HILBERT TRANSFORM IN THE COMPLEX PLANE
AND AREA'INEQUALITIES FOR CERTAIN
QUADRATIC DIFFERENTIALS

Tadeusz Iwaniec

Introduction. In this paper we are concerned with a singular integral of Cal-
deron-Zygmund type defined for functions of one complex variable as

L) di(s)
(z—¢)* ° |
where du({) denotes the Lebesgue measure in C. This integral is known as the

Hilbert transform in the complex plane or the Ahlfors-Beurling transform. Its
Fourier multiplier is
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In particular, 7 is a unitary operator in L2(C) and it changes the complex deriva-
tives /97 and 9/dz; in symbols,

te C—1{0].

) o % = 9 .
Z 0z

This fundamental property of the Hilbert transform has led to various applica-
tions to the plane quasiconformal mappings and the theory of systems of partial
differential equations in complex variables.

We are specifically concerned with the Hilbert transform of the characteristic
function xg of a measurable subset E in the unit disk B={z:|z|<1}. A weak
(1.1)-type inequality shows that

T
|E|

where | E| stands for the Lebesgue measure of E. The constants 4 and C are inde-
pendent of the set E.

In 1966, Gehring and Reich [2] recognized that the best possible constant A in
(2) is strictly related to the degree of regularity of a quasiconformal mapping.
This constant is expected to be equal to one. Reich [12; 13] succeeded in proving
that A <17. ‘

In this paper we wish to treat various cases where we have reached A =1 in (2).
The main results, however, concern certain sharp estimates for hyperelliptic dif-
ferentials which are of independent interest. Other papers concerned with sharp
inequalities for the Hilbert transform are [11], [3], and [4].

@) [{ 17xe2)) duiz) < 4] E| log - +CIE|,
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Among all operators of Calderon-Zygmund type the Hilbert transform is very
unique since its kernel K(z) = —7 ~1z =2 is homogeneous of degree —2 and holo-
morphic in C—{0}. The theory of analytic functions is therefore an effective tocl
for treating exact estimates for 7. The unitary property and Holder’s inequality
imply at once that

SSE |Tx£(2)| du(z) < |E|,

for every E C C. What remains to be established is then the best constant 4 in a
somewhat weaker inequality

3 Jag | Txe()] du@) < A|E| log 75+ CIE],
where £ may be compact. The function 7xg(z), denoted for brevity by
1 du(z)
T, =—— —
£(2) T SSE (z—1)?’

is then holomorphic in C— FE and has the following expansion at infinity:

E] |, .. 1
C)) Tg(z) = — —5 + higher powers of —.

nZ z

It is sufficiently general to limit ourselves to sets £ which are unions of a finite
number of mutually disjoint closed disks, B;= B(z;,r;) CB, j=1,..., n; that is,

) E=U B(; 7).
j =

In this case 7z (z) computes explicitly. For z € C — E it coincides with a rational
function R(z) with double poles at z; and negative leading coefficients —rjz, Jj=
1,...,n,

z
(6) Tp(z) =R(z) = ,2_:1 = zj)z

Certain configurations of such disks, including infinite families, call for con-
sidering the trajectory structure of the quadratic differential R(z) dz?2. In this way
we are led to the Jenkins-Spencer theory of the hyperelliptic integrals [9].

We achieve constants A =1 and C=0 in (3), whenever Tg(z) dz? has simple
trajectory structure (see Section 4, Theorem 1).

In general, Tx(z) dz? need not be such. Careful examination of examples sug-
gests the study of an extremal metric problem in the circular region B—E. We
solve this problem for general multiply connected domains and give sharp esti-
mates of the minimum area integral (Theorem 2). This result generalizes Carle-
man’s theorem on the module of a doubly connected domain. We exploit it to
construct a number of rational quadratic differentials Qr(z) dz? with closed tra-
jectory structure associated with a given free family I' = {I'y, ..., I'y} of homotopy
classes of Jordan curves in C=C—{zy,..., 2,}. More precisely, Or(z) dz? has
the form
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n g2 n .
Iy a;

9 Or(z)= % + X ,

j=1 (2."'—21_,')2 j=12—2Z%;

where the complex coefficients a¢; =q;(I"), j=1,..., n, are subject to the condi-
tions

n n
B) > a;=0 and 2 a;z;=0.
Jj=1 j=1
The first-order term
©) pr)=3 —4
g j=1X2—Zj

has therefore finite LZ-norm on the complex plane. Moreover, if a trajectory vy
encloses precisely the poles zj , ..., z;_, then its Qr-length equals

(10) 0(y)=2mNr}+ - +r}.
Such a quadratic differential is unique for each admissible family I' (see Theo-
rem 3).

We have the following inequalities:

™
(1) [Ja_plOr@lde@ <|E|log 7
for all OQr, which imply an estimate for the Hilbert transform 7g(z); and
T .
(12) oo s 1@ dite) <|Ellog 57 +infl 2L,

where the functions ® run through the convex hull of the first-order terms ¢r
defined by (7), (8), and (9).

ACKNOWLEDGMENT. I wish to express my sincere thanks to the members of
the Courant Institute, especially to Professor Louis Nirenberg, for generous hos-
pitality during the time when this research was done.

1. Notation and basic facts. The following concavity inequality for the func-
tion log x will be frequently used:

a+b
x+y

b
(13 x log —z— +ylog ; <(x+y)log

for all positive x, y, a, and b.
The Hilbert transform of the characteristic function of a circular annulus A =
{z:r <|z—a| <R} has an explicit expression

(0 if |z—a|=r, the inner complement of A,
r’ if r<| <R
e if r — ,
(14) Ta(z)={ (z—a) e
A
— _(z|_|a)_2 if |z—a|=R, the outer complement of A.
7r —
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In particular, for an Euclidean disk B = B(a, R),

0 if zeB,
15 Tp(z) = B
(19 p@=1 __1Bl ¢ iecc-s.
w(z—a)
If w=w(z) is Lipschitz continuous in C and satisfies the growth condition w(z) =
O(|z|™1) at infinity, then

16) T(aw) ow

z) oz

almost everywhere in C. Integration by parts leads then to the following integral
identities for the Hilbert transform:

|| 72 TR dux) = [| 22V 7 @) duca),
(17)
|| s 7r2) duiz) = || o) Te(2) dnc2).

