HOMOLOGY SPHERES AS STATIONARY SETS
OF CIRCLE ACTIONS

Reinhard Schultz

As the title suggests, this paper deals with the following question: To what ex-
tent can one describe the fixed point sets of smooth S! actions on spheres or—
more generally —homotopy spheres?

A few necessary conditions can be stated immediately. Since a smooth action
is locally linear (cf. {2, Ch. VI]), it follows that the fixed point set must be a union
of smoothly embedded closed submanifolds. Furthermore, cohomological tech-
niques imply that the fixed point set must be an integral homology sphere; in fact,
if m is the dimension of the ambient sphere and # is the dimension of the fixed
point set, then 72— n must be even. During the 1960s the Hsiangs observed that
these conditions are very nearly sufficient (cf. [15, Ch. V, §4]).

THEOREM 0. Let n# 3 and let F" be a closed, smooth, integral homology
sphere. Then for any k > 0 there is a smooth S' action on S™ +2k such that the fixed
point set F' is “almost” diffeomorphic to F; in other words, there is a homeomor-
phism from F— F’ that is either a diffeomorphism or a diffeomorphism on the
complement of a point.

This result foreshadowed in several respects the later results of L. Jones and
many others on converses of the P. A. Smith theorem (see [37] and related papers
in the same volume for further information).

COMPLEMENT TO THEOREM 0. The group actions in Theorem 0 may be as-
sumed to be semifree; that is, S! acts freely on the complement of the fixed point
set.

Although Theorem 0 gives very strong information on the central question of
this paper, it does not specifically address two points:

(1) What happens if n=3?

(2) Under what conditions is there an action whose fixed point set is actually

diffeomorphic to F?

For many years it has been known that the conclusion of Theorem 0 applies to
certain nonsimply connected Z-homology 3-spheres. This result, which is due to
Montgomery and Samelson [23], was one of the first indications that surgery the-
ory had far-reaching consequences for transformation groups. In fact, one can
use surgery theory to state the following realization theorem for n=3.
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THEOREM 1. Let X3 be a (smooth) homology 3-sphere, and let q be a positive
integer.
(i) For all g =1 there is a topological semifree locally linear S' action on

S3%29 that is semifree and has T3 as its fixed point set.

(ii) If g =2 then the actions in (1) may be assumed to be piecewise linear in an
appropriate sense.

(iii) If g=2 is even then the actions in (1) correspond to smooth actions on
homotopy spheres.

(iv) If q is odd and the Eells—-Kuiper invariant p(X3) e Z/2 is zero, then the
same conclusion as in (iii) holds. Conversely, if q =1 then the conclusions
of (ii)-(iv) hold if and only if X bounds a contractible manifold.

This result is a fairly routine consequence of product formulas for surgery ob-
structions and will be discussed in Section 1. In this paper we shall dispose of the
remaining case.

THEOREM 1. Suppose that q =5 is odd and the Eells-Kuiper invariant p(X*)
is nonzero. Then L3 is not the fixed point set of a smooth semifree S Yaction ona
homotopy (2q + 3)-sphere.

Since almost diffeomorphic 3-manifolds are diffeomorphic (cf. [22], [24], [38]),
Theorem 11 represents an essential difference in the behavior of stationary sets of
smooth circle actions. However, there are some partial results in higher dimen-
sions. One example is the following.

THEOREM 111. Let 7 be a homology sphere representing a generator of the
Kervaire-Milnor group ©,, and suppose q =5 is odd. Then L is not the fixed
point set of a semifree smooth S! action on a homotopy (2q +7)-sphere.

REMARK. The Kervaire-Milnor groups O,, are defined for homotopy spheres
in [17] but, as noticed by the Hsiangs [15], if m # 3 these groups also are the
groups of homology n-spheres modulo boundaries of contractible manifolds.

We shall prove Theorem III in Section 4.

One can ask a corresponding question in other dimensions of the form 4k —1.
The answer to this question would require a sharpening of the techniques in [29].
However, the following seems reasonable.

CONIJECTURE IV. If 4 =1 represents the generator of bPay, then T is not the
Jfixed point set of a semifree smooth S! action on some homotopy (4k+2q—1)-
sphere with g =3 odd.

Theorems II and 111 suggest the following more general problem on realizing
homology 3-spheres as fixed point sets.

QUESTION V. Let V%9 be a fixed point free representation of S, and let 3 ke
a homology 3-sphere. Is there a smooth S'!-action on some homotopy (2q+3)-
sphere with fixed point set ©* and local representation V at fixed points?
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In Section 1 we shall show that the answer to this question is yes if either
IL(E3) =0or V=W®W for some W. Other cases can be treated directly, but in
general the problem seems fairly elusive.

The proof of Theorem II begins with an observation essentially due to Browder
[3]: If there is a smooth semifree S'-action on a homotopy (2¢q+ 3)-sphere with
¥ 3 as the fixed point set, then £3 x CP77! is smoothly homologically #-cobordant
to S3x CP?!, This statement can be combined with various results from surgery
theory and homotopy theory to prove a related result; namely, if X’ generates the
group bP,, > of homotopy (2g +1)-spheres bounding parallelizable manifolds,
then the standard homeomorphism

h:S3xCPI x> 83xcpi!

