A BOUNDEDNESS THEOREM FOR L!'/Hj{

José L. Fernandez

1. Introduction. The purpose of this note is to prove a version of the classical
Vitali-Hahn-Saks theorem, which concerns the dual pair (L!, L*), in the context
of (LYH}, H*). Namely:

THEOREM. Let U, e L\(T), n=1,2,..., and assume that for each inner func-
tion ¢ we have:

27 . .
“0 U,(ep(e)di| = C(p)<o, n=1,2,...;

then
sup||Un||L1/H6<oo.
n

The Vitali-Hahn-Saks theorem for the circle (in the real valued case) claims:

THEOREM A. Let U,e Lk (T), n=1,2, ..., and assume for each unimodular
ve LR(T) that

27 . .
'SO U,(e®)v(ei®) df| < C(v)<w, n=1,2,...;

then
sup|U,| 1 < oo.
n

If O denotes the linear span of the inner functions then it is easy to see that
IN is of first category in H ®, which makes the theorem relevant as in the case of
Theorem A. On the other hand, a theorem of Marshall (see [6], [7]) asserts that
I is dense in H . But that does not imply the theorem.

An immediate consequence of the theorem is the elementary fact that 9 is
weak* dense in H *.

Now Theorem A has a stronger version (see [2, p. 80]).

THEOREM B. Let A, € LR(T)* and assume that for any unimodular v e L§(T)
we have that

IA,(V)|=C(v)<oo, n=1,2,...;
then
sup| A, | Leo(ys < .
n

The author does not know whether or not the corresponding analog of Theo-
rem B holds in the case of A *, which would be a stronger result than Marshall’s
theorem. The ideas behind the proof of the theorem (which comes from [4]) are
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also akin to one of the proofs of the existence of inner functions in the unit ball
of C” [10] and work there also; because the theorem holds there too, these ideas
alone cannot settle the above question in the affirmative since they would then
imply that Marshall’s theorem holds also in C”, where it does not ([9]). Thus an
extra ingredient would be needed to prove (if it is true) this analytic Nikodym-
Grothendieck theorem.

A consequence of the theorem is the following corollary, which settles a ques-
tion of H. Shapiro (private communication).

COROLLARY 1. There exists an inner function ¢(z) =3 o a,2" with {SV_o a,}n
unbounded.

This follows from the result of Landau that |[$7_,e ~im8) Ly~ (1/7) log N as
N — . See for example [3, p. 144] and the references therein.

Another corollary is the following extension of the fact that LI/H/ is weakly
sequentially complete (Mooney’s theorem) ([8], [1]).

COROLLARY 2. If U,eL, n=1,2,..., and if for each inner function ¢ the
sequence {j(z)“ U, (ei%)p(ei?) db}y— converges, then there exists an L-function U
such that

S;’r U, (e?®)p(ei) do — ﬁ‘” U(ei®)p(ei?) do.

To see this, use the theorem to obtain that {|U,| .y}, is bounded. Since M
is dense one gets that {2" U,(e’?) f(e'®) df converges for every fe H*, and thus
Mooney’s theorem gives the corollary.

By B we denote the unit ball of H* and by & the vector space of all analytic
polynomials; Py and Q) consist respectively of those elements of & of degree at
most N and those whose lowest-order term is at least of degree NN.

2. Proof of the Theorem. If the result does not hold then there exists a se-
quence of L!-functions U, such that

(a) lim,, | U,¢ =0 for each ¢ inner, and
(b) | Un"L‘/H(} Teo.
We use the following two lemmas.

LEMMA 1. If {U,};7- C L! satisfies (a) and (b), then given § >0 and Ne N
there exist a polynomial p and n> N such that

¢y PEQON;

(2) [ P] e <85
1

(3) SUnp> 5-

LEMMA 2. Let ge @, |g| <1, and {v;}}- C L\ Then, givenre (0,1) and e >0,
there exist ge ® and s € (r, 1) satisfying
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) le+al <1;

&) lg(z)|<e€ if |z|<r;

6) |{e??: |(g+q) (se®)|>1—¢€}|>(1—€)2m;
) [va|<e i=1,.,m.

Assuming the lemmas above, the proof of the theorem goes as follows.
Inductively we shall obtain sequences of polynomials {4;}-,, integers {#;}7-,
and positive numbers {r;}7=¢, r; 11, so that if we set f =Yk __ h.then for each k:

J=17]
® | fileo <15
©) Up, (he) = (k+ 1) +|U,, (fe-1) |5
10) |Un ()| =275, j<k;
an [te’0: 1—| fr(ree®®)| <275} |= (1—k~")2m;
(12) | (z)|<27K if |z|=rp .

Because of (12) we have that {f;} converges locally uniformly to an analytic
function f, which by (8) has | f|. <1. Moreover, f; converges to f in the weak*
topology of H* and so (9) and (10) combine to show that |U, (f)|> k, but by
(11) and (12) we have

[{ef?:1—|f(rre®)|>2-k+1}|>1—-k]

which in particular shows that f is inner, providing us with a contradiction.