Throughout this paper we use notation which should be clear from the context or
can be found in the referred papers.

If v is a Jordan curve in C then the bounded component of C— 7 is called the
inner domain of v while the unbounded component is called the outer domain; vy
is the boundary of each component. The components of C —v are referred to as
circle domains. A set or a point in the complex plane is said to be enclosed by 7 if
it lies in the inner domain of +.

Let © be an arbitrary open set in C and let I'g be a nontrivial homotopy class of
Jordan curves in 2. Then every two nonintersecting curves from I'g bound a ring
domain in €. Such a ring is said to be of homotopy type I'y.

A ring domain A determines unique circle domains 4 and B which are bound-
ed, ACB and A=B—A. A is called the inner complement of A.

The module of A is defined as

R

1
(18) mod(A) = E log P

if {z:r<|z|<R} is the circular annulus conformally equivalent to A.
CARLEMAN’S THEOREM [1]. Under the above notation we have
1 | B|
— log —.
ar 8 A|

Equality occurs in (19) only for a circular annulus.

(19) mod(A) =

We shall use basic ideas concerning quadratic differentials and extremal met-
rics. For fairly complete information about those concepts we refer to the mono-
graphs by Jenkins [8] and Strebel [15].

Let Q(z) dz? be a quadratic differential defined on an open set of the Riemann
sphere C.
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If A is a ring domain relative to Q(z) dz?, then A contains no critical points of
O(z) dz?. 1t is swept out by closed trajectories v C A, all of the same Q-length
defined by

=§7\/|QT|dz| 'S \VO(z) dz|.

The function

(20) f@)=exp 22 Sx/Q(z ) dz

maps A conformally onto a circular annulus of Q-area equal to

(21) SSA |Q(2)| du(z) =£2 mod(A).

If D is a circle domain relative to Q(z) dz?, then D contains precisely one dou-
ble pole zo of OQ(z) and
2

O(z)=

+ +regular terms
(z—20)> z—2o
for some r > 0. D—{z,} is swept out by closed trajectories separating zo from the
boundary of D, whose Q-length equals ¢ =2#r. The function (20) extended to
have the value zero at zo maps D conformally onto an Euclidean disk centered at
zero. Every two trajectories, or a trajectory and 9D, bound a doubly connected
domain, say A, whose Q-area equals £2 mod(A).

We are mostly interested in holomorphic quadratic differentials which are pos-
itive along the boundary curves and have closed trajectories; see [15] for the defi-
nitions.

Let S be either the punctured Riemann sphere C = C—{z;, ..., 2,} or an n-con-
nected domain bounded by piecewise analytic Jordan curves C;, ..., C, and C.

A family I'=({I"y, ..., I'ny} of homotopy classes I',, »=1, ..., N, of Jordan
curves in S is called admissible if the following conditions are satisfied:

(i) all I, are distinct and nontrivial,
(ii) there exist curves v, eI',, v=1,..., N, which do not
intersect each other, and

(iii) T contains the classes generated by simple loops which

are arbitrarily close to the boundary components of S.

Such a family I" admits at most 2.7 —1 homotopy classes, and it can always be
completed to a maximal family with precisely N=2n—1 classes.

A quadratic differential Q(z) dz? on S with closed trajectories is said to be of
homotopy type I' = {I'y, ..., I'n} if its closed trajectories belong to UT',. For a
given class I, e I" the existence of a trajectory in I'', is, however, not always guar-
anteed.

We shall use tacitly the global structure theorem due to Jenkins and Spencer,
in its simplest cases when only closed trajectories are present [7; 9]. We also ap-
peal to Jenkins’ [6] module theory for the existence and properties of the extre-
mal metric.
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Figure 1

2. Preliminary examples. Let us consider first the best possible bound for 75 (z)
from below.

EXAMPLE 1. Let E be an arbitrary simply connected continuum with analytic
boundary. Let f map the exterior of E conformally onto the unit disk B, f(o0) =
0. C—E is therefore swept out by the level curves of f each of which bounds a
simply connected domain. Let  denote one such domain with boundary 9 =
{z:|f(z)|=p} for some p <1. The ring domain A =Q— E is mapped by f onto

the circular annulus {£: p <|&|<1}.

Figure 2

PROPOSITION 1. We have

c(Q)

22) SSQ_E | Te(2)| di(z) = 4w | E| mod(a) = 2| E| log ¢ v

where C(E) and C(Q) stand for the conformal capacity of E and 2 respectively.

Equality occurs in (22) when Tg(z) dz? defines a positive quadratic differen-
tial on C—E with closed trajectories which are the level curves of f and have
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Tg-length ¢ such that £2=4x|E|. Moreover, with a suitable choice of branch of
§ \VTe(z) dz in C—E the conformal map f is expressed by

J(z)= exp — S NVTe(2) dz.

This happens if £ is a disk.
Note that by Carleman’s theorem

12l

47|E| mod(A) < |E|log 1=+ E[

We also have «/ |E|/m = C(E).

Proof. We examine a Lipschitz continuous function w defined piecewise on
C by
2z log(1/p) in E,

w(z) =< (2f/f")log(|f|/p)+2zlog(l/p) in Q—E,
(2f/f") log(1/p)+2z log(1/p) in C—-Q.

It is verified at once that w(z) = O(|z|™!) at infinity. Thus by (16) 7(dw/dz) =
ow/dz. The complex derivatives of w are found to be

d
w(z)= _w ;;, Xa-£(2)

for all z € C while the z-derivative of w is constant on E equal to 2 log(1/p). We
then have Tw(z) =2 log(1/p) in E. Hence, using integral identity (17), we imme-
diately come to estimate (22). Indeed,

2|E| log % =] 102 dr@) = [ xe) To(2) du(2) = || 0(2) Te(2) dpz)

={|._e@T@dua={| __ |1Tx@]dua).

To reach equality here we should have

S _ T:(z)
S |Tez)|

2 2
<‘ff,> Te(z) = [(}{) TE(z)] for zeQ—F.