(i.e., A is a diffeomorphism except at one point) is homotopic to a diffeomor-
phism. A proof of this implication is given in Section 3. On the other hand, are-
sult of Taylor [34] states that 4 cannot be homotopic to a diffeomorphism. Since
a proof of this result has not appeared in print, a verification is included in Sec-
tion 2 for the sake of completeness.

ACKNOWLEDGMENTS. The proofs of Theorems II and III use a result of Tay-
lor on homotopy inertia groups that is proved in Section 2. I am grateful to Larry
Taylor for allowing me to include a proof of his unpublished result. My interest
in the topic of this paper was awakened by remarks of Shmuel Weinberger on PL
circle actions in the first draft of [37] (this portion of the paper does not appear in
the final version); I am grateful to both Weinberger and Sylvain Cappell for dis-
cussing their unpublished work with me and commenting on the results presented
here. This paper was written during a stay at the newly established Sonderfor-
schungsbereich 170 “Geometrie und Analysis” connected with the Mathematical
Institute in Gottingen. Of course I am also grateful for the SFB and MI for their
support and hospitality.

1. Realization of fixed point sets. In this section we shall prove Theorem I and
partial results on Conjecture IV. We begin with the results in the topological case.

(1.1) Let I3 be a closed Z-homology 3-sphere, and let V*9 be a positive-dimen-
sional fixed point free representation of S'. Then there is a locally linear (topo-
logical) S' action on $29+3 with 3 as fixed point set and local representation V
at fixed points.

Proof. By the results of Freedman on 4-manifolds [9], every homology 3-sphere
>3 bounds a compact contractible 4-manifold XK. Construct a circle action on
K x D?? by letting S! act trivially on the first factor and linearly via V29 on the
second factor. Then K x D?? is homeomorphic to D?7*4 by a standard argument
(cf. [21] or [15, Ch. V, §4]), and the induced S' action on the boundary has the
required properties. ]

(1.2) COMPLEMENT TO (1.1). The group action on S*?*3 may be viewed as a
locally linear “piecewise linear” S' action if q =2 and the action is semifree. If
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q =1 then the corresponding statement is true if and only if £3 bounds a compact
contractible smooth (equivalently, piecewise linear) 4-manifold.

We shall not attempt to formulate the concept of a locally linear piecewise lin-
ear S! action formally in this paper. A general discussion of piecewise linear ac-
tions is due to Gluck [10], and recent work of Cappell and Weinberger has shown
that such actions can be studied quite effectively. For our purposes it suffices to
assume the existence of a category of piecewise linear S! actions with a few sim-
ple formal properties such as cutting and pasting constructions (cf. [32, Problem
4.1(B)]).

Proof of Complement. Suppose that g =1, and suppose a “locally linear piece-
wise linear” S! action with fixed point set £ exists. Let K be the orbit space S°/S'.
Then an argument of Hsiang [16] shows that K is a contractible 4-manifold with
boundary X. If the action is smooth, then in fact one can make K into a smooth
4-manifold (cf. [31]). This process is formal and has a straightforward piecewise
linear analog.

Next assume g = 2. Consider the product K x CP?~! as a smooth manifold. By
the product formulas for simply connected surgery, the boundary X x CP?!is
Z-homologically A-cobordant to

S3xCPI gy,
where X’ lies in the group bP,, ., (cf. [3, pp. 37-39]). In other words, there is a
cobordism (in fact, a smooth one) V such that
WV =(—I}xCPI " HIIS} xCPI ' #x")

such that V' is simply connected and the inclusion of each boundary component
induces an isomorphism in integral homology. If we pass to the PL category,
then X’ is PL isomorphic to $2?7*! and can therefore be disregarded.

Form the manifold

U=D*xCP '"UgyxcpV.
By construction there is a homotopy equivalence
(U, 8U) - (D*, §3)xCcpi!,

Let W — U be the principal S' bundle classified by the generator of H%(U) =
H?*(CPY97Y); the results of [10] allow one to view the free S' action on W as a
piecewise linear S! action whose restriction to the boundary is the standard ac-
tion on £3xS$2?77!. Form the PL S'-manifold

W*=X3xD?*Uyx, s W.

By construction W* is a PL S!-manifold, it is homotopy equivalent (hence PL
isomorphic) to $279+3, the action of S!is locally linear and semifree, and the fixed
point set is I °. O

There is also an elementary analog of (1.1) in the smooth category, but the
conclusion is significantly weaker; specifically, one must assume that g is even.
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(1.3) The group actions in (1.1) and (1.2) may in fact be viewed as differenti-
able S'-actions on (possibly exotic!) homotopy spheres provided q =2 is even.

