HOMOMORPHISMS BETWEEN ALGEBRAS OF
DIFFERENTIABLE FUNCTIONS IN INFINITE DIMENSIONS

Richard M. Aron, Javier Gomez, and Jose G. Llavona

Introduction. Let E and F be real Banach spaces. For n=0,1, ..., o, let
Ch.(E; F) be the space of n-times continuously differentiable functions f:
E — F such that, for each integer j <n and each x € E, both the jth derivative
mapping f/: E — P(VE; F) and the polynomial f/(x)e P(E; F) are weakly uni-
formly continuous on bounded subsets of E. (This space and related notions are
reviewed below.) Our primary interest here is in the study of homomorphisms
A:CLL(E;R)— Cl,(F; R). We will show that these homomorphisms are in-
duced by functions g: F”— E”, in a way to be made more precise later. One of
the principal purposes of this note is to characterize these functions g in terms of
a differentiability property, thereby characterizing the homomorphisms 4. An
easy consequence will be that every such homomorphism is automatically con-
tinuous when the spaces C),,;, are given their natural topology.

By way of defending our interest in C},,;,(E; F), we mention that several quite
natural characterizations of this space exist, and are recalled below. In particu-
lar, if £ = R" and F= R* then weak uniform continuity on bounded sets is auto-
matic. In other words, in the case of finite-dimensional spaces £ and F, our re-
sults reduce to the classical case of homomorphisms A: C"(R?) — C™(R¥k); this
is stated as Corollary 3.5 below. (See Glaeser [8] and Bers [4] for discussions of
related problems in finite-dimensional real and complex normed spaces, respec-
tively.) Moreover, complex analogs of this space are of independent interest and
of some relevance to the Michael problem on automatic continuity of complex-
valued homomorphisms on a complex Fréchet algebra. For example, let E = ¢ be
considered as a complex Banach space, let /= C and n = oo, and call the corre-
sponding space H,,,;(cg). Then it is known [5] that if every scalar-valued homo-
morphism on H,,;(cy) is continuous then every scalar-valued homomorphism
on every Fréchet algebra is continuous.

The basic ingredients we will need are few and are all relatively simple. First,
under reasonable hypotheses (such as £’ having the bounded approximation prop-
erty), Cn.»(E; R) can be characterized as the completion of the unital algebra
generated by E’ under the topology of uniform convergence of a function and
its first k derivatives on bounded sets, where k € N and k < n. Therefore, a con-
tinuous homomorphism ®: C},,(E; R) — R is determined by its action on E".
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Second, any function in C,,,;(E; R) has a (necessarily unique) extension to an
element in a space of differentiable functions on E£”, which we will examine later.
Moreover, we will see that there is a natural, well-known locally convex topology
on E”, called the bw* topology, such that CJ;,;(E; R) is algebraically and topo-
logically isomorphic to C”*(Ef,,«; R). We will see that this isomorphism, which
essentially “trades off” a subspace of the space of differentiable functions on a
Banach space with the space of all continuously differentiable functions on a lo-
cally convex space, has considerable value for us. Finally, given any homomor-
phism A4: C},,(E; R) - C,,(F;R) and any point y € F, a functional g(y)eE”
can be defined by g(y)(¢) =A(¢)(¥) for each ¢ € E’. In this way we get a func-
tion g: F— E” which we will be able to extend to g: F” — E”. Note that with the
topology described above C},,,(E; R) is a Fréchet algebra over the reals, and so
every multiplicative linear functional on C}},;, (E; R) is automatically continuous
(cf. [12]). From this we will be able to deduce that 4 is continuous, and we will
also be able to derive the differentiability properties which determine g.

This paper is in four parts. Section 1 reviews the key concepts, in particular
the bw* topology and the spaces C),,,(E; F) and C"(E},,~; Fi,+). In Section 2,
the relationship between these two spaces will be studied. Section 3 is the main
body of the paper; here the homomorphisms between the algebras C,,,,, (E; R) and

Clp(F;R) (0=<m,n=< o) are characterized in terms of mappings g: F"—>E”,
which are differentiable when E” and F” are endowed with the bw* topologies.
It is reasonable to ask what relation exists between differentiability of a function
in this sense and the usual Fréchet derivative between Banach spaces F” and E”.
This topic is discussed at the end of Section 3 and examples are given in Section 4.
In brief, our treatment shows that bw* differentiability is natural and, in any case,
unavoidable in this context.

In a separate note [1], Aron and Llavona examine questions concerning the
ranges of homomorphisms between algebras CJ,,;, of functions which are weakly
uniformly continuous when restricted to bounded sets.

This article is based on research done while the first author was a visitor at the
Universidad Complutense de Madrid, Spain, for several months during 1984 and
1986, and while the third author was a Fulbright fellow visiting Kent State Uni-
versity, Ohio, during the 1984-85 academic year. The authors express their grati-
tude to these organizations for their support.