This equation, in view of analyticity of f and 7 in C — E, extends to hold in
C —E, and consequently both sides equal a real constant. This constant is identi-
fied to be —(1/7)|E| by the asymptotic formula (4). Hence

7\2
e =121 (£)

for zeQ—E,

or alternatively
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and

2 2
=(Sv \/mdz) =~—|—fl L 2’;_") =4r|E|,

“A |Tx(2)| du(z) = £2 mod(A) =47 |E| mod(a),

Sf(z)= exp — S\/Tg(z dz.

That equality occurs in (22) when E is a disk, say the unit disk, follows from the
explicit formulas f(z)=z !'and Tg(z)=—z 2in C—E. ]

The next example provides a sharp upper bound for 7¢(z) in the simplest case.

EXAMPLE 2. Let E=B(a, r) be a disk embedded into a measurable set Q2. Then

12|
|E|

with equality occurring only for Q= B(a, R), where nR?=|{|.

23) || 1Te@) duiz) < |E| log 1

Proof. By (15) we obtain

SSQ_EITE(Z)Id}L(Z)=SS ﬁ@ﬂ<“ r2dp(z)

r<|z—al,ze@ |z—a|2 T JIr<|z—al<R lz—a|2

Q
=27rr210g R =|E| log IIE:

This proves (23). O

A set E C C is called circularly symmetric if z € E implies ze® e E, for all 6 e
[0, 27); see [12].

EXAMPLE 3. If E C B is measurable and circularly symmetric then

@4) [Ja_p 7@l du@ <|Ellog 1.

Proof. By a standard approximation argument the problem reduces to the case
where E is the union of a disjoint family of closed rings E, ..., E, and one disk
E, centered at zero:

(25) Te(z)= EO Tg(2).
j =
Then B— F is the union of disjoint open rings Ay, ..., A,. Let A be one of those
rings and U its inner complement. It is readily seen from formulas (14) and (15)
that for each z € A the nonzero terms in (25) come from those E; which lie in U,
and that the value of 7¢,(z) in A equals —ax ~1z=2|E;|. Hence, for z € A we have
|ENU| A,

1
Te(@)= 3 Tp(z)=——s Ej|=— =,
e(z)= EEU £;(z) g EJEUI il 722 722
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where 4,, v=1,..., n, denotes the area of that part of E which lies in the inner
complement of A,, »=1,..., n. Integrating and summing over all rings A, we ar-
rive at a weighted sum of moduli

T
|E]

The latter estimate can be shown by an induction with respect to the number of
rings A, (v=1,..., n) and concavity inequality (13). We postpone the proof of
this estimate until Section 5, Lemma 2, where the weighted sums of moduli are
treated in greater generality. ]

(26) SSB_E |Te(z)| dp(z) =4= v}:)IA,, mod(A,) < |E|log

It has to be noted that T¢(z) dz? defines a positive quadratic differential on
B—E.Therings A, (v =1, ..., n) are its characteristic domains, and the 7z-length
of a trajectory v C A, satisfies {2=47wA, for v=1, ..., n.

Now we proceed to two basic examples.

EXAMPLE 4. Let us decompose the unit disk B into infinitely many nonover-
lapping closed disks By =B(zx,rx)CB, k=1,2,.... Fix a parameter t e (0,1),
then shrink each By by the factor t. Denote by By (t) =B(zy, try), k=1,...,and

E= ) Bu(1).
k=1

Clearly, 3 ri =1 and |E|=wt*. We then have
™

@7 ”B_E 175(2)| dp(2) =| E log 5

Figure 3
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Proof. Notice that B—E is the union of a countable family of circular annuli
Ar=By—By(t), k=1,2,.... An elementary computation shows that

2.2
t°rixa,(z)

T, (n(z)=— Z—2.)2 +1°Tg, ()

for every ze C and k=1, 2,.... Summing over all indices k=1, 2,... we obtain

2
28 - Te(x)=—2 5 JXald)
( ) E(Z) kgl (Z—Zk)z

for all z € C. Finally, since 7Tg(z) vanishes for z € B we compute

+ 12T (2)

S dp(z)
7; d =2 2 _—
SSB_El e(2)| du(z) kgl"k SSAI{ 2 —2x|?
1 & T
=2xt?log — ré¢=|E|log —.
&7 2, k=Bl 1

EXAMPLE 5. (We continue the construction of the previous example, perform-
ing a disk decomposition to each By(¢), k=1,2,....) Let B;(t) be the union of
nonoverlapping disks, say, Byy=BZ;, k1), kK, {=1,2, ..., By C By (t) foralll=
1,2,..., and

By ()= 1U1 By,.
Choose a parameter s € (0,1) and shrink each By; by the factor s. Denote by
By (s) =B(zx1,8rx1), kK, 1=1,2, ..., and put

o

F= U Byl(s).
k=1
Clearly 372 ,-rf;=1t> and |F|=nt’*s%. We then have
T
|F|-
Proof. In this case the set B—F is built of two types of circular annuli:
Ax=By—Bi(t), k=1,2,...,

(29) |§ |1Tr@) duz)=|F|10g

and
Ay =By —Bri(s), k,1=1,2,....

Elementary computations show that

© rExay®) 5, & Tixa,(2)
k=1 (Z2—2zr)? K=1 (z—2zx)?
Now the integration of 7x(z) over the rings Ay and Ay, k,/=1,2,..., is much
the same as that in Example 4. The following interpretation is however of partic-
ular interest for what follows.

Let A be one of the rings A, or Ay, k,/=1,2,.... The concentric circles in A

constitute closed trajectories of Tx(z) dz? which, in view of (30), have 7g-length
equal to

(30) Tr(z) = —s2 +s52t%(xp(z)—1)z "2
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0 =+/4TA(A),

where A(A) means the total area of those disks By,;(s) which lay in the inner com-
plement of A. More precisely, with obvious notation £y, =2=nsry (k,[=1,2,...)
and ¢, =2wnst-riy (k=1,2,...), the length of a trajectory in the unbounded circle
domain of Tg(z) dz?is { = /4« |F| = 2wst. The moduli of the rings Ay and Ay, are
1

mod(Ag) = .

1
Iog 7, k=1,2,...,

1 1
mod(Ak1)=Elog ;, k,1=1,2,....

