ON THE AUTOMORPHIC FORMS
OF A NONCONGRUENCE SUBGROUP

Isaac Efrat

Our aim in this paper is to give the first example of a noncongruence subgroup
which is “essentially cuspidal”, that is, for which cuspidal eigenfunctions exist
abundantly (see Section 1 for a definition). It is a discrete subgroup of SL,(C)
obtained as the kernel of a Kubota symbol. The proof consists of the explicit
evaluation of the Eisenstein matrix associated to the subgroup, as well as its de-
terminant. From these follows a Weyl law which gives the precise asymptotics of
the cusp forms. We use some computations of Kubota [4] and Patterson [5], as
well as analogous work for congruence subgroups ([1; 2]).

1. Let 3C be the hyperbolic 3-space {w = (), z) = (), X1, X2) | y > 0}. If we iden-
tify w with the quaternion x; +ix, +jy then the group G =SL,(C) acts on JC via
linear fractional transformations; namely, if

a b
g= (c d)e G then g(w)=(aw+b)(cw+d)".
Let T" be a discrete cofinite subgroup of G whose parabolic fixed points form 4
I'-equivalence classes represented by the cusps «, ..., k; and let Iy, ..., I's, be their
stabilizers in I'. If we choose maps p;: k; — oo and let w) = p;w = (y ), (), then
the Eisenstein series at k; is defined for w e 3C and s € C with Re(s) > 2 by

Eiw,s)= X »yO(yw)’.
YE in\l"
E;(w,s) admits a Fourier expansion at each cusp «;, whose zero coefficient is of

the form
8ij ¥y UV + 05 (s)y D77,

for some meromorphic function ¢;;(s). We let ®(s) = (¢;;(s))i,j=1,...,
det ®(s). The dependency of these functions of s on the choice of the p;’s is not
essential.

The function ¢(s) is closely tied up with the cusp forms of I'. Let A be the La-
place operator on 3C and let N\ be the eigenvalue of a square integrable automor-
phic eigenfunction of A, that is, v € L>*(I'\ 3C) and Au + Au = 0. If we count

Nr(T)=#{\| VX €[0,T1}
and also let

1 7T )
My(Dy = 5= —¢/eQ+ind,
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then the Selberg trace formula for I' gives the asymptotics
Nr(T)+Mp(T)~cyT? as T— o,

where cr =vol(I'\ 3¢)/6 7 2. Therefore a good estimation of M (7') implies a Weyl
law for I':

Nr(T) ~cr T3 as T oo,

Such an estimate can be derived for the congruence subgroups that act on 3¢,
that is, those that contain the principal congruence subgroups

I'(91) ={y e SL2(0k) |y =1(mod )},

where K is an imaginary quadratic number field, O is its ring of integers, and 9
is an ideal in Ok. In these cases ¢(s) can be expressed in terms of certain L-func-
tions associated to K so that M (T)=O(TlogT) (see [7; 1; 2].

In [6] Sarnak calls a discrete subgroup for which the above Weyl law holds
essentially cuspidal, and asks whether or not arithmetic groups other than these
congruence subgroups are essentially cuspidal. Our objective here is to establish
the first Weyl law for a noncongruence subgroup. This subgroup is the kernel of
a Kubota symbol, which we now describe.

Let w=(—1++—=3)/2 be a cubic root of unity and let K be the number field
Q(w) with the ring of integers Ox =Z[w]. Let I'(3) C SL,(Ok) be the principal
congruence subgroup of level 3. Denote by (-); the cubic residue symbol, taking
values in {1, w, w?}. Then a special case of a theorem of Kubota is the following.

THEOREM (Kubota [3]). For vy I'(3) define

(v) = a bY\\ _| (c/a); if c#0,
XV=X\e /)71 if c=0.
Then x is a character on T'(3), whose kernel I'(3)! contains no congruence sub-

group of SL,(0Ok).

Although one can proceed to analyze I'(3)' we prefer to work with a larger
group, introduced by Patterson in [5], in order to have a smaller number of
cusps. Let

I'={y e SL,(0Ok) | there is a g e SL,(Z) such that y=g(mod3)}.

Thus every v € I' can be written as y = gv;, with g e SL,(Z) and v, € I'(3). Define

x(v) =x(71).
By [5, p. 127] this gives a character on I' which extends x.

COROLLARY. The kernel T'! of x in T' is a noncongruence subgroup.

We summarize the groups we have considered with their indices:
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SL>(Ok)

l

27

|

T

-

3
. - 24
| I
r'(3).
24 J/
- ?

r'3)!