Proof. The argument is essentially the same as in (1.2) with one change; that is, if
V is the homological A-cobordism from £ x CP?1to $3x CPY~'# %', then (be-
cause g is even) one in fact knows that X’ will be the standard sphere (cf. Browder
[3, p- 38, 92]). Using this, one can carry through the balance of the proof of (1.2)
in the smooth category; the only difference is that the manifold W* is only a ho-
motopy sphere and not necessarily the standard sphere. ]

If g is odd then one has a somewhat weaker conclusion in the smooth cate-
gory. Recall that the Eells—-Kuiper invariant (often called the Rochlin invariant)
p(X3) of a homology 3-sphere is defined as follows: Since every homology 3-
sphere bounds a framed manifold, choose one such coboundary P* for 3. Gen-
eral algebraic considerations imply that the signature of P is divisible by 8, and
pn(XZ?) is the residue class of this signature in 8Z/16Z = Z /2. A classical theorem
of Rochlin implies that this number does not depend on the choice of 0. For more
information see [8].

(1.4) The group actions in (1.1) and (1.2) may be viewed as differentiable S' ac-
tions on homotopy spheres provided q =2 and ;L(E3) =0.

Proof. By assumption X° = dP*, where P* is parallelizable and has index divis-
ible by 16. Let Q* be a smooth manifold such that Q% — {pt.} is parallelizable and
signature (Q4) = 16; one can in fact take Q4 to be Kummer’s quartic surface, but
for our purposes this is not important. A connected sum of P with an appropri-
ate number of copies of +Q will yield a new parallelizable manifold P’ such that
dP’=X? and signature P'=0. Let P”=P’—Int D, where D < Int P’ is a smoothly
embedded closed 4-disk. Now dP” = XI153, and one in fact has a normal map of
triads

h:(P";X,8%) - (S3x[0,1]; S3x {0}, S3x {1}).

Form the Cartesian product of # with CP?~!. By the arguments of (1.1)-(1.3), it
suffices to show that one can perform surgery on 2 x CP?~!, holding the bound-
ary fixed, so that one obtains a homotopy equivalence A*. The domain of A* will
then serve as a substitute for the manifold V constructed in (1.2).

But the product formulas for simply connected surgery show that the surgery
obstruction of #x CP9~! depends only upon the signature of P” (cf. [26]). Since
this signature vanishes, the surgery obstruction also vanishes. O

Theorem II states that (1.3) and (1.4) are the best possible results for semifree
5! actions. In Section 2 we shall develop some auxiliary material needed for the
proof of that result, and in Section 3 we shall complete the proof. The remainder
of this section deals with the realization of homology spheres as fixed point sets
of nonsemifree S! actions (i.e., Conjecture IV).

The first result is a straightforward extension of (1.4).

PROPOSITION 1.5. Let X3 be a closed smooth homology 3-sphere with u(Z*) =
0, and let Q be a positive-dimensional fixed point free representation of S'. Assume
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that no irreducible representation of S' has multiplicity 1 in Q. Then there is a
smooth semifree S! action on some homotopy (3 +dim Q)-sphere with the Sfol-
lowing properties:

(i) The fixed point set is ©>.

(ii) The local normal representation at fixed points is Q.

Proof. Let P” be the manifold constructed in (1.4), and let #: P” — S3x[0,1] be
the corresponding normal map. The Cartesian product of /# with the unit sphere
S(Q2) may be viewed as an equivariant normal map, and in fact it is a transverse-
linear isovariant normal map in the sense of Browder and Quinn [4]. Conse-
quently there is a well-defined surgery obstruction

(S, hxS(R)) e L(S!, S*x S(Q)),

where L(S!, S*x S(Q)) is the appropriate Browder-Quinn surgery obstruction
group. The multiplicity assumption implies that #x S(2) can be transverse-lin-
early and isovariantly surgered to an equivariant equivalence if and only if this
obstruction vanishes.

Wall’s surgery theory contains an important periodicity relationship of the form
a(f)=o(fx CP? (cf. [36, Ch. 9]), and the same sort of relationship holds for
the Browder-Quinn groups (see [4]). Consequently o(S’, 7% S(2)) =0 if and only
if (S, CP2x hxS(2))=0. On the other hand, the geometrical construction of
the Browder-Quinn theory shows that the latter vanishes if 6(CP?%x /) =0. But
in (1.4) we observed that this is the case, and therefore o(S', 2 x S(Q))=0.

Therefore we have an S'-manifold triad (W; £3 x S(Q), S> x S(2)) such that the
inclusion of S3 x S(Q) is an isovariant homotopy equivalence. Form the smooth
S!-manifold

W*=E’xD(Q)UWUD*x S(Q)

as in (1.4). It follows that W* is a homotopy sphere and the S' action has the pre-
scribed properties. d

The next result may be viewed as a generalization of (1.3).

PROPOSITION 1.6. Let 3 be a closed smooth homology sphere, and let  be a
positive dimensional fixed point free representation of S' such that Q@ =Q,®Q,
Jor some Q4. Then the conclusion of Proposition 1.5 holds for ¥ and ).

Proof. Step 1 (verification of the result for a specific choiqe of X). Let 2m be
the real dimension of Q4, and consider the Brieskorn variety

V={z23+2i+22+ - +23n+2=0]}.

