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Introduction. Let M be a simply connected complete minimal surface (im-
mersed) in R3. It is classical that M can be parameterized by pairs (f, g) where
f is analytic, g is meromorphic, and the zeros of f occur precisely at the poles of
g, the order of the zero being twice that of the pole. The Weierstrass representa-
tion (cf. [9, p. 63]) of M given in terms of f and g is the parameterization

1
xi(z) =

—Rel ra—g?a
> eS g7)dz,
1
2

1) x2(z)= = Rei Szf(1+g2)dz,

Z
x3(z) =Re S fgdz.
The metric and curvature are given by

1
N@)|dz| = S |/](1+]g]*) |dz],

)
|f1(1+]g]*)? /)

An important feature of g is that, after composition with stereographic pro-
jection, it represents the Gauss map of the surface. The universal covering sur-
face of a hyperbolic minimal surface is a simply connected surface conformally
equivalent to the unit disk D, and can therefore be given as above, where the pa-
rameter space is the unit disk. In particular, if the surface itself is simply con-
nected we can and do take f and g as defined in D. The completeness condition
then means that §_ N\ |dz| = o for every path « tending to dD.

A fundamental problem in the theory of complete minimal surfaces is the de-
termination of which meromorphic functions g arise as Gauss maps of these sur-
faces. It is known that if g is holomorphic it cannot be in the Nevanlinna class [6,
pp. 394-5] and that g cannot omit seven points [12]. In the present note we shall
give some further restrictions.

It is perhaps important to point out that in [12], as well as in Theorems 1 and 2
below, an essential ingredient in the proofs is a general result of Yau [13, p. 661]
for complete Riemannian manifolds. It is interesting that, although in the present
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setting the additional structure of minimality of the surfaces allows for a com-
plete function-theoretic description via the Weierstrass representation, it seems
difficult to frame proofs in strictly function-theoretic terms.

We wish to thank Joe Lipman and Brian Smyth for helpful discussions regard-
ing Theorem 4.

I. Connections with normal functions. Let g be meromorphic in the open unit
disk D. The order of normality o of g [10, p. 1] is defined by

2, lg’l
o= s e

If « < oo, then g is said to be a normal function. In geometric terms, a meromor-
phic function is normal of order o when it is a Lipschitzian map with Lipschitz
constant /2 from the Poincaré disk into the Riemann sphere. Connections be-
tween complete minimal surfaces and normal functions were recently exploited
in [12].

An analytic function in D is a Bloch function if it satisfies an estimate of the
type |g’(z)| = C(1—|z|?)~". For further properties of normal and Bloch func-
tions, see [2].

THEOREM 1. Let M be a simply connected hyperbolic complete minimal sur-
face in R3. Then the order of normality a of the Gauss map of M satisfies the in-
equality V2 /2 < a < oo. If in addition M has bounded curvature, then 1 < «a < .

It is interesting to note that the condition « =1 does not depend on the actual
bound on the curvature. We have been unable to determine if these constants are
sharp.

Let f and g correspond to a simply connected hyperbolic minimal surface.
Now |f|(1+|g|?)|dz| is complete if and only if | f|(1+82%|g|*)|dz| is complete
for 8> 0. Since 8 can be taken arbitrarily small it follows from Theorem 1 that g
cannot satisfy the Bloch condition. Thus we have the following.

COROLLARY 1. The Gauss map of a simply connected hyperbolic complete
minimal surface in R® cannot be a Bloch function.

Let R be the Riemann surface over the sphere of a meromorphic function g in
the unit disk. For g(z) € R, let A be the maximal schlicht disk on R centered at
£(z) having angular radius 6(z) measured from the origin. Then the plane pro-
jection of A is the set

fw: |(w—g(z))/(1+8(z)w)| <d(z)}, d(z)=tanéd(z)/2.
The following criterion for normality is due to Pommerenke [10, p. 4].

THEOREM A. Let g(z) be meromorphic in the unit disk D and suppose that
6(z)<B=<n/3 (zeD). Then the order of normality o of g satisfies

- 2sin g3
= @cos?B—1)172

2.1) < oo,
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For the Gauss map of a general hyperbolic minimal surface in R? we may pass
to the universal cover and, as a direct consequence of Theorem 1 and Theorem A,
obtain the following geometric information.

COROLLARY 2. Let g be the Gauss map of a complete hyperbolic minimal sur-
face M in R3. If (2.1) is satisfied for 8 = B8, < w/3 corresponding to o =V2/2, then
the Riemann surface of g contains a schlicht disk of angular radius at least 3. If
in addition M has bounded curvature, the same conclusion holds for 3=, <x/3
corresponding to o =1. Here 3, = .524 and 3, = .659.