To state our main theorems, let v = 9V3/2 be the volume of the lattice 30x\ C
and let ¢{x(s) be the Dedekind zeta function of X.

THEOREM 1. The Eisenstein matrix ®(s) of the noncongruence subgroup r!
is given, for a natural choice of p;’s, by

(4 B B C C]
B B A C C
ds)=v 'as-1)"'|\B A B C C|,
CcC C ¢ D F
_C C C FE D_
where
Fx(s—1) _ tx(35—3) tk(s—1)  £x(35—3)
A=ry(s) XS =2) | H FkESTI) - _
N Te s PrGs—2) BTN T T tkGs—2)
$k(s—1) $k(s—1) Cx(s—1)
C= KT p= LY.2 .2 5 SRV T2
2 e ) ee® "4 )

and ri(s), 1 <i=<4, are rational functions of 3°.
THEOREM 2. The Eisenstein determinant ¢(s) of the noncongruence subgroup
I'! is given by

SO(S)=I‘(S)(U_17T(S_1)—1)5 tx(s—1)° g-K(3S_3)2

Ck(s) $x(3s—2)%°

where r(s) is a rational function of 3°.

We remark that 71—(5—1)_1 is the gamma factor of {x(s—1)/¢k(s) as well as
¢k (35 —3)/t k(35 —2). We also note that the poles of 7(s) form an arithmetic pro-
gression on the imaginary axis, so that asymptotically most of the poles of ¢(s)
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come from the zeros of {x(s) and {x(3s—2) in the critical strip. By the method
mentioned above one has the following.

COROLLARY. As T — oo,
Npi(T) ~cpm T3,

2. We begin the proofs of these theorems by identifying the cusps of I"!. By
the method of primitive pairs, the group I'(3) has 12 cusps which can be repre-
sented by

0,0,1, -1, w, —wiw—1,(1—w) ", —w, 0’ 1—w, (0—1)"1.

The first four are clearly I'-equivalent, and it is easy to find elements of SL,(Z)
that map w to —w?, w—1 and (1 —w) !, so that the next four (and similarly the
last four) are also I'-equivalent. Furthermore, no additional equivalence of cusps
occurs, since the I'-equivalence of w and 0, for example, would imply that w is
congruent to a rational number modulo 3. Thus I' has three cusps, which we rep-
resent by (say) o, w, and —w.

A parabolic fixed point x of T is said to be essential if the character y is trivial
on the stabilizer T',. It is clear that this notion depends only on the equivalence
classes of such points, that is, on the cusps.

LEMMA 1. o is essential, while w, —w are inessential.

Proof. Let v = gv; € I'w. Then v, (o) = g ~!(e0), which is a parabolic fixed point
of SL>(Z) and is therefore SL,(Z, 3)-equivalent to =, 0, 1, or —1. However, since
v1€I'(3), it is in fact equivalent to co. Take 7€ SL,(Z, 3) with 7(g ~1(00)) = 0.
Since x is trivial on SL,(Z, 3) ([5, p. 127]), we have x(v1) =x(7v1). But 7y, €
I'(3) w, SO that x(77y;) =1.

Turning to I',, we give a 7eI', (in fact, 7€ I'(3),) such that x(7) = w:

1+30w —3w?
T= .
3 1—3w
To compute (3/(1+3w))3; we note that the norm |1+3(.e.1|2 =7 and so 1+3w is a
prime. We thus need to express 3 (7-1/3 = 9 modulo 1+ 3w. But

9=CBw’—w)(1+3w)+w,
S0 9=w(mod(1+3w)) and x(7) =w. A similar example can be foundinI"_,. 0O
LEMMA 2. The cusp o of T splits into three cusps in T'.

Proof. Choose 7eI'(3) with x(7) = w, and define k = 7(). If v e I'! satisfies
v(e0) =k then 'y_l'rel‘oo, so that by Lemma 1 x(’y"l'r) =1, and x(v)=x(7)=
w#1. Thus « cannot be equivalent to c in I'!. A similar argument shows that
k’=72%(o0) is a third inequivalent cusp. This is a complete set of cusps because
[T:T!]=3. O

LEMMA 3. Let x and y be inessential parabolic fixed points which are equiva-
lent in T'. Then x and y are also equivalent in T'\.
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Proof. Let vy e I with y = y(x). Since x is inessential, there is a v’ € Iy such that
x(v")=x(y) ! Then y =yvy'(x) and x(yy') =1 O

To summarize, we have

cusps of I': w —w

ZIN, T

cusps of I'!: ® —w.

