A BOUNDEDNESS THEOREM FOR L^1/H_0^1

José L. Fernández

1. Introduction. The purpose of this note is to prove a version of the classical Vitali-Hahn-Saks theorem, which concerns the dual pair (L^1, L^{∞}) , in the context of $(L^1/H_0^1, H^{\infty})$. Namely:

THEOREM. Let $U_n \in L^1(\mathbf{T})$, n = 1, 2, ..., and assume that for each inner function φ we have:

$$\left| \int_0^{2\pi} U_n(e^{i\theta}) \varphi(e^{i\theta}) d\theta \right| \leq C(\varphi) < \infty, \quad n = 1, 2, ...;$$

then

$$\sup_{n} \|U_n\|_{L^1/H_0^1} < \infty.$$

The Vitali-Hahn-Saks theorem for the circle (in the real valued case) claims:

THEOREM A. Let $U_n \in L^1_{\mathbf{R}}(\mathbf{T})$, n = 1, 2, ..., and assume for each unimodular $v \in L^\infty_{\mathbf{R}}(\mathbf{T})$ that

$$\left| \int_0^{2\pi} U_n(e^{i\theta}) v(e^{i\theta}) d\theta \right| \leq C(v) < \infty, \quad n = 1, 2, ...;$$

then

$$\sup_{n} \|U_n\|_{L^1} < \infty.$$

If \mathfrak{M} denotes the linear span of the inner functions then it is easy to see that \mathfrak{M} is of first category in H^{∞} , which makes the theorem relevant as in the case of Theorem A. On the other hand, a theorem of Marshall (see [6], [7]) asserts that \mathfrak{M} is dense in H^{∞} . But that does not imply the theorem.

An immediate consequence of the theorem is the elementary fact that \mathfrak{M} is weak* dense in H^{∞} .

Now Theorem A has a stronger version (see [2, p. 80]).

THEOREM B. Let $\Lambda_n \in L^\infty_R(T)^*$ and assume that for any unimodular $v \in L^\infty_R(T)$ we have that

$$|\Lambda_n(v)| \leq C(v) < \infty, \quad n=1,2,\ldots;$$

then

$$\sup_{n} \|\Lambda_{n}\|_{L^{\infty}(\mathbf{T})^{*}} < \infty.$$

The author does not know whether or not the corresponding analog of Theorem B holds in the case of H^{∞} , which would be a stronger result than Marshall's theorem. The ideas behind the proof of the theorem (which comes from [4]) are

Received October 1, 1986.

Research supported in part by NSF grant DMS-8501509.

Michigan Math. J. 35 (1988).

also akin to one of the proofs of the existence of inner functions in the unit ball of \mathbb{C}^n [10] and work there also; because the theorem holds there too, these ideas alone cannot settle the above question in the affirmative since they would then imply that Marshall's theorem holds also in \mathbb{C}^n , where it does not ([9]). Thus an extra ingredient would be needed to prove (if it is true) this analytic Nikodym-Grothendieck theorem.

A consequence of the theorem is the following corollary, which settles a question of H. Shapiro (private communication).

COROLLARY 1. There exists an inner function $\varphi(z) = \sum_{n=0}^{\infty} a_n z^n$ with $\{\sum_{n=0}^{N} a_n\}_N$ unbounded.

This follows from the result of Landau that $\|\sum_{n=0}^{N} e^{-in\theta}\|_{L^1/H_0^1} \sim (1/\pi) \log N$ as $N \to \infty$. See for example [3, p. 144] and the references therein.

Another corollary is the following extension of the fact that L^1/H_0^1 is weakly sequentially complete (Mooney's theorem) ([8], [1]).

COROLLARY 2. If $U_n \in L$, n = 1, 2, ..., and if for each inner function φ the sequence $\{\int_0^{2\pi} U_n(e^{i\theta})\varphi(e^{i\theta}) d\theta\}_{n=1}^{\infty}$ converges, then there exists an L^1 -function U such that

$$\int_0^{2\pi} U_n(e^{i\theta}) \varphi(e^{i\theta}) d\theta \to \int_0^{2\pi} U(e^{i\theta}) \varphi(e^{i\theta}) d\theta.$$

To see this, use the theorem to obtain that $\{\|U_n\|_{L^1/H_0^1}\}_n$ is bounded. Since \mathfrak{M} is dense one gets that $\int_0^{2\pi} U_n(e^{i\theta}) f(e^{i\theta}) d\theta$ converges for every $f \in H^{\infty}$, and thus Mooney's theorem gives the corollary.