Standard results imply that the intersection of ¥ with some small sphere e S*"*+>

is a homotopy (4m + 3)-sphere if m > 1 (cf. [14]). Let S! act on the last 2m com-
plex coordinates of V by the complexification of 2, (i.e., extend the linear action
of S' on Q¢ =R?*” to C*"). The action of S! is strictly speaking on C*”*3, but a
routine verification shows that S' maps V into itself; in fact, S' maps the homo-
topy sphere Z* = VN eS*"*3 into itself. By construction the S' action on £* has
fixed point set
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F3={z3+z7+22=0}Ne€S°>

and local representation 2 = Q,®C at fixed points. But F* is known to be a ho-
mology 3-sphere with p-invariant 1; in fact, F? is the Poincaré homology 3-sphere
SOj3 /(Icosahedral group) (cf. [13]).

Step 2 (realization of all X in a homological #-cobordism class). The objective
is easy to state: If X’ is Z-homologically #-cobordant to £, then we wish to realize
/. Let X* be an homological /#-cobordism between © and X’. We can perform
1-dimensional surgery on Int(X*) to make X simply connected. Suppose rnow
that W, is a smooth homotopy sphere such that

(i) W, admits a smooth S' action with fixed point set X3,

(ii) a neighborhood of the fixed point set is S!-diffeomorphic to 3 x D(Q).
(Notice that (ii) holds for the actions constructed in Step 1.) We can replace X by
¥’ using X as follows: Form the S'-manifold

W=X"xXD(Q)UXXS(Q)UW,—Int ¥ xXD(Q2).

Then it is immediate that W] is again a homotopy sphere, the fixed point set of
the action is X’, and a neighborhood of X’ is S!-diffeomorphic to L3 x D(Q).
Step 3 (the general case). If u(X?) is zero then the result is a special case of (1.5);
notice that condition (ii) in step 2 follows by construction. Suppose now that
p(Z3)=1. Let £, be the Poincaré 3-sphere, and consider the homology sphere
T, =X #—To#X,. Since —Xo# L, is homologically #-cobordant to S3, it follows
that ¥ admits an action satisfying (i) and (ii) if and only if £, does. On the other
hand, X, admits such an action by step 1, and X # — X, also admits such an ac-
tion because its u-invariant is zero. If we take connected sums of these actions
along the fixed point set, we obtain the desired S' action on Z,. ]

It is possible to make further statements on the existence of S' actions, but none
seem especially enlightening at this time.

2. The homotopy inertia group. The main result of this section is an unpub-
lished theorem of Taylor [34]. I would like to reexpress my gratitude to him for
his generous attitude toward my inclusion of his result.

Let M" be a closed differentiable manifold, and let ©” be a smooth manifold
that is homeomorphic but not necessarily diffeomorphic to S”. Then there is a
standard class of homeomorphisms

(2.0) h(M, L)y M#X > M,
all of which are homotopic.

DEFINITION. Let n>=5. The homotopy inertia group of M", written I,(M"),
consists of all (oriented diffeomorphism classes of ) homotopy spheres X" such
that #(X, M) is homotopic to a diffeomorphism.

It is fairly straightforward to prove that 7,(M") is always a subgroup of the
Kervaire-Milnor group of homotopy spheres O,, (cf. [7]).

EXAMPLE 1. If M" is a product of spheres, then I,(M")=0. In fact, much
stronger results hold [27].
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EXAMPLE 2. If M7 =8?x CP?, then I;(M’)=20;. More generally (cf. [3,
pp. 37-38]), I,(S>x CP?%) always contains 2bP4j 3.

The following result of Taylor states that Example 2 is in some sense the ex-
treme case.

THEOREM 2.1. Let N be a closed, oriented, smooth manifold of dimension
4h—1=17, and let £*"~! be a homotopy sphere generating bP,,. Then T & I,,(N).

REMARK 1. Given M", there is a subgroup of O,, called the inertia group 7(M")
such that 7,(M™") < I(M") € ©,,. In contrast to Theorem 2.1, for each # thereis
an M " such that I(M") = 0,, (see Winkelnkemper [40]).

REMARK 2. The proof given below is based upon results of Brumfiel [7]. Tay-
lor’s original proof is quite different, and it is motivated by results of Frank on
the power of two that divides the signature of a manifold and its dependence on
the number of cross sections. Taylor obtained analogous results involving fiber
homotopy cross sections. These results yield a remarkably simple formula for the
mod 2 reduction of the index obstruction of a 4n-dimensional oriented surgery
problem; namely o (f) = {9(f)*k2} Wan_>[M] mod 2, where n(f) denotes the nor-
mal invariant and k, is the first nontrivial cohomology class in H(F/0;Z/2).
Theorem 2.1 follows from this formula.

Proof. The group bPy, is cyclic of finite order, say 6; this number can be com-
puted explicitly (cf. [17, §7]), but we do not need such precise information. At
this time it suffices to know that 6, is always even. Let fr: O4r_; — Z/60x be the
splitting homomorphism defined by Brumfiel [5] with fg | P44 an isomorphism.