Finally, as a weighted sum of moduli the 7y-area of B—F is found to be
SSB_F |Tr(z)| dp(z) = X €2 mod(A)

=4w2s2 Y rEimod(Ag)+4n2s2t2 S rémod(Ay)
ki=1 K=1

) 1 =
=2ws2log — 3 rE+2ws2t2log — 3 rf
S ki=1 ! k=1

1 1
=2ws?t?log < +27s2%t? log - =

Figure 4
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=ms2t?log WSW =|F| log —

IF |
This completes the proof of (29). O

3. The reduced norm. From now on E will denote the union of a finite number
of disjoint disks B; =B(z;,r;) inB, j=1,...,n, n=2. Hence, in view of formula
(15), T¢(z) takes the form

TE(Z) R(Z) gl (Z— )23
Note that the quadratic differential R(z) dz? need not be real along the boundary
circles of B— E. The natural domain in which to consider R(z) dz? is the punc-
tured sphere C=C—{zy,...,2,}. It is possible to eliminate this inconsistency by
reducing the problem to its degenerate case. We are going to estimate the R-area
of B—E by means of the so-called reduced norm of R(z) dz2 on C. It is impor-
tant however to make such reduction for slightly more general quadratic differ-
entials of the form

2 a:
31) 0)=—3 [ J ]

(z— zf)2 z2—32;

2
ze C—F.

Jj=1
where the complex numbers a;, j=1,...,n, w1ll be specified later. They are sub-
ject to the following conditions
n n
(32) > ai=0, Y a;jzj=0.
Jj=1 Jj=1
Thus the function
n a_]
(33) d(z)= X
j=1 Z—XZj

is Ll-integrable on the whole plane and Q has the expansion at infinity

(34) Q(z)=—(Xr}) 2+O(|Z| ?).

It may be noted that, in view of (32), ¢ =0 if n=2.

There are two equivalent definitions of the reduced norm. Both will be useful
in succeeding sections. First fix arbitrary numbers0 <7<land R>1. Let B(R)=
B(O,R), B;j(t)=B(zj,1rj), j=1,...,n, and

(35) E(m)=U Bi(n).
=

Removing the disks B;(7), j =1, ..., n from B(R) we have left circular region
(36) S(7, R)=B(R)—E(7)

on which Q(z) has finite L!-norm. Let us examine the following function:
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|B(R)|
|E(7)|

— _ 2
@37 HrR={| 10| du@)—=(3 r})log
Note that
|E(7)| = 72| E|=772(X r}).
A crude estimation gives a uniform bound for H(7, R). Indeed, by concavity in-
equality (13),

dp(z)

mri<lz—z;|<R+1 |2—2;|?
R+1

T
n(R+1)2
T2 )
4n|B(R)|

|E(7)]

SSS(T,R) lQ(Z)l dM(Z) = |I¢"L1(C) +_,‘§::1 rjz SS

n

=|éloe)+27 _21 rflog
J=

<|élio)+ 7 (X rf)log

=|o|ricy+ 7 (X rf) log
Therefore
H(7,R) =|¢|ic)+7(I rf) log 4n,

for every 7€ (0,1) and R>1.
Next we shall prove that H(7, R) increases as 7 — 0 and R — oo. For this, it is
obviously sufficient to establish that dH/dr <0 and dH/dR = 0. The standard

differentiation rule yields
dH n
_ y §
=1 I

27 2 rj
=—3 r; .
dr j= z—z;l=17;

Q@) |dz|+ ———

But on the circle |z—z;|=7r;, |Q(z)| can be expressed as

r?(z—z; \? na,(z—z))?
1——(Z W+ 3 2 - 2
y=1, ll?fj Jj Z—2y v=1,v#j rj (Z—Zp)

The right-hand side of this identity admits a subharmonic extension inside the
disk B(z;, r;) with value 7 =2 at the center. Hence by the mean value inequality

2 2
50 @Izl = 2

_j|_

1Q(z)| =772

We then have dH/d7 < 0. The inequality dH/dR = 0 can be treated analogously.
As is seen from this proof, H is constant if and only if n =1, a;=2z;=0. Hence
we immediately conclude the following.

PROPOSITION 2. Let O(z) dz? have the form (31)-(32). Then its reduced norm
is defined by

(38) KO» = (l)il;i H(7,R).

Moreover we have
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™

+ O
B 4@

(39) |, l0@! drie) =<|E| 1og

with equality occurring here only for
O(z)=—-r?z"2, r>0.

Before passing to the second definition we make certain observations.

Since Q(z) dz? has double poles zi, ..., z,, ©, the corresponding coefficients
being all real and negative, then by local structure theory Q(z) dz? admits char-
acteristic circle domains

(40) D],Dz,...,Dn and D

associated respectively with z,, 25, ..., 2, and o. They are simply connected and
bounded by piecewise analytic curves composed of a finite number of critical tra-
jectories and their endpoints, zeros of Q(z). Of course other characteristic do-
mains may be present in the trajectory structure. The Q-length of a trajectory in
D; is equal to

1) ¢;=2xrj, j=1,2,...,n,
while for a trajectory in D its Q-length equals
42) E=2wNr2+ - +r2.
The functions
2w .
“3) fi=exp == [NO@ dz, j=1,2,...n
J
and
2xi
(44) s=exp == | OR) dz

map those domains conformally onto Euclidean disks centered at zero, f;(z;) =0,
J=1,...,n, f(©)=0. The level curves of f; (j =1, ..., n) and f constitute trajec-
tories of Q(z) dz?in D; (j=1,...,n) and D respectively.

Take now 7 > 0 small enough and R sufficiently large to define simply connect-
ed regions F;(7)C D; (j=1, ..., n) and 2(R) D C—D which are bounded by level
curves of f; (j=1,...,n) and f, respectively, and have Lebesgue measure pre-
cisely equal to

45) |QR)|=7R?, |Fi(r)|==n7%r}, j=1,...,n.
Setting

n ————
(46) F(1)= -U1 F;(71),

J:

we obtain an n-connected domain Q2(R)—F(7) and the quadratic differential
Q(z) dz? on it, positive along the boundary curves and of finite norm.
By analogy with H(7, R) we introduce a function

~ (2R
7 G("’R)‘ﬁmm-m) Q@] dr@)=m(2 rj) log ot
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This, contrary to H(7, R) is defined only for small 7 and large R. But its limit is
the same. To see this let us estimate the difference

|H(7, R) = G(7, R)|= || |0(2)] du(z)

Q(R)/B(R)
(48)

n

+ X

j=1 SSFJ'(T)/BJ;(T) lQ(Z)I du(z).