We begin the induction by using Lemma 1 to obtain f; = A; and A, € N so that
(8)-(12) hold (fo=ho=0, Uy=0).

Assume now that we have obtained {hj}f=1, {nj}}‘=1, [rj}j-‘zl so that (§)-(12)
hold. Let N=1+deg fy +ny; and M =sup,, e n| U (fi) |+ max; < | Uy, | + & + 2.

We now use Lemma 1 with 6 =2"%-2M ~1(1—| fx|) to obtain a polynomial p
and n > N such that (1), (2), and (3) hold. We set n; . ; = n. Now with e =2-(k+2),
g=Jfr+p, vj= Uy, (J=1,...,k+1), and r=r¢, we use Lemma 2 to produce a
polynomial g and s € (r, 1) such that (4)-(7) hold. We also set 4;,;=p+qg and
Fey1=S.

For k+1, (8) is clearly satisfied, and (11) follows from (6). Also, since é+¢€ <
2-(&+1)(12) holds. Now

lUﬂk+1(hk+1)| 2 Iljrlk+1(p)|_|Unk+l(Q)| Z

and so (9) holds.
Finally, if j <k +1 then

lUnj(hk+l)| < IU"j(p)|+|U,,j(q)]56|]Unj]|+652—k—1

and (10) holds.
This finishes the proof of the theorem. O

—e>M-—-1,

| =
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3. Proof of Lemma 1. By Banach-Steinhaus there is fe H*®, | f|o < 6/2N
such that sup,,|U,,(f)|= . Let fn(z) =3N_o f(n)z"; then | fn]=8/2 so that
if g=f—fn we have |g|. <6. Now sup,,|U,(fn)| <o, because fy is a linear
combination of inner functions. Therefore sup,,|U,,(g)| = «. Choose n > N with
|U,(g)|>1/6 and then take p =3 ., f(n)rkz" with appropriate r € (0,1) and
M > N to get the desired polynomial. O

4. Proof of Lemma 2. We may assume | f|+3e<]1.

We can partition T into intervals {Ij]f-;l so that the oscillation of g in each of
them is at most ». We can find s e (r,1) and a; (|a;|<1) with |g(te’®) —a;| <7 if
eel;, j=1,...,L, s<t=<1. There ne (0, €) is to be specified later in terms of e.

Let p; be trigonometrical polynomials such that
N
2L

[{e?®el;:|pi(e®)—1[<n}|>(1—e)|L];

|pj(e’®)| < if e¢ I;;

and
|pj(e?®)|+|1—p;(e?)|<1+7 for each 6€[0,27].

Let Ky € N be such that zKOpj is, for each j, an analytic polynomial and such that
rko<e/4L.

Now if 8; are analytic polynomials, |8;|. =<2, and §8;(0) =0, then: if k=K
then q(z) =Ef=1 B;(z*) p;(z) is an analytic function, and if |z|<r then |g(z)|=
4L |z|* by Schwarz’ lemma, and so (5) holds.

Moreover, if 8; satisfies

1-8n<|B;(e?)+a;j|<1—6n for each 0€[0,27],
then if e’e I; we have that
|g+q(e®)|=29+]|B;(e™ ) p;(e’®) +aj]

=2n+|(B;(e™*?) +a;)pj(e)+a;(1—p;(e'))|

=29+ (1—69)[|p;j(e®)|+|1—p,(e’)]|]

=27n+(1—-6n7)(1+7)<1-35p<1.
Furthermore, if | p;(e??)—1| <7 then, as above,

|(g+q)(e’®)|=|Bj(e*®)+a;|(1—n)—3n=(1—-8n)(1—n)—3np=1—¢
if » is small enough. Thus,
{ei®: |(g+q) (e0)| =1—¢}|> (1—e)2m.

Therefore (4), (5), and (6) are satisfied as long as k = K, and if 8, are as above.
Now to obtain (7) we need only observe that if u € L! then { ug — 0 as k — c. But
this just follows from the Riemann-Lebesgue lemma.
Finally, for A =1— 7% consider
~ Az+a;
. =\ ! —a.
Bj (Z) A Zé_lj a"

and let 3; be an analytic polynomial with |8; —,(3’}|| <, B;(0)=0. 0
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5. Example. Let ¢ be an infinite Blaschke product and let

Un(e"") — go'((l — l)eiﬂ)eie'
n

Then U, € L. Consider U, as linear functionals on A4 (the disk algebra). If b is a
finite Blaschke product then

U, (b) = ﬂj“ b(e"9)<p’(<1-— %)e”’)e”’ do = SZ”efﬂb'((l - %)e“’)ﬂe“’) do.

Thus

lim |U,(b)| =< 2= (degree of b).

n-—>oo
But |Up| 4 =| Uyl =y and U,(¢) =2 7= 1| @(n)|? and this series is infinite be-
cause otherwise ¢ € Dirichlet space, rendering ¢ a finite Blaschke product. Thus
the theorem does not have an analog for the disk-algebra and finite Blaschke
products —that is, the inner functions in the disk algebra—although the closure
of their convex combination is the unit ball of A4 (see [5]).
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