II. The Nevanlinna characteristic. As pointed out in the introduction, it has
been known for some time that if the Gauss map of a simply connected hyper-
bolic surface misses a point on the sphere, then it is of unbounded characteristic.
Our next result shows that this effect persists in general.

THEOREM 2. Let g be the Gauss map of a simply connected hyperbolic mini-
mal surface M in R>. Then g has unbounded characteristic.

From the standpoint of value distribution theory it is important to note that,
although g cannot be of bounded characteristic, its Riemann surface need not
be regularly exhaustible (cf. [5, p. 145]). In fact, if it were regularly exhaustible,
then [5, Theorems 2.4 and 5.4] g could omit at most three values on the sphere.
However, examples of complete minimal surfaces do exist whose Gauss maps are
nonconstant and omit four values [9, p. 72].

III. Flatness of complete minimal surfaces. The celebrated Efimov theorem
[4] states that any complete surface in R? with negative curvature must satisfy
sup K = 0. It is easy to exhibit examples showing that, in general, one cannot ex-
pect K to be close to zero on very large regions. Given a complete surface of non-
positive curvature in R?, the question arises as to what conditions ensure that
K be close to zero on a rather large set. Even for minimal surfaces it seems nec-
essary to impose some restrictions on the Gauss map. Consider, for example,
a triply periodic minimal surface in R3. Its Gauss map descends to a meromor-
phic map on the (compact) quotient surface inside of a 3-torus. In particular,
the Gauss map is surjective. On the other hand, for small enough ¢ > 0 the set of
points in R? where the curvature is bigger than —e is the disjoint union of small
neighborhoods around the planar points. In particular, it cannot contain arbi-
trarily large nearly flat balls.

THEOREM 3. Let M be a complete minimal surface of bounded curvature in
R3. If the Gauss map omits three points, then for any given r,e > 0 there is a geo-
desic ball B(r) of radius r in M where the curvature satisfies K = —e.

IV. Omitted values of the Gauss map. Let M be a complete minimal surface in
R3. A natural question in the description of M is that of determining limitations
on the number of values omitted by the Gauss map g.
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As we pointed out in Section II, there are examples where g omits four values,
and in [12] it is shown that g can never omit more than six. Whether or not there
exists a complete minimal surface whose Gauss map omits six values, or for that
matter even five, seems unknown. Even if one restricts attention to surfaces hav-
ing bounded curvature, this question appears to be unresolved.

It is only in the case where the total curvature {{,, K dS is finite that we have fur-
ther information. Such a surface can only be of the form M =M'—{p,, ..., pi},
where M’ is a compact Riemann surface with fdz a meromorphic differential
on M’ and g an n-sheeted meromorphic function [7, p. 356] on M’. Using these
facts, Osserman [7, Theorems 3.3 and 3.3A] proved the following.

THEOREM B. If M is a nonflat complete minimal surface of finite total curva-
ture then g can omit at most three values. If g omits three values then the genus
of M’, as above, is at least 1 and

“M K dS=<—12.

The catenoid provides an example of total curvature —4x« whose Gauss map
omits two values. It seems that there are no known examples of complete minimal
surfaces of finite total curvature whose Gauss map omits three values. Although
we feel it is quite possible that such surfaces exist, even in the case of genus 1, it
follows from our next result that there are obstructions beyond those appearing
in Theorem B.

THEOREM 4. Let M be a nonflat complete minimal surface in R*> whose Gauss
map omits three values. Then, the total curvature satisfies

4.1) “MKdSs —167.

V. Proof of Theorem 1. Let the metric X for M be given by 2\ = | f|(1+]g]|?),
and define u(z) =2/(1—|z|?) and v(z) = u?/| f|>(1+|g|?)% Then

8|g1|2
Alogv=pu’—
b e)?
Hence A log v =0, provided that
Ed Va
(5.1 sup(1—|z|?)—2—— = —.
) ST e = V2

Condition (5.1) means that g is normal of order & <+vp/V2. On the other hand,
since dS =(1/4) |f|2(l +|g|*)?dx dy we have

(5.2) | vas=22{ —ZT <o

if p <1. A theorem of Yau [13, p. 661] asserts that a complete Riemannian mani-
fold of infinite volume supports no integrable function v satisfying A log v =0.
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It follows from this, (5.1), and (5.2) that the Gauss map of a complete minimal
surface cannot be normal with order of normality o <V2/2.