Let A be the narrowest circular annulus, a(R) <|z|< b(R), containing the
boundary of Q(R), v(R) = dQ(R). Geometric arguments show that Q(R)/B(R) C
A because |Q(R)|=|B(R)|, by the assumptions. Now it is not difficult to derive
the following estimate

0?2 b(R)

0] () = [, 10()] di(@) = 5~ log - 2 +o()

as R tends to infinity. Since v (R) is a level curve of the conformal map f: D= C,
f(o0) =0, then the eccentricity of y(R) (i.e., the quotient b(R)/a(R)) approaches
unity as R — co. This implies

S SQ(R)/B(R)

lim

R SSQ(R)/B(R) |Q(z)| du(z) =0.

The integrals over F;(7)/B;(7) in (48) can be treated analogously:

lim

d =0, .=1,.“’n.
7—0 HF,-(T)/BJ.(T) |1Q(z)]| dp(z) Jj

We then conclude
(49) G(r,R)=H(r,R)+0(1)

as 7— 0 and R — .
The alternative definition for the reduced norm then reads as follows:
(50) «KO»= lim G(7,R).
7—0,R—> o0
This formula has an effective advantage in estimations of the reduced norm for
the quadratic differentials with closed trajectories.

4. The circle trajectory structure. Employing the notation from Section 3 we
assume here that the circle domains D; (j=1,...,n) and D cover the Riemann
sphere C up to a set of measure zero. We were concerned with such a case in Ex-
ample 4 but with infinite number of poles and with a; =0, j =1, 2, .... Recall that
for n =2 the above assumption is not necessary since it follows from the three-
pole theorem [5; 10] and from the global structure theorem for hyperelliptic tra-
jectories (see Jenkins and Spencer [9]).

THEOREM 1. If Q(z) dz? has circle trajectory structure, then

™

A
(51 oo pl0@l dn@) <|E|l0g 7

with equality occurring only for n=1, a,=0, and 2,=0.
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Proof. In view of Proposition 2 it suffices to show that ((Q)) < 0. Because of
the circle trajectory structure of Q(z) dz?2, the domain Q(R) — F(7) is decom-
posed onto characteristic ring domains

Aj(r)=D;j—Fi(r), j=1,...,n
and
A(R)=DNR(R).

Therefore, by (21) and (41)-(42) we have
=% g2 . 2
oo re, 12 duc) = 3 7 mod () +£> mod A(R)
=4r? '21 rf mod A;(7)+4n2(T r?) mod A(R)
Jj=

2 _ n - .
T SSQ(R)_F(T) |Q(2)| du(z) —4'lz'j_§1 |F;l mod A; +4x|F| mod A,

where, for notational convenience, we drop the variables 7 and R. To estimate
the moduli of the ring domains we apply Carleman’s theorem; see (19):

modA_,._——logl ' Jj=12,...,n

4w |F;|°
and
1 |2
mod A = I log IC—D[
Finally, by concavity inequality (13) we find at once that
n
2 1D} 12|
< ) log — 1
r SSQ(R)_F(T)IQ(z)ldp.(z)<j§l £l tog 7 +|Fllog re =,
2 | Jl |2
= (X |Fj|)log o= +|F|log ———
|C—D| |2
=|F|log ———— +|F|log ————
|F| log 7] +|F|log C—D|
Q Q(R)
=|F|log IIFII =7(7> 3 rf)log ___IIF(T)l] .

This, together with (47) and (50), implies that <{Q)) = 0. The equality statement
follows from the corresponding statement in Proposition 2. The proof is then
complete. L]

Now an important remark. Given the negative leading coefficients ——rj2 (j=
1, ..., n) associated with the second-order poles z; (j=1, ..., n), there exists
a unique quadratic differential Q(z) dz? of the form (31)-(32) whose trajectory
structure consists exactly of circle domains. This can be readily derived from
Theorem 23.5 in [15]; see also the remark in [8, p. 123]. We do not go into the de-
tails of this fact since a much stronger result will be presented later in Section 6.



HILBERT TRANSFORM IN THE COMPLEX PLANE 423

In some cases the first-order coefficients a, ..., a, of Q(z) vanish. Let us end
this section with the following example.
Suppose that z, (v =1, ..., n) are the nth roots of unity

2vwi
Z,=€xXp Pt v=1,2,...,n.

Consider the rational function

1 n n—2¢n —1

R(z) dz? has n zeros of order one at
n QRv+1)wi
e,=/n—1 expT, v=1,...,n

and one zero of order n—2 at the origin. These are the finite critical points of
R(z) dz2. It is not difficult to verify that the critical trajectories of R(z) dz? are
the line segments connecting the origin with e, (v =1, ..., n) and Jordan arcs con-
necting e, with e, ., (v=1,...,n), e,,1=e;. There are precisely n+1 circle char-
acteristic domains relative to R(z) dz?2.

%
© @

Figure S

5. Certain extremal metrics and minimum area inequality. The general con-
cept is as follows: take a measure m in C, that is, a nonnegative o-additive set
function defined on Borel subsets of the complex plane. For every Jordan curve
v C C we denote by m[+y] the m-area of its inner domain. Let I" be a family of
Jordan curves in C. A nonnegative Borel measurable function p(z) on C is said
to define a I"'-admissible metric p(z) |dz| if it satisfies the following “isoperimet-
ric” inequality,
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2
(52) (ST p(2) ldzl) = 4mmly],

for all locally rectifiable curves ye€TI'.