Suppose that ¥ does lie in the homotopy inertia group of N. Then a result of
Brumfiel [7, Prop. I1.3, p. 403] yields the following formula for fr(X):

Bm 1

(2.2) Sr(X) %Lk—m(N) 2 m—D1j. pPm(E)INXST],

where L, is the 4g-dimensional Hirzebruch polynomial; 6,, is the order of HP4,,;
Jm is the order of the image of J in dimension 4m—1; a,, =2 if m is odd, 1if mis
even; and p,,(¢) = mth Pontrjagin class, of some fiber homotopically trivial vec-
tor bundle over S'A N, modulo Brumfiel’s convention for p;(£). By the formula
it is obvious that fgr(X) is an element in Q/0;Z, but one actually obtains an ele-
ment in Z./60; Z by the results of [5].

CLAIM. Each summand in (2.2) is a fraction with even numerator and odd
denominator. For if this is true, then fr(X) will correspond to an element of
2Z2)/0xZ and hence lie in

(2Z 2y /0 Z)N(Z/0, Z) =2Z/6, Z.

Consequently, if X lies in 7,(N)NbPy4;, then £ must be an even multiple of the
generator of the even order group bPy.

The first step toward proving the claim is to notice that coefficients in the Hirze-
bruch polynomials always have odd denominators (see [12, §1]). The second step
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is somewhat messy. It can be verified in many ways; for example, one can use the
solutions of the Adams conjecture at all primes.

SUBLEMMA 2.3. Let £ be a fiber homotopically trivial vector bundle over scme
finite suspension complex SK. Then the mth integral Pontrjagin class p,,(§) is
divisible by j4,» modulo torsion.

Sketch of proof. Fix a prime q, and let r =3 (g = 2) or a generator of the units
mod g? (g odd). For some integers / and /’ prime to g we have /£ =1"({ w—w)
for some bundle w. Use the additivity of Pontrjagin classes over suspensions and
the identity p,, (Y @) = r2"p,(w) to conclude that /p,,(£) is divisible by (> —1).
Since j4,, and (r2” —1) are divisible by the same powers of g, it follows that p,,,(£)
is divisible by the g-primary factor of jy,,. ]

We next consider the terms 8,, p,,(£)/a,,(2m—1)! j,, that arise in (2.2). There
are three cases.
Case 1: 2<=m < k—1. Since p,,(£)/jn is integral modulo torsion, we must
check that
Oum _a,,2*"7 % odd
am(2m—1)!  a,(2m—1)!

has an even numerator (see [17, §7] for the implicit assertion on 6,,). But the
right-hand side may be rewritten as 2¢(m-D-1y /y where u and v are odd and
a(q) is the number of ones in the dyadic expansion of ¢g. Since m = 2, the expo-
nent of 2 is positive.

Case 2: m = k. By construction, we have

Oum(E) _~2m-2
am(2m—1)! j, =2 odd (2m)!

where £ is a bundle that also may be assumed to be fiber homotopically trivial
(look at the construction on the bottom of page 387 in [7]). The same sort of cal-
culation as in case 1 shows that the numerator is even.

Case 3: m=1. The calculation of case 1 only shows that the class under con-
sideration has an odd denominator. Thus we need a slight improvement of the
previous Sublemma; namely, the first Pontrjagin class p(£¢) is in fact divisible by
48 modulo torsion.

Using solution of the Adams conjecture as in (2.3), one can reduce the question
to showing that for every vector bundle o over SX, one has that p;(«) is divisible
by 2 modulo torsion. If o has a complex structure, this is immediate from the
equation p(«) = 2c,(«). Thus it suffices to prove that any « may be (stably) de-
composed as B8+, where 8 is a complex vector bundle and + has finite order in
KO(SX). This in turn reduces to proving that

[X, U]/torsion — [ X, SO]/torsion

Sm(g) =ph(§),

is onto if X is connected and has dimension < 4.
To prove the latter, observe that U and SO have the 5-types of 2-stage Postni-
kov systems with homotopy in dimensions 1 and 3 and trivial k-invariants (notice
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that U= SU x S! as spaces while RP* is a retract of SO). Since 7w3(U) — w3(S0O)
is bijective and 7 (SO) is torsion the assertion follows. This completes the proof
of (2.2). ]

REMARK. Strictly speaking, Brumfiel’s Proposition I1.3 [7] is stated only for 1-
connected manifolds. However, the result is true in general because the inclusion
I,(N)Sd(IN§A S, F/0]) (see [7, Prop. IL.1, p. 403]) holds without any restric-
tions on the fundamental group (cf. [7, Prop. I1.1] —the point is that in general
the normal maps in [..., /0] could have nontrivial surgery obstructions besides
the signature if w;(/N) is nontrivial).

3. Proof of Theorem II. We shall assume that S! acts smoothly and semifreely
on some homotopy (2q + 3)-sphere M with fixed point set X3, where p(Z3) =1,
and obtain a contradiction. Here is the first step.

(3.1) If an action of the desired type exists, then S* x CP9~" is orientation-pre-
servingly diffeomorphic to S*x CPI~'#X’, where T’ represents a generator of
bP,, . ». (Notice that g odd implies 2q +2 =0 mod 4).