1. Notation, definitions, and preliminary results. £ and F will always denote
real Banach spaces, with duals £’ and F’, second duals £” and F”. The weak
topology on E, o(E, E’), will often be denoted by the letter w, and the weak*
topology on E”, a(E”, E’), will often be denoted w*. Foreachne N, B,={xe€E:
|x]| =n} and B,;={xe E”: | x| <n}. For any Hausdorff locally convex spaces X
and Yand n=1,2,..., L("X,Y) denotes the space of continuous #n-linear map-
pings on X X --- X X — Y, with the topology of uniform convergence on bounded
subsets of X X --- X X. The space of n-homogeneous polynomials from X to Y,
P("X;Y), consists of all compositions A-A, where Ae L("X;Y) and A: X—
X X% --- X X is the diagonal mapping. P("X; Y) is assigned the locally convex topol-
ogy generated by all seminorms of the form P e P("X; Y) — sup{a(P(x)): x € B},
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where B < X is bounded and « is a continuous seminorm on Y. We agree that
L(X;Y)=P(°X;Y) is associated with the constant mappings from X to Y, and
so is associated with Y. P,("X; Y) denotes the vector subspace of P("X; Y) gen-
erated by all n-homogeneous polynomials of the form P(x) = ¢(x)"y, where ¢ €
X’ and yeY. P(X;Y) and Ps(X;Y) denote the (algebraic) direct sums

Y P('X;Y) and Y Pr("X;Y),
n=0 n=0

respectively. We will also use the standard notation L(X; Y) to denote L(!.X; Y).
For p=0,1,..., 0, CP(X;Y) is the space of all p-times continuously Fréchet dif-
ferentiable mappings from X to Y (see Yamamuro [15, §1.8]). Throughout, if the
range space is omitted in the notation then it is understood that the range is R.
Thus, for example, CP(X) denotes C?(X; R). For further information on differ-
entiable approximation theory in infinite dimensions, see [7; 11; 15].

In 1.2-1.4 below, we define the space of differentiable functions considered in
this paper, and we give some of its properties. The remainder of the section is
devoted to recalling several topologies, first introduced by Day and Wheeler, and
to making some preliminary observations concerning differentiable mappings be-
tween spaces endowed with these topologies.

DEFINITION 1.1 ([2]). A function f: E — F'is said to be weakly uniformly con-
tinuous on bounded subsets of E if for each bounded subset B of E and each e >0
there is a finite set {¢y, ..., ¢4} CE’ and 6 >0 such that if x, ye Band |¢;(x—y)| <
8 (i=1,...,k) then | f(x)—f(¥)| <e. Cy,p(E; F) denotes the space of such func-
tions, and P,,,, (/E; F) = P(/E; F)N C,,,(E; F), which is a Banach space with the
norm induced by P(/E; F).

DEFINITION 1.2 ([2]). C2,,(E; F) is the subspace of C?(E; F) formed by all
functions f which satisfy the following conditions:

(@ f/(x)eP,,,E;F) for all xe E and j < p; and

(b) f/€ Cyup(E; Pyyp VE; F)) for all j =< p.
Moreover, Cyp(E; F) =N p=o Chu(E; F).

DEFINITION 1.3 ([2]). Let fe C?(E; F). We say that f is uniformly differen-

tiable of order p if, for each bounded set B C E and each € > 0, there is 6 > 0 such
that if xe B and y € E with |y| <6 then

4
‘f(X+y)—f(x)—f’(x)(y) — L2 (y)“ <e|ylP.

p!

THEOREM 1.4 ([2]).

(1.4.1) If feC, ,(E; F) and B < E is bounded, then f(B) is precompact in F.

(1.4.2) For every je N, P,,,(VE; F) is complete with the norm induced by
P(E; F).

(1.4.3) (CL.w(E; F), 1) is complete for all p=0,1, ..., o, where 7f denotes the
locally convex topology generated by all seminorms of the form f e Cb,,,(E; F) >
supf{| f/(x)|: x € B}, where B is a bounded subset of E and j€N, j =< p.



166 RICHARD M. ARON, JAVIER GOMEZ, & JOSE G. LLAVONA

(1.4.4) CL,,(E; F) is the set of functions fe CP(E; F) which satisfy the fol-
lowing condition:

(a) f€ Cwub(E;Fﬁ);

(b) fi(x)eP,,,(VE;F) forall xe E and j < p;

(c) fis uniformly differentiable of order j for every j < p.

(1.4.5) If E’ has the bounded approximation property then P;(E; F) is 7f dense
in Cv{:ub(E;F)-

We recall that a Banach space G is said to have the bounded approximation
property if there is a constant M > 0 such that for all compact subsets K C G
and all € > 0 there is a finite rank continuous linear operator 7: G — G such that
|7x—x| <e for all xe K and |T| <M. LP spaces, C(K) spaces, and spaces with
Schauder basis have the bounded approximation property.

DEFINITION 1.5 ([6]). The bounded weak (bw) topology on FE is the finest to-
pology on E which agrees with the weak topology on bounded subsets of E. Ej,,
will denote E with this topology.

DEFINITION 1.6 ([14]). The convex bounded weak (cbw) topology on E is
the finest locally convex topology on E which agrees with the weak topology on
bounded subsets of E.

DEFINITION 1.7 ([6]). The bounded weak star (bw*) topology on E” is the
finest topology on E” which agrees with the weak* topology on bounded sets.
The space E”, endowed with the bw* topology, will be denoted E},

It is known that the bw* topology is a locally convex topology. The following
is a useful characterization of the chbw topology.

THEOREM 1.8 ([14]). The cbw topology on E is the restriction to E of the bw*
topology on E”. In particular, the bw topology on E is a locally convex topology
if E is reflexive.

Wheeler [14] shows that the bw topology on ¢, is not locally convex. In [9],
Gomez proved that, in fact, the bw topology on a Banach space E is locally con-
vex if and only if E is reflexive.