EXAMPLES. (a) If m is the Lebesgue measure in C, dm(z) =du(z), then the
metric p(z) |dz|=|dz| is admissible for the family of all Jordan curves in C.
(b) If m is a singular measure concentrated at one point zoe€ C, m{zo} = nr?,
then the metric
r|dz|

|z —zol

is admissible for the family of all Jordan curves in C = C—{z,}. If m is concen-
trated at two points z; and z,, m{z;} = wri and m{z,} = wr#, then we can prove that

1/2
p(z) |dz|=< ) |dz]

p(z) |dz|=

r{ N rs
(z—z1)*>  (z—2z2)?
is admissible for all Jordan curves in C = C— {z;, 22}.

Another interesting example is:

(c) Let Q be simply connected and let f belong to the Hardy space H”(Q), 0<
p < oo; then it is known that

2
p/2
(Sau | f(z)] |dz|) =47 SSD | f(z)|P dpu(z)
for every compact subdomain D C © bounded by a rectifiable Jordan curve. This
shows that if dm(z) =|f(z)|? du(z), then the metric
p(2) |dz|=|f(2)|?/* |dz|

is admissible for all Jordan curves in 2.
Now a I'-admissible metric p(z) |dz| is called I'-extremal if it minimizes the
following area integral:

(53) ar(m)=inf {{ p2(2) du(2).

It is not difficult to see, by using a convexity argument, that there can be at most
one I'-extremal metric. Such a metric must be supported in U, ¢ v. We will ap-
peal to Jenkins’ module theory [6] for the existence and properties of certain ex-
tremal metrics associated with multiple curve families. We use it here only insofar
as it relates to our subject; see Lemma 1 below.

Let S be an n-connected domain bounded by analytic Jordan curves. Denote
by E; (j=1,..., n) the bounded components of C—S. Put E =Uj_, E;; then Q=
S UE becomes a simply connected domain with analytic boundary.

To every component E; (j=1,...,n) we assign a positive number m; which
may be viewed as the m-area of Ej; that is,

m(Ej)=mj, j=1,2,...,n.

Let I'={IY,...,'n] be a free family of homotopy classes I'j, ..., I'y of Jordan
curves in S=Q— F satisfying the conditions (i)-(iii) from Section 1. Then we
have the following.
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LEMMA 1. There exists a unique quadratic differential Q(z) dz? holomorphic
in S and positive along the boundary curves such that:
(i) the Q-length of any curve v € UY_ T, satisfies

(54) £2(y)=4mmly];

(ii) Q(z) dz? has closed trajectories of homotopy type T". For
every closed trajectory v we have equality in (54).
O(z) dz? is said to solve the T'-extremal metric problem on S, because the I'-ex-
tremal metric is given by

p(z) |dz|=/|0(z)] |dz|.

THEOREM 2. Let ECQ, S=Q—FE, and T" be defined as above. Let dm(z) =
k?xg(z) du(z), k> 0. Then the minimum area integral satisfies

Q
(55) Ar(m)<k?E|log —'l—ETII

The inequality is sharp. It reduces to Carleman’s theorem if S=Q—E is doubly
connected.

Proof. Let Q(z) dz? solve the I'-extremal metric problem on S with associated
measure dm = k?x g dp; that is, m; =k?|E;|, j=1, ..., n. By the global structure
theorem we have a decomposition »

. N
S=U A,
v=1
where A, (v =1, ..., N) either degenerates to a curve in I', or it is a ring domain
of homotopy type I',. For every curve y € UY_ T, its Q-length satisfies
(56) 02 =47k2A(7y),

where A(vy) stands for the total (Lebesgue) area of all components of E which lie
in the inner domain of .
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If A, does not degenerate, »=1, ..., N, then the closed trajectories in A, have
QO-length equal to

(57) ¢, =~J47A, k.

Hence the Q-area of A, is

[l 1@ duz)=amk2a, modca,),

v=1,..., N, where A, denotes the total (Lebesgue) area of all components of E
which lie in the inner complement of A,, »=1, ..., N. Therefore the minimum
area integral equals

N
68)  Artxedw=|| 10| dp) =47k T A4, mod(a,).

To end the proof of this theorem we need the following auxiliary result.

LEMMA 2. Let Q2 be an arbitrary open set and E a Lebesgue measurable subse!
in Q. Let F={A,..., An} be a system of disjoint ring domains A, CQ—FE, v=
1,...,N. To every ring A, assign a weight A, as

A,=|ENU,|, v=1,...,N,

where U, denotes the inner complement of A,. Then we have the following esti-
mate of the weighted sum of moduli:
5 1 12
(59) Mg (E,Q)= > A,mod(A,)< —|E|log +—
r=1 47!' |E |
with equality occurring if E and 2 are concentric disks and F consists of a single
ring A=Q—FE.

We should point out, however, that other cases when equality occurs in (59)
are possible.

Figure 7
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Proof. We perform an induction with respect to the number of rings in ¥. If
F is empty, then (59) holds by trivial means. If not, then there exists at least one
maximal ring. A ring in §F is called maximal if it is not contained in the inner com-
plement of any ring in . Let A be such a maximal ring. Denote by U its inner
complement and set D=U UA. We then have the following decompositions:

Q=Q'UAUQ", E=FE'UE", F=F U{AJUTF",
where
Q=UNQ, Q"=Q-D, E'=QUNE, E"=Q"NE,
and
F={A,NQv=1,...,N}, F"={A,NQ;v=1,...,NJ}.
From these definitions it follows at once that
Mg (E,Q)=Mgz(E’, Q)+ |E’| mod(A)+ Mz-(E”,Q").