Suppose now that the curvature K of M is bounded: 0 = K = —C. An applica-
tion of Yau’s form of Schwarz’s lemma shows that the metric of A dominates
that of the disk with curvature —C [14, p. 201]. Since p/C"? has curvature —C
we have

S I
(5.3) | l(1+|g|2)— ol
Now let v=p?/|f|***(1+|g|*)***. As before,
4|g1|2
Alogv=p 2——(2+p)—~—.
g (1+]g[?)?
Hence, Alogv =0 if
|g;| p 1/2
sup(l—|z|? < .
p(1—|z]| )1+|g|2 P

Using (5.3), we see that | v dS < o for every p > 0. Letting p — o0 and arguing
as before, we see that the Gauss map of a complete minimal surface of bounded
curvature cannot be normal of order o < 1. [

VI. Proof of Theorem 2. Let 2\ = | f|(1+|g|*) and suppose g has bounded
characteristic. Then [5, p. 176] g = g,/g»> where g, g, are analytic in D, have no
common zeros, and |g,(z)| <1, |g2(z)| <1 for z € D. Define v(z) = g5(z)/f*(z).
Since the zeros of f coincide with the poles of g2 in position and multiplicity, it
follows that A log|v| =

As in the proof of Theorem 1,

1 1
6.1) SM vdS=— SD ol S+ g?) dx dy = jD (lg2]2+|g1|?)? dx dy <oo.

4
Again, by [13, p. 661], we see that (6.1) is not possible if M is complete, and
hence g must have unbounded characteristic. O]

VII. Proof of Theorem 3. It suffices to prove the result for the universal cover
of M. In fact, suppose the theorem were proved for the universal cover M of M,
and let B(r) be a geodesic ball of radius r such that K = —e there. If p denotes the
center of B(r), and p its projection in M, then (since M is complete and cannot
be compact) M contains a ball B(r) centered at p. Now, B(r) can be taken as the
union of all curves starting at p and of length not exceeding r. Since these curves
all lift to B(r), and the curvature is preserved under projection, it follows that
B(r) satisfies the requirements of the theorem.

Since the Gauss map omits three points, A must be hyperbolic and the Gauss
map is thus considered defined on the unit disk D. Also, by a rotation, it can be
arranged that the north pole is among the omitted points. It is no restriction to as-
sume that K = —1. In particular, g is analytic and, as in the proof of Theorem 1,
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we again have that the metric A = (| f|/2) (1+ |g|?) dominates the hyperbolic met-
ric ¢ in the disk. Since an analytic function that omits two points is normal [5,
pp. 153, 156], it follows from a result of Bagemihl and Seidel [3, p. 16] that g has
Fatou points, that is, points on dD where g has (finite or infinite) angular limit.
Let zo = e'%0 be such a point.

We recall an estimate of Osserman [7, p. 340] for geodesic balls B(p, d) where
the Gauss map makes an angle at least o > 0 with a fixed direction. For such a
ball the curvature K(p) satisfies

1 32

7.1 K S -———.
7.1 [K(P)] d? sin*«

Given r > 0, choose p > r such that

32 -
(p—r)2sin®(x/4) =

and consider the angular region 7 centered on zy that corresponds to taking the
union of all hyperbolic balls of radius p centered on the segment (0, zg9]. As re-
marked above, as z = z¢ on 7, lim g(z) exists in CU{oo} soif zeT and 1—|z| is
small enough, say |z| >1—46, g(z) makes an angle at least w/4 with a fixed di-
rection in the sphere. Since the surface metric A= (| f|/2)(1+]|g|?) dominates
the hyperbolic metric u=2/(1—|z|*) (cf. [14, p. 201]) we must have B\(z,s)C
B,(z,s) for |z| <1 and s > 0. Here, B\(z,s) and B,(z,s) are balls centered at z
of radius s in the respective metrics A and u. Let n <1, 1 —% small enough so that
|z} >1—6 in B,(n, p) and p e B\(n,r). Then By\(p, p—r) CBx\(n, p) CB,(n, p)C
T\{z:|z|=1-46}. Applying (7.1) with d =p—r and = 7n/4 to any p € B\(»,r)
we then have

(7.2)

32
K =
K = e sint(aa) ¢
in view of (7.2). ]

VIII. Proof of Theorem 4. LLet M=M’'—{p;, ..., pr}, where M’ has genus v,
and suppose that the total curvature of M is —127 and that g omits three values.
Then [7, p. 358] g is a 3-sheeted cover of the sphere and g tends to the excep-
tional values at the punctures so that £ = 3. On the other hand, equation (11) of
[7, p. 360] implies k <3 so that £ =3. Also, from Theorem B we have that y>1
and from equation (10) of [7, p. 360] that v < 1. Thus y=1.

We are therefore led to consider elliptic functions which attain three values
a,, a,, a; (the exceptional values) at points 2, 2,2, 23 (the punctures) with mulii-
plicity three on the period parallelogram. Let 7" be a period parallelogram asso-
ciated with M’ and assume without loss of generality that ¢; =o and z;=0.

