leq \frac{2^{n}}{n!} \int_{r}^{1} (1-s)^{n} M(f^{(n+1)}, s) ds$$

$$\leq C \int_{r}^{1} (1-s)^{n-1} M(D^{n}u, (1+s)/2) ds \quad \text{(by (15))}$$

$$= 2^{n} C \int_{1-t}^{1} (1-s)^{n-1} M(D^{n}u, s) ds.$$

In order to estimate $\|\Delta_t^n h_k\|$ let m = n - k + 1 $(1 \le k \le n)$ and observe that

$$\|\Delta_t^n h_k\| = \|\Delta_t^{k-1} \Delta_t^m h_k\| \le 2^{k-1} \|\Delta_t^m h_k\| \le 2^{k-1} t^m \|h_k^{(m)}\|$$

(see (12)). Now we use the inequality (see Remark 1 below)

(19)
$$||h_k^{(m)}|| \le C(1-r)^{-1}M(D^n u, (1+r)/2)$$

to obtain

$$\|\Delta_t^n h_k\| \le Ct^{n-k} M(D^n u, 1-t) \le Ct^{-k} \int_{1-t}^1 (1-s)^{n-1} M(D^n u, s) ds,$$

where C is independent of t. Combining all the above results yields (5) for 0 < t < 1/4. If $1/4 \le t \le 1$, then we use Lemma 4 to reduce (5) to the case t < 1/4, and this completes the proof of Lemma 2.

REMARK 1. Although the inequalities (15) and (19) are well known (see [2, Chap. 5]) we shall sketch a proof of (19). The inequality (15) is proved similarly.

Observe first that we have used (19) only for $r \ge 1/2$. Thus for our purposes it suffices to prove that

$$r^{k} \|h_{k}^{(m)}\| \le C(1-r)^{-1} M(D^{n}u, r^{1/2}), \quad 0 < r < 1, \ m = n - k + 1.$$

By using the relation $f(z) = 2 \sum_{i} \hat{u}(j) z^{j}$ and Parseval's formula,

$$r^{k}h_{k}^{(m)}(\theta) = 2k! \sum_{j=1}^{\infty} {j \choose k} (ij)^{m} \hat{u}(j) r^{j} e^{ij\theta} = \frac{1}{2\pi} \int_{0}^{2\pi} U(x) V(\theta - x) dx,$$

where

$$u(\theta) = (D^n u)(r^{1/2}e^{i\theta}),$$

$$V(\theta) = 2k! \sum_{j=1}^{\infty} {j \choose k} (ij)^{m-n} r^{j/2} e^{ij\theta}.$$

Hence

$$r^{k} \|h_{k}^{(m)}\| \leq \|U\|_{\infty} \|V\|_{1} = M(D^{n}u, r^{1/2}) \|V\|_{1}.$$

Since

$$\binom{j}{k}j^{m-n} = \binom{j}{k}j^{1-k} = j + O(1), \quad j \to \infty,$$

we have

$$V(\theta) = 2k! i^{1-k} r^{1/2} e^{i\theta} (1 - r^{1/2} e^{i\theta})^{-2} + O((1-r)^{-1}), \quad r \to 1^{-1}$$

uniformly in θ . This gives

$$||V||_1 = \frac{1}{2\pi} \int_0^{2\pi} |V(\theta)| d\theta \le C(1-r)^{-1}, \quad 0 < r < 1,$$

and this completes the proof.

REMARK 2. In the case n = 1 our proof of Lemma 2 is similar but not identical to the proof of the Hardy-Littlewood theorem [2, Thm. 5.1]. The only difference is that the second-order derivatives need not be used in the analytic case.

REMARK 3. The condition (4) is known to be independent of n. For more information see [3].

5. Some extensions of Theorem 1. An inspection of the proof of Theorem 1 shows that the following more general result is valid.

THEOREM 2. If ψ , ϕ satisfy (U) and (U_n⁰), respectively, then the following hold:

- (i) $\operatorname{Lip}_n \phi \subset h_{\infty,n}(\psi)$ if and only if $\phi(t) = O(t^n \psi(1/t))$; (ii) $h_{\infty,n}(\psi) \subset \operatorname{Lip}_n \phi$ if and only if $\int_x^\infty \psi(y) y^{-n-1} dy = O(\phi(1/x))$, $x \to \infty$.