It is immediate that in £”, the bounded sets for the norm, the weak*, and the
bw* topologies all coincide. An application of the Grothendieck completeness
theorem [13] yields that (E},,«)'=E’. Also from the definition of the bw* topol-
ogy, it is immediate that Ej,. is the topological direct limit of the topological
spaces (B,;, w*), and so for a given function f: E” — X into a locally convex space
X, fis continuous for the bw* topology if and only if f|z: (B, w*) » X is con-
tinuous for all bounded sets B C E”. Since closed balls in E” are compact in Ej,, «
the following is immediate.

LEMMA 1.9. If ge C(E},,+; X) and BCE" is bounded, then g(B) is precon-
pact. In particular, g(B) is bounded.

For future use, we record the following, which is a direct application of the
above definitions.
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REMARK 1.10. For p=1, CP(E},.) is the space of all functions fe CP(E")
which satisfy the following properties:

(@) forall xeE”, jeN, and j < p, fi(x)e P(UE},+);

(b) forall je Nand j=p, f/e C(E},; PUE},~)).

LEMMA 1.11. If ge CP(E},~; Fi,+) then for each je N (1< j=< p) and each
bounded subset B in E”, sup{|g/(x)(»¥)|: x,y € B} < .

Proof. For each ¢ € F’, let V(¢, B,1) ={P € P(/E},+; F§,+): |P(x)(¢)| <1 for
all xe Bj}. Since g/e C(E},~; PUE},+; Ff,+)), g/(B) is precompact by Lemma 1.9,
and so there are points y;, ..., ¥, € B such that

g/(Byc U {g/(y)+V(¢, B, 1)].

i=1
Since each g/(y;) € P(UE},~; F,»), there is M < oo such that

sup{|g/(¥)(¥)(P)|: yeB,1=iss}<M.
Therefore

supf|g/(x) () (P)|: x,ye B} <M +1

and an application of the uniform boundedness principle completes the proof.
O

There is no confusion in using the notation 7/ to also denote the locally convex
topology on C?(Ej,,) of uniform convergence of order p on bounded subsets of
E”. That is, 7{ is generated by all seminorms of the form

S € CP(Ef,)—supl| f/(x)]: x e B},

where B is allowed to range over all bounded subsets of £” and where j< p.

2. Representation of uniformly weakly differentiable functions. We show here
that functions in C}},;,(E; F) have extensions to functions defined on E” having
the same degree of differentiability. The importance of this result comes from the
fact that we can thus obtain a topological and algebraic isomorphism between
CP ., (E) and CP(E},+), which will be useful in the sequel. Our first result is a
simple version of the above remarks, and will be extended in Theorem 2.4.

PROPOSITION 2.1. Every function fin C,,,;,(E; F) can be extended in a unique
way to a function f: E” — F, where f € C(E},+; F). Moreover, the mapping f — f
is @ homomorphism and, for all n, sup{| f(¢)|: t € B,} =sup{| f(¢)|: t € B}}.

Proof. For each n, f,,=f|B, is uniformly continuous on B, with the induced
weak topology. Thus (see e.g. [10, p. 196]), there exists a unique extension f, to
B/ with the induced weak* topology. It is clear that the functions f;, give rise to a
coherently defined function f: E” - F. That fe C(E},,-; F) follows from the def-
inition of the bw* topology. The rest of the proof is straightforward, using the
weak* density of B,, in B},. ]

COROLLARY 2.2. The following pairs of spaces are topologically isomorphic:
Cwup(E; F) and C(Ej,»; F); and Py, (VE; F) and P(JEp,; F) for je N.
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One consequence of 2.1and 2.2 is that if fe C§),,(E) then each f/: E - P,,,;,(/E)
can be extended to f/e C(Ef,+; P(/Ef,»)).

LEMMA 2.3. If fe C? ,,(E), then for each j N, j = p, and each bounded sub-
set BC E”, the mapping ®: BXB — R, ®(x,y)=fJ/(x)(»), is continuous when B
has the induced weak* topology.

Proof. By Lemma 1.9, f7(B) is precompact in P(JEf,.). Therefore, given the
0-neighborhood V= {P e P(/E},+): |P(x)|<e for all x € B}, there exists a finite
set {b, ..., b} C B such that

~ koo
(2.3.1) SIBYCU (f7(b)+V).

=1

Since each f7(b,) e P(YE},»), we can find a finite set {¢;,..., ;] CE’ and 6,>0
such that, for all x, y € B satisfying |¢;(x—y)|<é; (i=1,...,5),

(2.3.2) | I (x)=FiBy )| <e (=1,...,k).

On the other hand, since f7e C(E{,»; P(UE{,+)), we can find a finite set {¢s,1,
..., 9} CE’ and 8, > 0 such that if x, y € B satisfy |¢;(x—p)| <6, (i=s+1,...,¢)
then, for all z € B,

(2.3.3) | f7(x)(z) = fir)(z)| <e.
Let 6 = min(é,, 8,), and choose x;, X3, ¥, Y2 € B so that |¢;(x; —x,)| < 6 and

|d:(¥1—y2)| <6 (i=1,...,¢t). Then, by applying (2.3.1)-(2.3.3), we conclude that
for some b;,

| f7(x) (1) = f7(x2) ()]
< | f7(x) 1) = F7Ce2) )|+ f7(x2) (1) — F7(x2) (32|
< e+|fT(x2) () = FAB) )|+ 70 (1) — I () (12)]
+FAB) (72) — f7(x2) ()]
<{4e. ]

The following is the promised generalization of Proposition 2.1.

THEOREM 2.4. Every function f € CP ., (E) can be extended in a unique way
to a function f: E” > R, so that fe CP(E},-). Moreover, the mapping f— fis
a homomorphism and, for all j,ne N and j < p,

sup{] f/(x)|: x € B,} = sup{| f/(x)|: x € By}.