By B we denote the unit ball of H^{∞} and by \mathcal{O} the vector space of all analytic polynomials; P_N and Q_N consist respectively of those elements of \mathcal{O} of degree at most N and those whose lowest-order term is at least of degree N.

- 2. Proof of the Theorem. If the result does not hold then there exists a sequence of L^1 -functions U_n such that
 - (a) $\lim_{n} \int U_{n} \varphi = 0$ for each φ inner, and
 - (b) $||U_n||_{L^1/H_0^1} \uparrow \infty$.

We use the following two lemmas.

LEMMA 1. If $\{U_n\}_{n=1}^{\infty} \subset L^1$ satisfies (a) and (b), then given $\delta > 0$ and $N \in \mathbb{N}$ there exist a polynomial p and n > N such that

$$(1) p \in Q_N;$$

$$||p||_{\infty} < \delta;$$

$$\int U_n p > \frac{1}{\delta}.$$

LEMMA 2. Let $g \in \mathcal{O}$, ||g|| < 1, and $\{v_j\}_{j=1}^m \subset L^1$. Then, given $r \in (0,1)$ and $\epsilon > 0$, there exist $q \in \mathcal{O}$ and $s \in (r,1)$ satisfying

$$(5) |q(z)| \le \epsilon \text{if } |z| < r;$$

(6)
$$|\{e^{i\theta}: |(g+q)(se^{i\theta})| > 1-\epsilon\}| > (1-\epsilon)2\pi;$$

(7)
$$\left| \int v_j q \right| < \epsilon, \quad j = 1, \dots, m.$$

Assuming the lemmas above, the proof of the theorem goes as follows.

Inductively we shall obtain sequences of polynomials $\{h_j\}_{j=1}^{\infty}$, integers $\{n_j\}_{j=1}^{\infty}$, and positive numbers $\{r_j\}_{j=0}^{\infty}$, $r_j \uparrow 1$, so that if we set $f_k = \sum_{j=1}^k h_j$ then for each k:

(8)
$$||f_k||_{\infty} < 1;$$

(9)
$$U_{n_k}(h_k) \ge (k+1) + |U_{n_k}(f_{k-1})|;$$

(10)
$$|U_{n_j}(h_k)| \le 2^{-k}, \quad j < k;$$

(11)
$$|\{e^{i\theta}: 1 - |f_k(r_k e^{i\theta})| < 2^{-k}\}| \ge (1 - k^{-1})2\pi;$$

(12)
$$|h_k(z)| < 2^{-k} \text{ if } |z| \le r_{k-1}.$$

Because of (12) we have that $\{f_k\}$ converges locally uniformly to an analytic function f, which by (8) has $||f||_{\infty} \le 1$. Moreover, f_k converges to f in the weak* topology of H^{∞} and so (9) and (10) combine to show that $|U_{n_k}(f)| > k$, but by (11) and (12) we have

$$|\{e^{i\theta}: 1-|f(r_ke^{i\theta})|>2^{-k+1}\}|>1-k^{-1}$$

which in particular shows that f is inner, providing us with a contradiction.

We begin the induction by using Lemma 1 to obtain $f_1 = h_1$ and $h_1 \in \mathbb{N}$ so that (8)-(12) hold $(f_0 = h_0 = 0, U_0 = 0)$.

Assume now that we have obtained $\{h_j\}_{j=1}^k$, $\{n_j\}_{j=1}^k$, $\{r_j\}_{j=1}^k$ so that (8)-(12) hold. Let $N = 1 + \deg f_k + n_k$ and $M = \sup_{m \in \mathbb{N}} |U_m(f_k)| + \max_{j \le k} ||U_{n_j}|| + k + 2$. We now use Lemma 1 with $\delta = 2^{-k-2}M^{-1}(1-||f_k||)$ to obtain a polynomial p

We now use Lemma 1 with $\delta = 2^{-k-2}M^{-1}(1-\|f_k\|)$ to obtain a polynomial p and n > N such that (1), (2), and (3) hold. We set $n_{k+1} = n$. Now with $\epsilon = 2^{-(k+2)}$, $g = f_k + p$, $v_j = U_{n_j}$ (j = 1, ..., k+1), and $r = r_k$, we use Lemma 2 to produce a polynomial q and $s \in (r, 1)$ such that (4)–(7) hold. We also set $h_{k+1} = p + q$ and $r_{k+1} = s$.