3. In this section we relate the Eisenstein series E}(w,s) (1<i<5) of I'' to
the Eisenstein series E;(w,s) (1<i=<3) of I'.
Since oo is an essential cusp we can define

Eo.(w,s,x)= X2 x(v)y(yw)’
vyeT N\

and similarly define E(w,s, x2). Then

Ew(W,s)+Ew(W,s,x)+Ex(w,s,x%) = IZ\F (1+x(V)+x 2y (yw)®
TEL o

=3 Y y(yw)=3EL(w,s).
YETL\T
x(v)=1
Also,

3E)(w,s)=E(w,s)+E.(w,s,x)+E.(w,s,x%).
But since x and oo are I'-equivalent,
Ei(w,s)=Ex(W,s),
Ew,s,x)=x(T)Ex(W,s,Xx),

E.(w,5,x%) =x*(7)Ex(W, s, x?).
Thus
3EI(W,S) =Eo(W,s)+wEo(W,5, x) +w2Ew(W, s, x2).

Working the same way with «’, we obtain

EL(w,s) . 1 1 1 Eo(w,s)
Elw,s) |= 3|1 @ w? || Ewx(w,s,x)
E,}'(W,S) 1 0)2 w Eco(wsss X2)

Turning next to EL(w, s), we see that there is a bijection

I\« T \T
given by
Loy'—Toy'.
This map is clearly one-to-one. To see that it is onto, take I',yv e I',\TI". Since w
is inessential, there is a v’ € I', with x(y’y) =1, so that I, =T,y is the image
of ' y’y. We can therefore conclude that

EL(w,s)=E,(w,s), EL,(w,s)=E_,(w,s).



222 ISAAC EFRAT

It follows from this discussion that to calculate ®(s) it is enough to look for
the zero Fourier coefficients of Eo(W, ), Ex(W, S, %), Ew(W,s,x?%), E,(w,s),
and E__(w,s) at the five cusps. Now

Eow(W,5)=Eo(tw,5)=E(7*w,s),
Eo(W,5,X) =x(7) 'Ex(tw,5,x) =x (%) 'Ex(’w, s, X),
Eo(W,5,x")=x(7) ?Ew(tw,5,x*) =x(7%) *Ex(t’w,s,x?).
Let the zero coefficients at oo of these three functions be

Y +y(s)y?s,

Y Y, x)y? 70,
Y HYs, x3)y2
Then the upper 3 X3 block in ®(s) is given by
. 1 1 1 ¥(s) Y (s) v(s)
3|1 @ @ || ¥Ex)  wdsx) @'Y x)
1 o o |[¥s,x?) o™, x?)  wdls, x?)
PROPOSITION. Let {(s,1) =X co, |c|™*. Then
c=1(3)
e v —13°=342:3%70 (s—1,1)
1) Ys)y=v ‘w(s—1) 3511 cG.1)

3%-2_1 ¢(35s—3,1)
3¥3-3_1¢@3s—2,1)°

Proof. See Patterson [5, pp. 137-139] (and cf. Kubota [4, pp. 50-52]). ]

Q) Y, x) =¥, xD)=v as—1)""

Using ¢(s,1) =(1—37%) {x(s) (see §4) we obtain from this proposition and the

preceding discussion the upper 3 X 3 block as stated in Theorem 1, with
3A=Y(8)+ (s, ) +¥(s, x%)

(1=317935_342.3275 ¢p(s—1)

1—3-5 3s-1-1 Sk (s)
1—3373 33721 ¢ (35—3)
1—32-35 335=3 1 ¢x(35s—2)
39—3+42-327° fp(s—1) L ixBs—3)

3°—1 $k(s) $x(3s—2)°

An identical calculation gives the expression for B.

=v ln(s—=1)"

+2

=v las—1)7"3

4. Consider next the Eisenstein series of I'(3), which we denote by £;(w,s)
or Ex(w,s), 1 =i=12. We saw earlier that the cusp w of I" splits into w, —w?2,
w—1, and (1—w) 'in I'(3), so that if we choose the same map sending w to oo
for both groups we obtain
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Ew(w,s) =E~w(W,S)+E~._.w2(W,S)+Ew_](W, S) +E~(|__.w)—l(W,S).

This reduces the study of E,(w, s) to that of the corresponding £’s, to which we
can apply the methods of [1] and [2].