Proof. Proposition 2.1 yields a function fe C(E},») which extends f and, more
generally, functions f/e C(E},~; P(/Ej,~)) which extend fY, for j =< p. Also, for
each such j and n e N, sup{| f/(x)|: x € B,} = sup{| f/(x)|: x € B;;}. The theorem
will be proved once we show that f/= fJ for all j < p, that is, once we show that
the derivatives of the extension f agree with the extension of the corresponding
derivatives of f. We show this by induction. Let p=1and let ne N and ¢ >0 be
arbitrary. By (1.4.4) there is a real number 6 > O such that forallxe B,,and y e E,

Iyl =,
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(2.4.1) | f(x+)—f(xX)=F"(x) ()| <€|y].

Let se B, and ¢t € E” with |f| <é. Let (x,) € B, be a net converging weak* to s
and let (y,) be a net in E converging weak* to ¢, with |y,| <|¢|. By Lemma 2.3,
Hm|f(xy+Ye) = f(Xa) = (X) (V)| =|S(s + 1) = f(s)—f"(x)(#)], and therefore
by (2.4.1) | fs+1¢)— f(s) S’ (s)(t)| < ¢|¢]. This implies that fr=f.

Next assume that ff = fJ for j < p—1. Reasoning as above and using the in-
duction hypothesis, we find that for any B,, and € > 0 there is a number é > 0 such
that for all s € B;, and ¢t € E” with |¢]| =6,

fr-! /7
T 1),( )(l‘)——(S)(t) <e]e|P.

Therefore /7= f7, which concludes the proof. O

Fls+1)—=F(s)=FUs)(t) — -+ —

COROLLARY 2.5. The mapping f— f is a topological isomorphism, in the
sense of Fréchet algebras, between (CEu(E), 7f) and (CP(E},.), f) forall p=
o,1,.

We note in passing that the results of 2.3, 2.4, and 2.5 are also valid for vector-
valued functions f: E — F, with virtually identical proofs.

3. Homomorphisms between algebras of uniformly weakly differentiable func-
tions. By Corollary 2.5, every homomorphism A: C%,,(E) — C,,, (F) can be as-
sociated in a unique way to a homomorphism, still denoted A4, between CP{E},,+)
and C"(F{,). Our object here is to characterize these homomorphisms in terms
of mappings they induce between F” and E”. Since the continuous case is dis-
cussed elsewhere (cf. [1]), we will always assume that at least one of p or m is
bigger than 0. The first result is basic, albeit easily proved (modulu the afore-

mentioned result of Michael).

PROPOSITION 3.1. Let 6: CP(E},+) — R be a homomorphism. Then, if E’ has
the bounded approximation property, there exists a unique point x € E” such that

0(f) =JS(x) for all f € CP(Ep,~).

Proof. Since C?P(E},) is a real Fréchet algebra, 8 is continuous. Thus there is
some point x € E” such that 0(¢) =¢(x) for all ¢ € E’. As a result, ¢(P)=P(x)
for all P e P;(E), and the result follows by (1.4.5). O

COROLLARY 3.2. Let A: CP(E}, ) = C"™(F},+) be a homomorphism. Then if
E’ has the bounded approximation property, A is induced by a function g:
F"—>E", That is, A(f)=f-g for every fe CP(E},+).

Proof. For each ye F”, §,°A: CP(E},+) — R is a homomorphism, where 6, de-
notes evaluation at y. Hence, there corresponds a unique point x € E” such that
0,°A(f) = f(x) for all fe CP(E},~). The required function g is given by g(y) =
X. |

Having established the existence of some function g inducing every homomor-
phism, we now study differential properties of g. Our principal result here is the
following theorem.
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THEOREM 3.3. Let A: CP(E},) — C™"(F},+«) be a homomorphism. Then if
E’ has the bounded approximation property, A is induced by a function ge
C"(Fgs Epye). That is, A(f) = feg for every fe CP(E},~).

Proof. The case m =0is treated in [1] and so we will suppose that #nm=1. Let g
be the function defined in Corollary 3.2. Define g;: F”— P(/F”"; E”) by

g;(x) (¥)(9) =[A()) (x)(»),
where x and ye F”, jeN, j<m, and ¢ € E’. Since the jth derivative of A(¢)
evaluated at x, [A($))/(x), is in P(F},+) for each x € F”, it follows that for every
€ >0, bounded set BC F”, and ¢ € E’, there exist {{y, ..., ¥4} EF" and 6 > 0 such
that if y,ze B and |y;(y—2)| <6 (i=1,..., k) then
(3.3.1) |[g;j(x)(2)—g;(x)(P)($)|=<e.

Consequently, each g;(x) € P(/Fj,»; E)+) = P(UF},»; Ef,+). Next, the definition
of [A(¢)) (¥) implies that, for all y e F” and all bounded sets B C F”, there is
6 > 0 such that the set

(3.3.2) (e lg(y+ex)—g(y)—gi1(¥)(ex)]: |e| <6, x € B} is bounded

and that
(3.3.3) lime~![g(y+ex)—g(y)—g1(¥)(ex)](¢)=0

e—0
uniformly for x € B. Combining (3.3.2) and (3.3.3) we conclude that, for all ye
F” and all bounded sets B < F”,

(3.3.4) lime~g(y+ex)—g(y)—g1(¥)(ex)]=0

e—0

in E},~uniformly for all x € B.
Assume now that g;,..., g;_; are the first j—1 derivatives of g, where j <m,
and let us show that g; is the jth derivative of g. Fix y € /7 and denote by