For k+1, (8) is clearly satisfied, and (11) follows from (6). Also, since $\delta + \epsilon < 2^{-(k+1)}$, (12) holds. Now

$$|U_{n_{k+1}}(h_{k+1})| \ge |U_{n_{k+1}}(p)| - |U_{n_{k+1}}(q)| \ge \frac{1}{\delta} - \epsilon > M - 1,$$

and so (9) holds.

Finally, if j < k+1 then

$$|U_{n_i}(h_{k+1})| \le |U_{n_i}(p)| + |U_{n_i}(q)| \le \delta ||U_{n_i}|| + \epsilon \le 2^{-k-1}$$

and (10) holds.

This finishes the proof of the theorem.

- 3. **Proof of Lemma 1.** By Banach–Steinhaus there is $f \in H^{\infty}$, $||f||_{\infty} < \delta/2N$ such that $\sup_m |U_m(f)| = \infty$. Let $f_N(z) = \sum_{n=0}^N \hat{f}(n)z^n$; then $||f_N||_{\infty} \le \delta/2$ so that if $g = f f_N$ we have $||g||_{\infty} < \delta$. Now $\sup_m |U_m(f_N)| < \infty$, because f_N is a linear combination of inner functions. Therefore $\sup_m |U_m(g)| = \infty$. Choose n > N with $|U_n(g)| > 1/\delta$ and then take $p = \sum_{n=N+1}^M \hat{f}(n)r^kz^n$ with appropriate $r \in (0,1)$ and M > N to get the desired polynomial.
 - **4. Proof of Lemma 2.** We may assume $||f||_{\infty} + 3\epsilon < 1$.

We can partition **T** into intervals $\{I_j\}_{j=1}^L$ so that the oscillation of g in each of them is at most η . We can find $s \in (r,1)$ and a_j ($|a_j| < 1$) with $|g(te^{i\theta}) - a_j| < \eta$ if $e^{i\theta} \in I_j$, j = 1, ..., L, $s \le t \le 1$. There $\eta \in (0, \epsilon)$ is to be specified later in terms of ϵ .

Let p_i be trigonometrical polynomials such that

$$|p_j(e^{i\theta})| < \frac{\eta}{2L} \quad \text{if } e^{i\theta} \notin I_j;$$

$$|\{e^{i\theta} \in I_i : |p_i(e^{i\theta}) - 1| < \eta\}| > (1 - \epsilon)|I_i|;$$

and

$$|p_j(e^{i\theta})| + |1 - p_j(e^{i\theta})| < 1 + \eta$$
 for each $\theta \in [0, 2\pi]$.

Let $K_0 \in \mathbb{N}$ be such that $z^{K_0}p_j$ is, for each j, an analytic polynomial and such that $r^{K_0} < \epsilon/4L$.

Now if β_j are analytic polynomials, $\|\beta_j\|_{\infty} \le 2$, and $\beta_j(0) = 0$, then: if $k \ge K_0$ then $q(z) = \sum_{j=1}^{L} \beta_j(z^k) p_j(z)$ is an analytic function, and if $|z| \le r$ then $|q(z)| \le 4L|z|^k$ by Schwarz' lemma, and so (5) holds.