Hence by the induction hypothesis and Carleman’s theorem applied to the ring
A =D—U we obtain

E’ Q’ E’ D E” Q"
@ sty Eliog 121 1 o 101 15l
It is evident that D—Q=U—-Q and UNQC DNQ. Thus
|D| _ |D—Q|+|DNQ| - | DN QY _ | DN Q|
|U| | U—-Q|+|UNQ| — |UNQ| |27
Insert this into (60) to get
Ms(E, Q)< Iirl log III)ET’IQI Iirl log |$TE—”1|)|
Finally, by concavity inequality (13), we obtain
E’\+|E” DNQ|+[Q—-D E Q
Mz (E,Q) < 7|+ |E”] log | |E’||+|IE”| | = I4 | log IIEi
completing the proof of the lemma.
By this lemma and (58) we also end the proof of Theorem 2. ]

6. The complete system of the quadratic differentials Qr(z) dz2.

THEOREM 3. Take distinct points z; (j=1,...,n, n=2) in the complex plane
and positive numbers r; assigned to every z; (j=1,...,n). Let I ={I'y,...,'n}
be an admissible family of homotopy classes I, (v=1,...,N) of Jordan curves
in C=C—{zy,...,2,). There exists exactly one rational quadratic differential
Or(z) dz? of the form

(61) Or(x)=3 —2 4+ 3

=1 (z—zj)* 2 z—z’

n 2 n .
aj
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where

n
(62) E aj=0, E asz-:O
Jj=1

and such that:
(1) Or(z) dz? has closed trajectory structure of homotopy type T';
(ii) for each vy e UM_, T, its QOr-length satisfies

(63) e(y)Z 2N+ +r}

if v encloses precisely the poles z; , ..., 2;,;
(iii) inequality (63) converts into equality whenever v is a closed trajectory of

Or(z) dz>.
Furthermore, Qr has negative reduced norm

(64) «Qr» <0.

The case when I' consists of precisely #+ 1 homotopy classes, generated by small
circles around z;, ..., Z,, and one large circle centered at the origin, can be treated
by studying the surface of reduced moduli; see Strebel [15, Thm. 23.5] and [14].
This is the case that admits circle trajectory structure we discussed in Section 4.
Presumably, the method of reduced moduli allows for our generalization. How-
ever, we did not find any explicit formulation of such a result. Our proof exploits
essentially the area inequality (55) for the extremal metric and is based on an ex-
haustion method.

Proof. For notational convenience we assume that |z;|<1 (j=1,...,n) and r;
are small enough that the disks B; = B(z;,r;) (j=1,..., ») are mutually disjoint
and contained in the unit disk B. Let m be the singular measure concentrated at
(Z1, -..» 2o} such that m{z;} ==r?, j=1,...,n.

We begin with defining an increasing exhaustion of C=C—{z,, ..., 2.} by cir-
cular regions. For this fix 0 <7=<1=<R and remove the disks B;(7) = B(z;, 7r})
(j=1,...,n) from the disk B(R) = B(0, R). Put

E=E(T)=OBJ'(T) and S=S(r,R)=B(R)—E(7).
ji=1

Clearly, S(7’, R’)C S(7,R) if r= 7’ and R’< R (see Figure 8);
C= U S(,R).

7T<I<R
Next we solve the I'-extremal metric problem on S=S(7, R), where we under-
stand that I' is restricted to those curves which liein S. According to Lemma 1, we
have a positive quadratic differential Q, g(z) dz? holomorphic on S with closed
trajectories and such that the following condition holds: If v e U%_, ', encloses
exactly the points z; , ..., z;, then its Q, r-length satisfies

(65) tv)= S7 | Q- r(2) |2 |dz|227r\/rj21+ et

Equality holds here if v happens to be a closed trajectory of Q. r(z) dz?2.
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Figure 8

The m-area of any component B;(7)CC—S (j=1,...,n) is the same as its
7 ~?xg(r) du-area. Therefore, by Theorem 2,
|B(R)|
|E(7)]

SSS(T,R) IQT’R(Z)I du(z) < T_2|E(7-)| log
w 2 R?
=7r(2rj ) log ?2"'2—;_;5

We need, however, a slightly more general estimate. Namely,

|B(R")|

67) [y 10202 () < 7721 E ()| log

provided 7 < 7’ and R’ < R. To show this, consider the circular annuli
A={z:R'<|z|<R} and A;=[z:71rj<|z—2zj|<7'r;}, j=1,...,n.

By Holder’s inequality,

1 (R 2 dt

[§. 10wl duer= 5§ (§_ V1@ aal)
R dr R

z2m(Z )| = =2m(S rf)log o

Here we used the fact that the Q. g-length of every circle {z: |z|=1¢}, R"<?<R,
is at least 2w /X r?; see (65).

Similar arguments apply to the annuli A; (j =1, ..., n), yielding

’

SS | Q- r(z)| du(z) 221rrj2 log 1—, Jj=1,...,n,
Aj T

where the Q, g-length of every circle {z:|z—z;|=1t}, 7r;<t<7'rj, is at least
27rj, j=1,...,n.
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Combining these estimates in view of (66) we obtain the inequality (67). This
inequality shows in particular that for a fixed region S(7,R’), 7'<1=<R’, the
family {Q; g}, <, r'<r is uniformly bounded in L!(S(7’, R’)). One can therefore
select sequences 7; > 0 and R; > o (i =1, 2, ...) so that the functions Q;(z) =
Q:,,r;(z) converge uniformly on every S(7’, R’) to a function

(68) Or(z) = lim Q;(z),
which is holomorphic in C = C —{zy, ..., 2,} and satisfies
2 |B(R)|
Weory 100 @] dt@) < w(S 7y tog

(69) , R?
= 7l'( 2 I’j ) log W
forall0<7r=<1=<R.

We shall prove that Qr(z) dz? defines the quadratic differential stated in Theo-
rem 3. The length inequality (63) follows readily from (65). Also, the reduced
norm of Qr is negative by (69) and the definitions in (37)-(38). It is not evident
however that OQr(z) takes the form (61)-(62).

Let this function have expansion at z;
had C, wjz a;

Or(z)= X2

— +
v=3 (2—2;)" (2—2zj)® z2—z;

+ .-

for 0<|z—z;|<r;, j=1,...,n. Direct computation gives the formulas for the
coefficients c,:

_ (V——l)(Trj)z”_2 H
g w(1—727"2) rj<|z—z;|<r;

for 0<7<1and »=3,4,.... Hence by (69)

—1 gvr—2 1
< (V )(Trj) SSB_E(T) IQP(Z)I d[,t(Z):O(TV_leg __7?>.

lel= A=y

Letting 7 tend to zero we conclude that ¢, =0 for » =3, 4, .... Therefore QOr(z)
reduces to the form

(Z—2;)7"Qr(z) du(z)

n —w~2 n a:
Or(z)= L+ Y /_ 4+ regular term.