Proof. A direct analog of the argument in [3, §5.6, p. 33] shows that the equi-
variant normal bundle of the fixed point set ¥ in M is equivariantly stably trivial;
since g = 3 implies 2q is greater than 3, stable triviality implies triviality. Let Sy
be an invariant sphere in M that links X once; such a manifold may be found by
taking a sphere of fixed radius in a tubular neighborhood of M. The argument
in [3, p. 31] shows that Sy has a trivial equivariant normal bundle and that

My=M—(Z*xInt D>*?UD*x Sg)/S!

is a smooth, simply connected Z-homology /#-bordism. On the other hand, by the
surgery obstruction product formulas we have a similar homology A-cobordism
M, from 23 x CP? 'to $3x CP9 '#X’, where L’ is as described (cf. [3, p. 38,
first full paragraph]). Join M, and M, together along X3 x CP9~!. The result is
a smooth A-cobordism between S?x CP7 'and S3x CPI ' # 3’, and the ends of
this manifold are diffeomorphic by the A#-cobordism theorem [21]. ]

(3.2) COMPLEMENT. The diffeomorphism may be chosen to send
DI xCPI 7 lc83xCPI™! to DIXCPI'cS3xCPI~ 4L’
by the “identity.”
Proof. The homology A#-cobordisms may be constructed as unions
My=D3ixCPI 'x[0,1]lUM§ and M,=D3}xCP7 'x[0,1]UMj].

For M, this is immediate from the product formula, while for M, this follows
from a standard refinement of Browder’s construction. ]

The following is immediate from (3.1) and (3.2).

(3.3) Let ¢:S’XxCPI '# X' 83x CP! be the diffeomorphism in (3.1) and
(3.2), and let h(S®>x CPY™\, T’) be the standard homeomorphism from
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S3xCPI g 5 83xCcpiT],

Then oh ! is a self-homeomorphism which corresponds to a homotopy class in
73 (Fs1(C9)), where the F{etc.) represents the space of all S'-equivariant maps
of S22 1 with the free linear action (see [1]).

Proof. The homotopy class of a self-map of S3x CP?"!is determined by its
projections onto the factors. Since ¢/ ~! sends D3 x CP97! to itself and is the
“identity” on D3 x CP?7 ), the projection of ¢4 ! onto $*=D3 UD?3 is homotopic
to the usual coordinate projection by straight-line homotopies on each hemisphere.

It follows that ¢/ ~! comes from an element of w;(E(CP?™ ")), where E(X)
denotes the monoid of continuous self-maps of X. However, there is a fibration

Maps(CP?™!, 8"y — Fs(C?) L E(CP™ )
(cf. [28]), and by the homotopy exact sequence, the projection p induces homo-
topy isomorphisms in dimensions greater than 1. ]

Since g = 3, the results of [1] imply that

w3 (F51(C?)) = 7§ (SCPY)
(3.4) =Z®73(S")
=2DL,.
The first summand is the image of w3 (U) (cf. [1]).

We shall need a computational result.

PROPOSITION 3.5. Let  be a homotopy self-equivalence of S*x CPY™ ! (g=
3) that is induced by an element of w3(Fsi(CPY)) not in the image of w3(U,).
Then the normal cobordism class of  is nontrivial if g =4. On the other hand,
if =73 then  is homotopic to a self-diffeomorphism of S*x CP?2.

Proof. Because elements in the image of w3(U,;) induce diffeomorphisms of
S3x CP?7! (up to homotopy), the splitting of (3.4) and composition formulas
for normal invariants (cf. [27, §2.2(i), p. 143]) imply that we need only consider
the special case where y arises from the nonzero element of 7$(S') =Z,. The re-
sults of [29, §3, pp. 157-158] then yield the following formula.

(3.6) Letace w3(SY) correspond to the element o’ € w,(Fs1(C")), r large. Then
the normal invariant of o’ is the image of the class

s"cpr2tl slcpe 4> 8O (¢ =transfer [1])
under the composite [Y, S°1=[Y, F]—- [Y, F/0]. O

In the case under consideration « is 52, the square of the Hopf map. We claim
the following.

(3.7a) The restriction of t(y*A1) to S*CP? is trivial.

(3.7b) The restriction to S*CP? is nontrivial, and in fact its image in
[S3CP3, F/0] is nontrivial.
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(3.7¢c) The restriction of t(n*A1) to S3 is n3>=4v.

The second statement immediately implies the proposition if g = 5. However,
more work will be needed if g = 3; details appear after the verification of (3.7a)-
(3.7b).

We begin by displaying the stable homotopy type of CP? explicitly as the com-
plex SZU(,,,z,,)e4Ue6 (cf. Brumfiel [6]). The map ¢: SCP° — S restricts to the
class (3, v) € {SCPL, S} =n{ @D =5,

Let y =t(n°A1)=752S?%¢. It follows that y |S> =43 proving (3.7c). Further-
more, y | $° =0 since 75 = 0. Therefore standard Toda bracket considerations say
that

Y| 7-cell =, v, n2y=0, Y |9-cell =2, v, 2y =¢€n

(see Toda [35] for the bracket identities). But en e T&S projects nontrivially into
w4(F/0), and this proves (3.7b). Finally, the relation {x, », 7%y = 0 implies (3.7a).

The case g = 3. This can be done using the long exact sequence for stably tan-
gential surgery (cf. Madsen, Taylor, and Williams [20]):

(S*CP2, 8% — L(1)— hSi(cP?) L (s3CP2, S
\ 15/9
7.