Moreover, if β_i satisfies

$$1 - 8\eta < |\beta_i(e^{i\theta}) + a_i| < 1 - 6\eta$$
 for each $\theta \in [0, 2\pi]$,

then if $e^{i\theta} \in I_i$ we have that

$$|g+q(e^{i\theta})| \leq 2\eta + |\beta_{j}(e^{ik\theta})p_{j}(e^{i\theta}) + a_{j}|$$

$$= 2\eta + |(\beta_{j}(e^{ik\theta}) + a_{j})p_{j}(e^{i\theta}) + a_{j}(1 - p_{j}(e^{i\theta}))|$$

$$\leq 2\eta + (1 - 6\eta)[|p_{j}(e^{i\theta})| + |1 - p_{j}(e^{i\theta})|]$$

$$= 2\eta + (1 - 6\eta)(1 + \eta) < 1 - 3\eta < 1.$$

Furthermore, if $|p_j(e^{i\theta})-1| < \eta$ then, as above,

$$|(g+q)(e^{i\theta})| \ge |\beta_i(e^{ik\theta}) + a_i|(1-\eta) - 3\eta \ge (1-8\eta)(1-\eta) - 3\eta \ge 1-\epsilon$$

if η is small enough. Thus,

$$|\{e^{i\theta}: |(g+q)(e^{i\theta})| \ge 1-\epsilon\}| > (1-\epsilon)2\pi.$$

Therefore (4), (5), and (6) are satisfied as long as $k \ge K_0$ and if β_j are as above. Now to obtain (7) we need only observe that if $u \in L^1$ then $\int uq \to 0$ as $k \to \infty$. But this just follows from the Riemann-Lebesgue lemma.

Finally, for $\lambda = 1 - 7\eta$ consider

$$\tilde{\beta}_j(z) = \lambda \frac{\lambda z + a_j}{\lambda + z\bar{a}_j} - a_j$$

and let β_j be an analytic polynomial with $\|\beta_j - \tilde{\beta}_j\| < \eta$, $\beta_j(0) = 0$.

5. Example. Let φ be an infinite Blaschke product and let

$$U_n(e^{i\theta}) = \overline{\varphi'\left(\left(1 - \frac{1}{n}\right)e^{i\theta}\right)e^{i\theta}}.$$

Then $U_n \in L^1$. Consider U_n as linear functionals on A (the disk algebra). If b is a finite Blaschke product then

$$U_n(b) = \int_0^{2\pi} b(e^{i\theta}) \overline{\varphi'(\left(1 - \frac{1}{n}\right)e^{i\theta})} e^{i\theta} d\theta = \int_0^{2\pi} e^{i\theta} b'(\left(1 - \frac{1}{n}\right)e^{i\theta}) \overline{\varphi(e^{i\theta})} d\theta.$$

Thus

$$\lim_{n\to\infty} |U_n(b)| \le 2\pi \text{ (degree of } b\text{)}.$$

But $||U_n||_{A^*} = ||U_n||_{(H^{\infty})^*}$ and $U_n(\varphi) \to \sum_{n=0}^{\infty} n |\hat{\varphi}(n)|^2$, and this series is infinite because otherwise $\varphi \in \text{Dirichlet space}$, rendering φ a finite Blaschke product. Thus the theorem does not have an analog for the disk-algebra and finite Blaschke products—that is, the inner functions in the disk algebra—although the closure of their convex combination is the unit ball of A (see [5]).

REFERENCES

- 1. E. Amar, Sur un theorem de Mooney relatif aux fonctions analytiques bornées, Pacific J. Math. 16 (1973), 191-199.
- 2. J. Diestel, Sequences and series in Banach spaces, Springer, New York, 1985.
- 3. P. L. Duren, *Theory of H^p-spaces*, Academic Press, New York, 1970.
- 4. J. L. Fernández, On the growth and coefficients of analytic functions, Ann. of Math. (2) 120 (1984), 505-516.
- 5. S. Fisher, *The convex hull of finite Blaschke products*, Bull. Amer. Math. Soc. 74 (1968), 1128–1129.
- 6. J. B. Garnett, Bounded analytic functions, Academic Press, New York, 1981.
- 7. D. E. Marshall, *Blaschke products generate* H^{∞} , Bull. Amer. Math. Soc. 82 (1976), 494–496.
- 8. M. C. Mooney, A theorem on bounded analytic functions, Pacific J. Math. 43 (1973), 457-463.
- 9. W. Rudin, Inner functions in the unit ball of Cⁿ, J. Funct. Anal. 50 (1983), 100-126.
- 10. —, New constructions of functions holomorphic in the unit ball of \mathbb{C}^n , CBMS Regional Conference, Michigan State University, 1985.

Mathematical Sciences Research Institute Berkeley, California

Current address:

Department of Mathematics Universidad Autónoma de Madrid Madrid 28049 SPAIN