In general, fdz is a differential, but since v =1 it follows that f is a well-defined
function on 7. Furthermore, since f can only vanish at z, =0, and by complete-
ness and equation (2) its multiplicity is at most four, this implies that f is at maost
a 4-sheeted covering of AM’. On the other hand, again by completeness and (2), f
must have poles at z, and z3 of order at least two at each point, so it follows that
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f is a 4-sheeted cover. Finally, since the poles and zeros of f coincide in position
and multiplicity with those of 1/g’ we have that, for some constant & =0,

8.1 S=kK/g'.

We shall now proceed to express g in terms of the Weierstrass p function for 7
which is a 2-sheeted cover of the sphere. In fact, since g is 3-sheeted with a pole
of order three at 0, there exist constants a, b such that ¢ 0 and g—ap’— bp has
at most a pole of order one at 0. Since, however, none of the functions g, p’, p
have poles at other points, this implies that g—ap’— bp is constant. Thus, for
appropriate constants a, b, ¢, we may write g(z) =ap’(z) + bp(z)+c forallzeT.
We shall now reduce this expression and show that in fact we may write

(8.2) g(z)=ap'(z)+c (a#0,z€T),
and that p can be taken as equianharmonic [1, p. 652] satisfying
(8.3) P2 (z)=4p*(z)—1 (zeT).

To see this, we begin with the basic identities [1, p. 640] in T":
PP =4p°(2)—g20(2) — g3,
8.4 p"(z)=6p*(2)—g2/2,
P (z)=12p(z)p’(z),
where g, and g3 are constants. Now for j =2, 3 we have
8.5) 0=2g'(zj)=ap”(z;)+bp'(z;),
0=¢g"(z;)=ap”(z;)+bp"(z;),
which imply
(8.6) b’p'(z))—a’p”(z;)=0 j=2,3.

Now p’(z;) # 0. Indeed, if this were not the case then (since a7 0) it would
follow from the first equation in (8.5) that p(z;) would be covered three times.
Thus, from (8.6) and the third equation in (8.4) we have

8.7) p(z;)=b?*/12a* j=2,3,

and hence with (8.4) and (8.7), (8.5) becomes
a(6p>(z;)—82/2)+bp'(z;) =0

12ap(z;) p'(z;)+b(6p*(z;)—g2/2) =0 j=2,3.

We can now determine that » =0. In fact, if b0 then the first equation in
(8.8) along with (8.7) would give

’ a b4 &2 .
p(zj)——3(24a4_7) J_'293s

which with (8.7) would imply g(z;) = g(z2), a contradiction. Thus » =0 and,
when substituted into (8.8), this gives p"‘(zj) =g,/2 and p(z;)p’(z;) =0. Since
p’(z;) # 0 we finally obtain g, = 0. By scaling 7" we may then arrange to have g3 =1.

(8.8)
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Using relationships (8.1), (8.2), and (8.3) we now rewrite the third parameter-
ization formula in (1):

z k(ap’(z)+c)

dz.
6ap?(z) <

8.9) x3=Re S

In order for (8.9) to be well defined, the real part of integrals across the period
parallelogram must vanish. Clearly the integral of p’/p? contributes nothing,
since this is the derivative of —1/p which is well defined on the surface. Thus, the
problem reduces to the existence of constants a, ¢, and & such that if y; and v, are
curves joining the pairs of opposite sides in 7" then

ck dz ]
(8.10) 0=Re = S 2y =D

Let n;={, p(z) dz and 7, ={y; dz/p? (j=1,2). Then [, p. 653] ;= cae'™>,
n, = ace ~#7/3 for some constant «, and [11, p. 109] 7, = 2%, 72 = 27,. These values
are obviously incompatible with (8.10) unless ¢ = 0.

Now the conditions that the real parts of the integrals on +; in the first and sec-
ond parameterization formulae (1) can be written in the equivalent form

(8.11) L.f(z) dz=57_f(z)g2(z)dz Jj=1,2.

Again using (8.1), (8.2), and (8.3) in (8.11) along with the fact that ¢ =0, we
have for j=1,2

ko d _ ko oap) ,_ak 4p’@)-1
6a S p3(z)  6a Sy, p3(z) dz= 6 va p*(2) &
2ak ak
=?S p(z)dz— _6”5 2(z)

With 5; and 7; as before this becomes

k7j/a+akt;=4akn;=2akt; j=1,2,
or
1/lal?—kr; kT =0 j=1,2,

which is evidently incompatible with the values of 7; given above for any choice
of a and k.

Since we have now ruled out the possibility of g being 3-sheeted and since the
total curvature is —4x times the number of sheets of g [9, p. 77], we have estab-
lished (4.1). O
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