C(y):F”X o X F" S E”
the unique symmetric j-linear mapping associated to g;(»). Let
u:FI;’w* —"P(j_lFéIw*;ng*)

be the linear mapping given by u(x)(z)=C(»)(x, 2, ...,2). We must show that,
given any bounded set BC F”,

(3.3.5) lim e ~![g; (¥ +ex)—g;_1(y) —u(ex)] =0

e—>0

in Ef,« uniformly for x € B. As in (3.3.2), we first note that, from the definition
of [A(¢)])/(»), there is a real number 6 > 0 such that the set

fe g 1(y+ex)(z)—gi—1(¥)(z) —u(ex)(z)]: 0< |e| <6, x, z € B}
is bounded. Thus it will be sufficient to show that, for all ¢ € E’,
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(3.3.6)  lim(e '[gi_1 (¥ +ex)(2) —gi_1(¥)(z) —u(ex)(2)1($)) =0

e—0
uniformly for x, z € B. If D(y) is the unique symmetric j-linear mapping asso-
ciated to [A(¢))/(») and v is defined in analogy with u« above, using D instead
of C, then

lim e "H([A(Q)V 1y +ex) —[A($)) 71 (¥) —v(ex)) =0

e—0

uniformly for x € B. In other words,

(3.3.7) lirrtl) e N([A(®)) (¥ +ex)(2)—[A()) "1 (¥)(2) —v(ex)(2)) =0
uniformly for x,ze B. Now D(y)(ex,z,...,2)=C(¥)(ex,Z,...,2)(®), so that
v(ex)(z) =u(ex)(z)(¢). Therefore, (3.3.7) implies (3.3.6), and so g; is the jth
derivative of g.

Finally, it is easy to see that for each j (1 = j < m) and for all bounded sets
BCF”, sup{|(gi(x)—g;(¥))(z)]: x,y,z € B} <. Therefore, to prove that g;e
C(F{,~; P(/F},»; Ef,+)) we need only show that for all bounded sets B CF”, all
¢ e E’, and all € >0, there are ¥4, ..., ¥y € F’ and 6 > 0 such that if x,ye B and
|¥i(x—y)| <6 (i=1,..., k) then |(g;(x) (z)—gj(y)(z))(¢)| <e fpr all xe B. How-
ever, this is immediate from the fact that [A(¢)]/ € C(F},,«; PUFp,»)). ]

It is of interest to note that the above proof shows that in fact C”(Fy,,+; Ef,+)
consists of precisely those functions g: F”— E” such that for all p € E’, ¢og | €
Chup(F). To see this, let g e C™(F},+; Ef,+) and let ¢ € E’ be arbitrary. Then
dog|re Cllp(F) by Corollary 2.5. On the other hand, if g: F— E” is such that
¢og € Ciip(F) for all ¢ € E’, define g: F” — E” by £(¥)(¢) = (°g)(»), as in
Theorem 2.4. It follows that ¢ g € C"(F},,»). Summarizing, C"”(F},+; Ep,») =
fg: F"—>E":for all g€ E’, poge C"(F},+))={g: F->E":for all g€ E’, ¢poge
C:yub(F)}

An immediate consequence of Theorem 3.3, Lemma 1.9, and the definition of
the 7§ topology is the following.

COROLLARY 3.4. If E’ has the bounded approximation property, then every
homomorphism A: CP(E},) —» C™(F},.) is continuous.

The finite-dimensional interpretation of Theorem 3.3 is given next.

COROLLARY 3.5. Let A: CP(R") — C™(Rk) be a homomorphism. Then A is
automatically continuous and is induced by a function g e C"(R*; R"), via the

mapping A(f) = f-g.

Proof. Since all Hausdorff locally convex topologies on a finite-dimensional
space coincide and since such spaces are automatically reflexive and have the
bounded approximation property, it is immediate that Theorem 3.3 implies the
existence of such a mapping g. O

Our next result will yield as a corollary a complete characterization of homo-
morphisms between two spaces of the form C2%,,,(E).
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THEOREM 3.6. Suppose that E’ has the bounded approximation property. Let
ge C™(F},«;Ef~) and let pe N, m=p. Then for every fe CP(Ef,), fo8€
Cm(Fb”w")-

Proof. By [15, 1.8.3], fog is m-times differentiable and the chain rule holds.
By [15, 1.7.2], it suffices to prove that (fog)" e C(Fpy»~; P("Fp,»)).

The proof for general m is too complicated to be very enlightening. Therefore,
we only prove the result for the case /n = 2, since this case contains all the ideas
needed for the general case. So, let R >0 and e > 0 be arbitrary. By Lemma 1.9,
there exists M = R such that

(3.6.1) sup|g/(z)(®)|: =2, z,PeF", |z] =R, |®|=1} =M.
By Corollary 2.5 and (1.4.5), there is a finite type polynomial P € P(E) such that
(3.6.2) sup{| /7 (x)—PI(x)|: j =2, |x|=M,xe E"} <&,

where P is the extension of P to E”.
Since fe CP(E},+), there are ¥y, ..., ¥, € E” and §; > 0 such that, if z;,z, € E”,
|zil =M, |z2| =M, and |¢;(z,—22)|< 8, (i=1,...,5), then

(3.6.3) |f @) —f(z)|<e (J=2).

For each j (1= j=s), y;°g e C(Fj3,) and so there exist 6, >0and ¢y, ..., € F’
such that, if u;, u, € F”, |ui| = R, |us| =R, and |¢;(u; —u3)| <6, (i=1,...,k),
then

(3.6.4) [Wi(g(u))—gux))| <8, (G=1,...,5).