If the cusp «; of I'(3) is written as x; = —39; /v, with v;, ;€ Ok, then for the
right choice of coordinates at x; we have

)

> 2
(c,d)=(1) N(CW+d)s

c=+;(3)
d=8;(3)

Ej(w,s)=

Here for a quaternion w = x|+ ix, +jy we let N(w) =x%+x%+ y? Define

s

y
Fi(w,s)= —_—.
! csg(S) N(CW"'d)S
d=6;(3)

To relate these two functions we make the simple (but key) observation that the
group (Og/(3))* of invertible elements modulo 3 can be represented by the six
roots of unity #1, +w, +w?. Therefore, if we decompose the sum in F;(w, s) ac-
cording to the greatest common divisor of ¢ and d, we obtain the equality

F,-(w,s)=( > |k|—23)E”,-<w,s).
(k)< Ok
(k,3)=1

We note that
S kITE=I k7= 3 |k|TE=01-3")¢k(s).
(k) (k)

k)
(k,3)=1 V=3 |k

PROPOSITION. The zero coefficient of F;(w, s) at k; is given by
8ij (s, —viBj+8ia))y W+ o (s —1) (s — 1, 7; 8, — 8;v;) y V.

Here «j, 8; are related to v;, 6; via

(aj Bj)e SL»(0k),

Yi 9
and, for A€ Og,
FsN= 3 7.
CE@K
c=A(3)

Proof. One expresses F;(w,s) as a sum over a lattice, and uses the Poisson
summation formula to write it as a sum of exponentials over the dual lattice. The
zero coefficient can then be read off. See [1] and [2] for details. ]

To compute the coefficients of E,(w, s) and E__(w, s) at the five cusps, we thus
need some of the multiplication table of v; 6, —v,; 6; modulo 3:
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© 0 1 -1 o —w? w—1 (l-w)! —w w? 1l-w —(l—w)!
w € € 1—w € 0 € € € € w—1 € €
—w € € € l—w € w-—1 € € 0 € € €
©o 0 e € € € € € l—w € € € w—1

Here ¢ denotes one of the six units, and we use the fact that 0, w—1, and 1 —w
represent the other three classes in O/(3). We can now express {(s,v;0; —;0;)
for these values in terms of ¢{x(s). Firstly, for a unit ¢,

1 1
o)== 3 |cf‘25=——(21c|‘2°"—- 5 1c|-2~‘)=1(1—3-5>c,<(s).
6 (,3)=1 6\ V53 e

Writing 1 —w = v—3 w?, we also have
s, l—o)=8s,0—D= ¥ || @=|v=3]"* I ||
c=v—-3w2(3) c=w2(vV=3)
=3-31—=3"")¢k(s).
Finally, ¢(s,0)=6-3"%¢x(s).
Combining these results with the table above, we can now find the remaining
entries ¢;;(s) in the matrix ®(s). The zero coefficients of E,(w,s) and E_,(w,s)

at oo, k, and «’ are all the same, and are given by the sum of the coefficients of the
four Ey,(w,s)’s at co. This sum is

3L DAL 1mw) 35413779 {x(s—1)
(1=37%)$k(s) 3°—1 $x(s)

By our table, this calculation also gives the zero coefficient at —w. Similarly, the
coefficient at w is

v"":r(s—l

386 =1,1)+¢(s—1,0)
(1-=37°)Sk(s)

351 _942.3375 ¢p(s—1)
35—1 $k(s)

Working in the same way with E_ ,(w, 5), and using the symmetry ¢;;(s) = ¢;:(s),
completes the proof of Theorem 1. O

v lr(s—1)

=v lw(s—1)""

5. To compute the determinant ¢(s), it is convenient to interchange the sec-
ond and third rows of ®(s) and look at

OO0 % T
OO % x®
OO % ®
T OO0
CEHOOO
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Consider the basis of C> given by

11 ][ 1 ][o]] o]
1 o || w?]|]0 0
1||w?]|| o |]|O 0
0| 0 0 1 1
o||l o 0 || 1]]—1]

Among these vectors, the second, third, and fifth are eigenvectors of our matrix,
with eigenvalues A — B, A— B, and D— E (respectively). To find the (product of
the) other two, the action of the matrix on the subspace spanned by the first and
fourth vectors is

[ «A+2aB+28C |

”»

— 2

3aC+BD+BE
P L ) ]

so that for this to be an eigenvector with eigenvalue N we must have

A+2B 2C o N o
3c D+E||B]| |8
Therefore the product of the remaining eigenvalues is (4 +2BY(D+ E) —6C?,
and the determinant of our matrix above is

DWW R R R

Fx(s—1) £x(3s—3)2
tx(s)? tx(3s—2)2°

(A—B)>’(D—E)(A+2B)(D+E)—6C?) = —r(s)

where
r=27(rqs—r3)(ri(r3+rs) —2r22).

Multiplying by —1 and by the gamma factor completes the proof of Theorem 2.
Ll
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