EXAMPLE. If $\phi(t) = 1/\log(e/t)$, $0 < t \le 1$, then $h_{\infty,1}(\psi_1) \subset \operatorname{Lip}_1 \phi \subset h_{\infty,1}(\psi_2)$, where $\psi_1(x) = x/(\log(ex))^2$ and $\psi_2(x) = x/\log(ex)$, $x \ge 1$, and these inclusions are best possible. It would be interesting to check whether this Lipschitz space is isomorphic, via a multiplier transform, to some of the spaces $h_{\infty}(\psi)$.

It should be noted that condition (U_n^0) in Theorems 1 and 2 is not restrictive. Namely, if $t^n/\phi(t)$ is not bounded, then $\operatorname{Lip}_n \phi = \{0\}$. If $t^n/\phi(t)$ is bounded, we define ϕ_0 by

$$\phi_0(t) = t^n \inf_{0 < s < t} s^{-n} \phi(s) = \inf_{0 < s < 1} s^{-n} \phi(st), \quad 0 < t \le 1.$$

Then ϕ_0 is positive and almost increasing on (0,1], and satisfies (U_n^0) . Furthermore, by using Lemma 4 one easily proves that $\operatorname{Lip}_n \phi = \operatorname{Lip}_n \phi_0$.

Some of our results can be generalized to the case of L^p spaces and, more generally, to the class of homogeneous Banach spaces (see [4, p. 14]). For example, the following theorem is a generalization of the implication (b) \Rightarrow (a) of Theorem 1. Here: $\omega_n(g,t)_p = \sup\{\|\Delta_s^n g\|_p : |s| < t\}$ $(t > 0, g \in L^p(T))$ and $M_p(U,r) = \|U_r\|_p$ $(0 < r < 1, U \in h(\Delta))$, where $U_r(e^{i\theta}) = U(re^{i\theta})$ and $\|\cdot\|_p$ stands for the norm in $L^p(T)$.

THEOREM 3. Let $u \in h(\Delta)$, $p \ge 1$ and let ψ satisfy (U_{α}) , $\alpha < n$. Then the following are equivalent:

(a) u is the Poisson integral of a function $g \in L^p(T)$ with

$$\omega_n(g,t)_p = O(t^n \psi(1/t)), \quad t \to 0;$$

(b)
$$M_p(D^n u, r) = O(\psi(1/(1-r))), r \to 1^-.$$

This theorem follows immediately from the corresponding generalizations of Lemmas 1 and 2. The proofs are essentially the same as in the case $p = \infty$. We note that if f is analytic and $u = \text{Re } \hat{f}$, then (4) $(M = M_p)$ implies that f belongs to the Hardy space H^p . (This follows from (14) (r = 0) and (15).) Therefore, if (4) holds, then u is the Poisson integral of a function $g \in L^p(T)$ (see [2, Chap. 3]).

REFERENCES

- 1. S. N. Bernstein, *On majorants of finite or quasi-finite growth*, Dokl. Akad. Nauk SSSR (NS) 65 (1949), 117–120 (Russian).
- 2. P. L. Duren, *Theory of H^p spaces*, Academic Press, New York, 1970.
- 3. T. M. Flett, *Lipschitz spaces of functions on the circle and the disc*, J. Math. Anal. Appl. 39 (1972), 125–158.
- 4. Y. Katznelson, An introduction to harmonic analysis, Dover, New York, 1976.
- 5. A. Matheson, *Mean growth and smoothness of analytic functions*, Proc. Amer. Math. Soc. 85 (1982), 219–224.
- 6. A. L. Shields and D. L. Williams, *Bounded projections, duality, and multipliers in spaces of analytic functions*, Trans. Amer. Math. Soc. 162 (1971), 287-302.
- 7. ——, Bounded projections, duality and multipliers in spaces of harmonic functions, J. Reine Angew. Math. 299/300 (1978), 265–279.
- 8. ——, Bounded projections and the mean growth of harmonic conjugates in the unit disc, Michigan Math. J. 29 (1982), 3–25.

Prirodno-matematički fakultet Institut za matematiku 11000 Beograd, Yugoslavia