Next, for each j <2, g/ € C(F{,,~; P(UF{,~; Ef,,+)). Hence there exist ¢z, 1, ..., P/ €
F’ and 83 > O such that if u;, u, € F”, |u;| < R, |us| < R, and |¢;(u;—uy)| < 83
(i=k+1,...,1), then

|P"(g(x)) (&' (1)) (P)) —P:”(g(x))(g'(uz) (P)|=e
|P*(g(x)) (8" (u) () —P'(g(x))(g"(u2) (P)) | <€

whenever ® e F”, |®| <1, xe F”, and |x|<R.
Finally, let u,, u; € F” such that |u;| =R, |u;| =R, and

(3.6.5)

f¢,-(u1—u2)|<min(62,63) for i=1,...,l.

For every ® e F” (|®|<1), (fog) (u)(P)— (f-g)"(u3)(P) can be written as a
sum of terms of the following type, using the chain rule:

(3.6.6) LS (g(u) —f"(g(u2))1(g" (1)) (P)),
(3.6.7) [f"(&(u2))—P"(g(u2))1(g’ (1) (®)),
(3.6.8) P(g(u2)) (8" (1) (2)) — P (g(u2)) (g'(u2) (D)),
(3.6.9) [f(g(u) —S"(g(u2))](g"(u1)(P)),
(3.6.10) [f(g(u2)) — P'(g(u2))1(g" (u1) (D)),

(3.6.11) P'(g(12)) (8" (1) (B)) — P'(g(12)) (8" (12) (D).
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(3.6.1), (3.6.3), and (3.6.4) imply that the norms of each of the terms in (3.6.6)
and (3.6.9) are bounded by e M. Using (3.6.1) and (3.6.2) we see that (3.6.7) and
(3.6.10) are each bounded in norm by e M. Finally, by (3.6.5) the norms of the
terms of the form (3.6.8) and (3.6.11) are bounded by e. Therefore,

[(fo8)" (1) —(fo8)"(uz)| = CMe
for some absolute constant C, and the proof is complete. [

COROLLARY 3.7. If E’ has the bounded approximation property, then the
space of homomorphisms A: CL,,(E) — Chp (F), where m < p, can be identified
with the space of all functions g: F — E” such that, for all p e E’, ¢poge ClI' ,(F)
via the formula A(f) = fog for fe CE,,(E).

It is natural to consider the relation between the two spaces C(F},+; Ef,+)
and C"(F”";E"), the latter space consisting of all Fréchet differentiable map-
pings between the Banach spaces F” and E”. In fact, we prove below the some-
what surprising (albeit easily proved) result that C7(F},,«; Ef,«) CC"~Y(F"; E")
for every m=1, ..., oo. In particular, a C = mapping for the bw* topologies is also
C<= for the norm topologies. In Section 4, examples are given which show that
Cm—-1(F”; E”) cannot be replaced by C"(F"; E").

PROPOSITION 3.8. Let g € C™(F},+; Ef,»). Then ge C"~Y(F”"; E").

Proof. The proof consists of a straightforward induction argument, combined
with several applications of the mean value theorem. For m=1, |g(x)—g(»)|=
sup{|o(g(x)—g(¥)|: o€ E', |¢| =1) =sup{|$°g’(z)||x—y|}, where the supre-
mum is taken over all z € F” which lie on the segment [x, y] and over all ¢ of
norm =< 1. Since g’ is locally bounded, it follows that g is continuous.

To prove the result for general m, it will be convenient to regard the kth de-
rivative of g: F” — E” at a point x € F” as a k-linear mapping of F"X --- X F” —
E”, dkg(x) e L(XF"; E"), rather than as a k-homogeneous polynomial gk(x) e
P(XF”; E"). Thus, since d¥g: F”"— L(*F";E"), d(d¥g)(x)e L(F"; L(XF";E"))
and so d(d*g)(x)(h)e L(XF”;E") for all he F”. Now, assuming the result for
j=1,...,m,let ge C"+*Y(F}, +; Ef,+). For x,he F” and ¢ € E’, consider

|peldm—1g(x+h)—d™g(x)—d(d""1g)(x)(M)]|
a '

Let f(u) =¢o[d™ lg(x+ u)—d(dm™ g)(x)(u)], so that the numerator in the
above expression is | f(A) — f(0)].

By the mean value theorem, this quantity is dominated by sup{].f’(v)||4]|},
where the supremum is taken over all points v lying on the segment [0, #]. How-
ever, f(v)=¢-[d(dm 1g)(x+v)—d(d " 1g)(x)], which by another applica-
tion of the mean value theorem is bounded above by

sup{|¢-d(d(d™~1g))(x+y)||v]|},

where the supremum is taken over y e [x, x+u]. Since d(d(d™—1g))(x+y) can
be naturally associated to d”+1g(x+y), which is locally bounded, it follows by
taking the supremum over all p € E’ (|¢|=1) that ge C"(F”; E”). 1
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Thus far, we have excluded the case p < m. The reason for this is apparent
from the following.

PROPOSITION 3.9. Let A: CP(E},») - C"(F},,») be a homomorphism, where
p<m. If E’ has the bounded approximation property, then A is induced by a
constant function g: F”"—> E”.

The proof depends on the following elementary lemma.

LEMMA 3.10. Let ge C"(R), where m=1. If p<m and fog e C™(R) for all
feCP(R), then g is constant.