There is a canonical homomorphism
y: w3 (Fs1(C?)) - hS5(CP3)

defined as in [30] (see Section 4). It suffices to show that v sends the torsion gen-
erator of the codomain to a framed homotopy smoothing of the form

((S® x CP?, exotic framing), identity).
We begin with a digression.

DEFINITION. Let M” be a smooth manifold with tangent bundle 7,,. A (sta-
bly) tangential PL smoothing of M is a triple (V, ¢, ¢), where V' is a smooth man-
ifold, #: V— M is a piecewise differentiable homeomorphism (e.g., in the sense
of Munkres [24]), and ¢: E(ry @ k) - E(7);®K) is a vector bundle isomorphism
covering . One defines a concordance relation on such triples as in [11] or [18];
the conditions on the bundle morphism include identification via stabilization.

There is an obvious map from tangential PL smoothings to ordinary PL
smoothings in the sense of Hirsch and Mazur [11] or Lashof and Rothenberg [18].
Namely, one forgets the bundle isomorphism ¢. One can apply the Cairns-Hirsch
theorem as in [11; 18] to extend the basic result.

Classes of PL smoothings (M) =[M,PD/0].

THEOREM 3.8. The equivalence classes of tangential PL smoothings of M are
in 1-1 correspondence with the group of homotopy classes [M, PL]. Further-
more, under this correspondence the forgetful map from tangential smoothings
corresponds (up to sign) to the homomorphism induced by the composite

PL < PD - PD/O.
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REMARK. The objects PL and PD are defined in [11] or [18]. A basic result
states that the inclusion of PL in PD is a weak homotopy equivalence.

The following result establishes a crucial relationship between PL and the tan-
gential surgery sequence.

THEOREM 3.9. Let M" (n=6) be a compact smooth manifold. Then there is
a commutative diagram as follows:

— [SM, F] 2> [SM, F/PL]1 > [M, PL] — [M, F]
1= ’ lo . 14 1=
— (SM, SO s Ly (m M) S5 S (M™) — (M, S°).

The top row is an exact sequence of abelian groups, the bottom row is the sur-
gery sequence, the map o is a surgery obstruction homomorphism, and H is a
Sforgetful map that takes a tangential PL smoothing to a tangential homotopy
smoothing.

There is a corresponding relative version, say if one considers PL and homotopy
smoothings equivalent to the standard smoothing on the boundary,; one must re-
place M by M /oM in the top row, in the middle groups of the bottom row one must
replace M by (M, dM), and {S¥M, S°} must be replaced by {S*(M/dM), S°}.

The proof of this result is standard (cf. Sullivan [33]; see [27] for a related ref-
erence in print).

We now return to the proof of (3.5) for g = 3. Consider the relative version
of Theorem 3.9 with M = D3 x CP2. The quotient M/dM is given by S3CP? (=
Thom space of the trivial 3-space bundle over CP?). It follows that the diagram
in Theorem 3.9 may be rewritten in more quantitative terms:

0— m4(F/PL)® wg(F/PL)— mw3(PL)®77(PL)— 15® 77— 0
‘La J’H l—z
00— Li(1)=7Z —  ASi(CP?) S ai@®rs—0.

The map B’ must be trivial because the domain is finite and the codomain is tor-
sion-free. The group [S*CP2, F/PL] is isomorphic to m4@® we@® s (F/PL) by Sul-
livan’s results on the homotopy type of F/PL. Clearly o is trivial on the mg sum-
mand, and the image of 8 is also contained in this summand because w4, (F/PL) =
Z. Furthermore, one can use the surjectivity of ng(F) — we(F/PL) and obstruc-
tion theory to show that 8 maps onto the torsion subgroup.

It is immediate from the diagram that AS5(CP?) is the quotient of w3 (PL)@®
w7 (PL) by the image of o.

Standard calculations (cf. Williamson [39]) show that 73(0) = n3(PL) =Z and
m7;(PL) =Z®Z,4, where the image of n;(0) is the subgroup 7Z® {0} (see [39, pp.
28-29]). Furthermore, the following hold:

(i) o restricted to w4(F/PL)=Z is multiplication by 2,
(ii) o restricted to wg(F/PL) =Z is the identity,

(iii) the map w4(F/PL) — w3(PL) corresponds to multiplication by 24 (recall

the domain and codomain are infinite cyclic), and
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(iv) the map wg(F/PL) — w;(PL) sends the generator to (60,1)e Z@Z/4 =
w7 (PL) .
All of these except (iv) are well known, and (iv) follows by an elementary dia-
gram chase involving the diagram below:

QF/0 — 0 —F
i) v 1=
QF/PL— PL—F.

Therefore H is surjective, and the kernel of H corresponds to all elements of the

form
(24y;120y,2y) e ZP LD LZ/4 = w3 (PLYD 77 (PL).

In other words, AS{(CP?) is generated by generators A, B, C subject to rela-
tions 4C =0, 244+120B+2C =0. It follows that AS;(CP?) is isomorphic to
Z®(Z/48), and the torsion is generated by 44 + 5SB.