=1 (z—z;)* =1 z—z;

In much the same way we prove that the expansion at infinity must start from the

z 2 term
2

1
Or(z)= + higher powers of z

z2
These formulas imply
n —_ O)JZ n aj
(70) Or(z)= X + X

?
j=1 (Z—Zj)2 j=12—32j
where
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n n
(71) Y a=0 and w?= Y (w}—a;z;).
j=1 J=1
We find from this that
1
[{s, o lOr @] dutz) = 27| log R+27( 3 |y ) log — +O(1)

as 7— 0 and R — . And by (69),

n n n
lwl2= 3 r# and I |wi2= X rf
On the other hand, because of the length inequality (63) which we have already
established, we obtain

2
~NTQr)] |de])

€
w-2=lim———s
|wj| lim = ),

1
J0r@) ldzl=lim (-

—zj|=
er s

Jj=1,...,n, and

R , 1 2
|w[?= lim — §|ZI=R |Or(z)] Idzlthm —_ S|z|=R V| 0Or(z)| |dz|>

R—oo 2T 2
S TR )

Those inequalities are possible only if

|w|2=ri+---+rf and |w;?=r?, j=1,...,n
It remains to prove that all w; (=1, ..., n) and w are real. The following interest-
ing fact gives a clue to achieving this.

LEMMA 3. Let S be a bordered Riemann surface and let Q(z) dz? be a posi-
tive holomorphic quadratic differential on S with closed trajectories. Let vy be an
arbitrary closed analytic curve on S such that there is a continuous branch of

N O(z) along . Then the integral jy N QO(z) dz is real.

This fact follows from the global structure theorem and Cauchy’s formula. The
integral along vy can be reduced to the sum of integrals along critical trajectories
and boundary curves. All of them are real by the definition (see Figure 9). It may
be noted that the above property characterizes holomorphic and positive quad-
ratic differentials on S which have closed trajectories.

The leading coefficients —-w, (j=1,...,n) and —w? do not vanish, so for suffi-
ciently small ¢ and large R there are contmuous branches of \/QOr(z) along the
circles |z —zj|=€¢ (j=1,...,n) and |z| =R, respectively. The same is true for all

O (z), provided k is large enough. Cauchy’s formula gives

1
wj=i—§lz_z._ \VQr(z) dz—+— lim SIZ e V() dzER,
il =¢€ —LjI=E

27 k —» o

for j=1,2,...,n, and
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Figure 9

1 |
w= ko= SIzI=R VOr(z) dz = *o— kh—I.T:o S|z|=R N Qr(z) dz e R.

We then conclude that w}: rjz (G=1,...,n) and w?=ri+---+r2 so 3 a;jz;=0
by (71). This proves formulas (61)-(62).

Now by local structure theory Or(z) dz? has circle domains around double
poles zi, ..., 2, and c. Outside these circle domains the convergence of Q;(z) to
Or(z) is uniform. That Qr(z) dz? has closed trajectory structure of homotopy
type I follows by general compactness principles; see [15]. Also the length equal-
ity (iii) follows from that. To prove the uniqueness statement assume to the con-
trary that there are two quadratic differentials Qf(z) dz? and Qf-(z) dz? with the
properties described in Theorem 3. Employing the notation from Section 3, for-
mulas (45)-(46), we have defined n-connected domains S’ = Q’(R) — F’(7) and
S”=Q"(R)—F"(7). The quadratic differentials Qf (z) dz? and Qf-(z) dz? are pos-
itive on §” and §”, so they define I'-extremal metrics p,(z) |dz| and p,(z) |dz| on
S’ and S” respectively. The metric

p(z) |dz|=3(\/|QF (2)| + /| QF (z)]) |dz|
=%[P:(Z)+p”(2)] IdZI
is I'-admissible for both S’ and S”. Therefore

[, P aua <[ r@aw=({ ol de,

||, @ an@={|_ rP@duar=|{ o> du.

The arguments similar to those we have used for formula (49) in Section 3 can be
applied to show that

SSS'US" |Qf (2)| dn(z) = SSS |OF(2)| dulz) +0(1),
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Q1 (z)| du(z)+o(1),

Hs'us" |Of (2)] dp(z) = SSS

as 7— 0 and R —» . Hence we obtain

SSS’US" (07 +p2) du(z)
=2 SSS,US,, p*(z) dp(z)+o(1)

={[o o @ +oDdu@—7 [ (o,~pn)*du@ +o).

Letting 7 approach zero and R approach « we conclude that

[{.=pn?an@ =0

|0 (2)| =| Q1 (2)],
or @) =Qr(z).
This completes the proof of Theorem 3. ]

7. Conclusion and comments. Inequality (11) follows from Proposition 2 and
(64).

The first-order coefficients a; (j =1, ..., n) appearing in (61)-(62) form a com-
plex vector a(I') = (a,, ..., a,) in an (n—2)-dimensional subspace of C” which is
orthogonal to the vectors (1,1, ...,1) and (Z;, Z2, ..., Z1). Denote by J the set of
all admissible families I' = {I'}, ..., I'ny} of homotopy classes of Jordan curves in
C=C—{zy,...,2,}. The number of elements in 3 exceeds 2(n—2), which shows
that the vectors a(I') are linearly dependent over real numbers as I" vary J. It is
of particular interest to know whether the convex hull of these vectors contains
the zero vector in C”. Suppose for a moment that there exist positive numbers
tistyyeeisty, ti+ -+ +t,=1and families ', T2, ..., " in 3, so that

> tia'')y=0
i=1

Then
2

Tp(z)=— E E 1iQri(z).

Jj=1 (Z zj)z i=1

The reduced norm of 7g(z) is therefore negative,

(T = << glt iQri >> 211 iKQriN <O,
and by Proposition 2,
(72) Ha_p 1@ d@) <|E] tog 7.

Let us end this paper with the following estimate for 7¢(z).
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THEOREM 4. Let E be the union of nonoverlapping disks in B and let Tg(z)
denote the Hilbert transform of the characteristic function of E. We then have

1E]

where the infimum is taken over ¢ € conv{orires.

|| I7e@) du(z) <|E| log = +inf$] 1)

The proof is much the same as that given for inequality (72). ]
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