Proof. For simplicity, suppose that g(0) = 0 and that g’(0) # 0. Let f(x) =
|x|P+1/2, Then fog & CP*+1(R) since (f-g)?*!is unbounded near 0, which is a
contradiction. The general case follows easily. O

Proof of Proposition 3.9. By Theorem 3.3, there is a function g € C"(F},,«; Ef,,»)
such that A(f) = f-g for every fe C?(E},+). Let us suppose that g(0)=0 and
that, for some ve F”, g(v) #0. Let F, be the span of {v} in F” and E|, the span
of {g(v)} in E”. Let w: E”— E, be the projection n(®)=P(¢)g(v) for e E”,
where ¢ € E’ is chosen to satisfy g(v)(¢)=1. It is immediate that = is a linear
mapping which lies in C*(E},+; Eg). Thus, by Theorem 3.6, how € CP(E},-) for
every he CP(E,). Therefore,

A(hemt)=hemwoge C"(Fiy»).

In particular, (hemweg)|Fr,€ C"(Fp). However, Lemma 3.9 tells us that (w°g)|r,
is constant, although w-g(0) =0 and w-g(v)=g(v) # 0. Thus we have a contra-
diction, and the proof is complete. l

4. Examples. We give three examples in this section which illustrate the extent
to which the conclusions of the preceding section are best possible. Example 4.1
gives a situation in which the homomorphism A: CJ,,(E) — C),»(F) induces a
mapping g: F” — E” which fails to be Fréchet differentiable when E” and F” have
their norm topologies. The next example shows that the inducing function g can
be differentiable without being continuously differentiable. Finally, we adopt an
example of [3] to show that not every homomorphism from C!(R) into a Fréchet
algebra need be continuous.

EXAMPLE 4.1. Let F be the Banach space ¢, of null sequences of real numbers
and let E be the Banach space of null sequences of complex numbers, considered
as a real vector space. It is known that £’ can be associated with the space of con-
tinuous linear functions ¢: £ — R such that, for some complex sequence («,) €/,
o(y)=Re[X a,¥,]. For each x=(x,,) in F, let y=(y,) in E be defined as y, =
e™n/n. Define g: F— E by g(x)=y. By [7], g is Hadamard differentiable [15]
with derivative g’(x)(») =z, where z = (z,) € E satisfies z, = ie"™*ny,. However,
g is not Fréchet differentiable. Indeed, if g were Fréchet differentiable then its
Fréchet derivative would have to coincide with its Hadamard derivative. There-

fore, for each n e N we would have
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1 1 : .
|7 |leten—s0)—g) el = (557 )| e—1=ime
~1— 1—eint 21__2-,
nt nt

which does not tend to 0 as  —» 0 uniformly in #.

This lack of differentiability notwithstanding, we now show that g is induced
by a homomorphism A: CL,,,(E) — CL,,(F). We first show that for all C! func-
tions fon F, foge CI(F). It suffices to show that the mapping (fog)’: F— F’is
continuous at a fixed point x € F.

To see this, note first that fog is Hadamard differentiable for every fe CI(E),
and therefore fog has a Hadamard derivative (fog) (x) € F’ for every x € F. Now
|fog(x+h)—fog(x)—(fog) (x)(h)|=|[(fog) (x+0h)—(fg) (x)](h)| for some
6e[0, 1] depending on i, <|(feg)' (x+6h)—(f-g) (x)||h|, and the Fréchet differ-
entiability follows. So, let («,(»)) € E’ be the vector associated to f’(g(x+y)),
and let («,) € E’ be associated to f’(g(x)). If ze Fand |z| <1 then

[(fog) (x+y)—(fg)(X)(z)=S"(g(x+¥)(g'(x+x)(z)—S"(g(x))g’(x)(z)

(o] . . o .
=Re[—f Y ay(y)e e Wnz, —(—i) ane“’"""zn]
n=1 n=1

(4.1.1)

=Re[(—i) Yy e"'”""zn(an(y)e"'”y"—an)].
n=1
On the other hand, g(F) C K, where K={(8,)€ E: |B,|<1/n, ne N}. Since fe
Cl(E) and K is compact, f’(K) is a compact subset of E’; in particular, every
element of f’(K) is bounded in norm by M, say. Moreover, the sequence (d,,) € ¢,
where d,, =sup{X ., |x;|: x = (x;) € f'(K)}, and so given e > 0 we can find npe N
such that |d,| < e/6 whenever n=ny. Choose 6> 0 so small that |u| < é implies

(4.1.2) e —1| < e/(6nyM).
Let 0 <6, <6 such that if ye E and |y| < §; then
(4.1.3) £ (g(x+»)—f"(g(x)] <e/6.

Combining (4.1.1)-(4.1.3) we conclude that if | y| <min(8;, 6/(ny+1)) is satisfied
by y € F then

[(fo8) (x+2) = (fgY (= 3 |an()e™n—c,|= § | (¥) —e™na,,

n=1 n=1

[+ <] HO .
=< Ellan(y)—an|+ > |an|[1—e"™n|
n= n=1

w 3
+ 2 |og||1—e™n|
n=ng+1
€ nOME 2e

6 "engM T 6

This shows that (fe.g)’ is continuous.
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In addition, fog e C},,(F) for every f € CI(E). In fact, we show more; namely
that fog and (f-g)’ are weakly uniformly continuous on F and not just on each
bounded subset of F. To see this, let ¢ >0 be arbitrary. Using the relative com-
pactness of g(F), we can find 6 > 0 such that if z;,2,€ K and |z;—2,| <& then
|f(z1)—f(z2)| <e. Let 6;> 0 be chosen such that if s,7€ R and |s—¢| <, then
|e’s—ei| < 6. Choose ng so that 2/ny< 6, and let V be the weak 0-neighborhood
in Fdefinedas V={xe F:|x;|<6;/ngfor j=1,...,ny}. If x, y € Fsatisfyx—y eV
then an easy calculation shows that |g(x) —g(y)| <é. Hence | fog(x)—feg(»)|<
€, and so fog is weakly uniformly continuous on F. Next we show that (f-g)’is
weakly uniformly continuous on F. Let ¢ >0 be arbitrary, and choose 6 >0 s0
small that if z,, z, € K satisfy |z;—2,| <6 then