We are interested in the image of the 2-torsion ¥ € 73 (Fs1(C?)) in AS(CP?).
By construction this class has order at most 2, and therefore by the preceding
paragraph the image of ¢ corresponds to some multiple of 964 + 120B. If we can
show that the latter lies in the image of the composite

[S’CP2,0]—[S’CP2, PL]— hS{(CP?)

(i.e., classes represented by reframing the identity); then it will follow that the
homotopy equivalence corresponding to ¢ is homotopic to a diffeomorphism.
However, earlier in the proof we observed that the image of this map is generated
by A and 7B. Since 24 A+ 120B has order 2, we clearly have

24A+120B=7-24A+7-1208,

and from this description it is clear that the element of AS{(CP?) with order 2 lies
in the image of [S’CP2,0]. O

We are finally ready to prove Theorem II. Suppose that one does have a smooth
semifree S! action on some homotopy (2g + 3)-sphere with £? as fixed point set,
where p(Z3)=1and ¢ = 3 is odd. By (3.1)-(3.3) there is a diffeomorphism

0 S3xCPI L 5 S’ xCPI!
such that ¢’# ~! is homotopic to the identity. This will still suffice to show that £’
lies in the homotopy inertia group of S3x CP?, and therefore by Taylor’s result
we shall have reached a contradiction.
In any case it follows that the homotopy smoothings (S*x CPY~'#X’, h) and
(S3x CPI7! oh™') define the same element of AS;(CP?~'). Therefore ph~'

must be normally cobordant to the identity.
Suppose now that ¢ > 3. Then Proposition 3.5 implies that the class in

w3 (Fs1(CY)) = w3(Uy) D(Z/2)

corresponding to oA~ must lie in the image of w3(U,). Because all classes of
the latter type have representatives that correspond to self-diffeomorphisms of

1
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S3x CP97 it follows that we can find a self-diffeomorphism ¢” of S>x CP9!
so that ¢”¢h ! is homotopic to the identity. Therefore we may set ¢’ = ¢”¢.

If g =3 two changes are necessary. First, Proposition 3.5 yields no restriction
on the homotopy type of ¢/~ . However, this result also states that every homo-
topy class is represented by a diffeomorphism. Therefore it is still possible to find
¢” as in the previous paragraph, and of course one sets ¢’ = ¢”¢ once again. [

REMARK. The normal invariant formula in (3.6) can also be derived from re-
sults of Novikov [25] on the normal invariants of self-equivalences of manifolds
M" — M" obtained by twisting the identity map via an element of w,(M") with
degree zero; that is, if o € w,(M") is such an element, one constructs the com-

posite J 1 rold
MES MVST2YS MM 255 M,

where d is the map which collapses a nicely embedded (# — 1)-sphere inside some
coordinate neighborhood. This requires the description of the 73 (S') summand
of 7. (Fs1) in [28].

4. Proof of Theorem III. The argument is entirely parallel to that of Section 3,
so we shall merely explain the necessary changes. First, in (3.1) one obtains a dif-
feomorphism ’

0: 8" xXCPI ' #x »S"xCPI7,
where X’ represents a generator of bP,4+6. Wherever one sees S 3or D*in (3.1)-
(3.3), one should substitute S7 or D8, and similarly for other corresponding
changes (such as w7 instead of m3). The groups w;(Fs1(C?)) are stable because
q =5, and hence they may be computed as

m7(SCPY) = (V) @77 (S")
= Z@ Zz.
One then has the following analog of Proposition 3.5.

“.1)

PROPOSITION 4.2. Let y be a homotopy self-equivalence of S”x CP?~! (g =
5) that is induced by an element of w;(Fsi(C?)) not in the image of w7(U). Then
Y is not homotopic (in fact, not normally cobordant) to a diffeomorphism.

Sketch of proof. Once again it suffices to consider the single element of order
2. Recall that 7 is generated by »?; i.e., the square of the Hopf map. One can
use (3.6) once again to deduce that the normal invariant is equal to the image of
»2t =t(v2A1). Since ¢ | S'=n and ¢ | {SCP'= S3} is », it follows that the normal
invariant’s restriction in [S’CP!, F/0]= wo(F/0) is the image of »3; but the lat-
ter is not zero. O

The proof of Theorem III may be completed as follows. Suppose there is a
smooth semifree S! action on some homotopy (2g + 7)-sphere with fixed point
set ©7, where ¢ = 5 is odd and T generates ©,. By the generalization of (3.1) we
know that S’ x CP?~'# ¥’ is diffeomorphic to S’ x CP?~!, and Proposition 4.2
implies that the diffeomorphism ¢: S’ x CP9~1# 2’ - S”x CP7!is such that the
composite homeomorphism ¢4 !: S"x CPI~ 15 §7 x CP77! corresponds to some
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homotopy class in 77 (Fs1(C?)). As in Section 3, it follows that there is a diffeo-
morphism ¢’: S’ X CPI '#3x’ 5 S"x CP? 'such that ’A# 7 'is homotopic to the
identity. Once again this contradicts Taylor’s theorem on the homotopy inertia
group, and therefore there cannot be an S' action as described above. ]
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