(4.1.4) |f'(z1) = f'(z2)] <e.
Let M =1 be such that | f’(z)| <M for all ze K, and let nye N satisfy
@.1.5) -’-12— <t and ¥ |a,0I<,

0 n=ny
where («,(y)) =f'(g(»)). Let 6; >0 be such that if s, 7€ R and |s—¢| < §; then

4.1. is —_ git| < min( — :
(4.1.6) le e[<m1n(2Mn0,6>

Let V={xeF:|x;|<8;/ny for j=1,...,np}. Then for all x, ye F with x—y eV,
[(fo£) (x)—(fo2)' (»)]

=|f"(e(xNe’ (x)—f"(g(yNe' (W)

=|f(gxNg’(x)—f(g)Ne' ()| + |/ (g(yNg'(x)—f"(g(¥)Neg' Ml

=< [|f'(g() =S (gNilg’(x)]+ sup Re[—i f) an(y)(e""’"n—e“'”y")zn]-

lzi <1 n=1

Since [g’(x)| =1 for all x, the first term on the right-hand side is bounded above
by €, using (4.1.4). The second term is bounded by

ng . . oo , .

—inx, __ ,—iny, —inx, _ ,—iny,|
ngllan(y)lle e |+n=nEo+llan(y)lle e "n| < Mg 23
using (4.1.5) and (4.1.6). Therefore, fog is a member of C},,,(F) as required. To
summarize, this example shows the existence of a homomorphism A4: CL,,(E) -
Cl.o(F) given by A(f)=f-g, where g is not a Fréchet differentiable mapping
between the Banach spaces F and E. Note that A4 is automatically continuous, as

can be seen by applying Corollary 3.4 or else by a direct computation.

EXAMPLE 4.2. For each ne N, let x,: R—[0,1] be a C= function with sup-
port contained in [1/(n+1),1/n] and such that x,,(#,) =1, where
1/n+1/(n+1)
t,= .
2
Let g,: R — R be defined by g,(¢) =["_ x,.(s) ds. Note that for all 7€ R and zll
neN, |g,(t)|<1/n(n+1)<1/n?and so the function g: R — ¢y, g(¢) = (g,(¢)),is
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well defined. Moreover, g is a differentiable mapping. In fact, it is obvious that
g is differentiable at any ¢ 0. In addition, for any te[1/(n+1), 1/n],

lg(O)] _ n+1

T 2 —(0 as n—oo.

This shows that g’(0) = 0. A routine calculation shows that, for each k € N,
g’(t,) = ey, the usual k£th unit basis vector of ¢y, and so g’ is not continuous at 0.

Note that ¢ og € C1(R) for each ¢ € [} = ¢j. Indeed, let u; - ug in R. Then,
if o =(¢;)el;, (Pog) (u;) =2 7=1bnxn(u;). Therefore, if uy#0, it is clear that
(Dog) (1) = 2y=1 Dnxn(tp). If ug =0, then (given e > 0) choose ny such that
Sin=ny|®n| < €. Therefore, X7 |d,xn(u;)| < EZU:_II |bn xn(u;)|+e=¢ if j is suf-
ficiently large. Define a homomorphism A: P,(cp) = C(R) by A(P) = P-g. Note
that the above calculations show that A is well defined. Furthermore, A is 74 — 7}
continuous because, for each interval I, =[—n, n],

sup|A(P)(¢)| =< sup |P(x)| and sup|(A(P))'(1)| = sup |P'(x)].
tel, [x]| <t tel, |xf=<1
Since C!(R) is complete for the 7} topology, an appeal to (1.4.5) yields an ex-

tension A: CL,,(co) = C(R) as a continuous homomorphism. It is straightfor-
ward to prove that if a sequence (P,) in Ps(co) converges to fe€ CL,,(co) for the
7} topology, then (P,°g)— fog in C!(R). Therefore A(f)=feg for every fe
Cl.»(co), and so we have an example of a homomorphism 4: CL,;(cy) = C1(R)
induced by a differentiable function g: R — ¢, which is not C1.

EXAMPLE 4.3. Let X =C![0,1] be the Banach algebra of continuously dif-
ferentiable functions x = [0, 1] —» R with the usual norm, |x| =sup, ¢, 1;|x(¢)|+
Sup;epo, 171X’ (¢)]. We recall the following theorem of Bade and Curtis, who also
showed that X = B satisfies all the conditions in the theorem.

THEOREM 4.4 ([3]). Let B be a commutative algebra with identity. Suppose
that B contains a maximal ideal M such that M2 is not closed in B. Then there
exist a Banach algebra Y and a discontinuous homomorphism A: B—-Y.

Therefore, if we take T: C1(R) — X to be the restriction map then we conclude
that A-T: CY(R)—>Y is a discontinuous homomorphism. Thus, continuity of
homomorphisms from the Fréchet algebra C1(R) is not automatic.
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