THE LOCAL HULL OF HOLOMORPHY OF SEMIRIGID
SUBMANIFOLDS OF CODIMENSION TWO

A. Boggess, J. T. Pitts, and J. C. Polking

1. Introduction. There has been considerable literature on determining the
local hull of holomorphy for CR submanifolds of C”". The case for real hyper-
surfaces was considered by Lewy in [11]. For generic submanifolds of higher co-
dimension, it was shown in [10] that if the excess dimension of the Levi algebra
at a point is maximal then the local hull of holomorphy contains an open set in
C". Since that time, the goal of CR extension research has been (and still is) to
more precisely determine the size of the local hull of holomorphy. This was done
in [7] and later in [1] where it was shown that the cross section of the local hull of
holomorphy “almost fills in” the convex hull of the image of the first Leviform at
a point in the submanifold. The case when the first Leviform vanishes at a point,
the relationship between the local hull of holomorphy and the second Leviform,
has been given in [5], [6], and [9]. Recently in [2] it was shown that the local hull
of holomorphy for a semirigid submanifold of higher type (to be defined below)
contains a “wedge.” This is a considerable improvement over the result in [10]
alluded to above, which only guarantees that the local hull contains a cusplike
set. However, the relationship between the size of the wedge and the type of the
point was still missing. The goal of this paper is to explain this relationship for
semirigid submanifolds of real codimension two.

Let us introduce notation. Suppose M is a smooth (C* for k sufficiently large)
CR submanifold of C” of real codimension d. We let 7¢(M) and H (M) be the
complexified tangent bundle and complexified holomorphic tangent bundle respec-
tively. We introduce the following tower of spaces. For p e M, we let Lg(M ) =
Hf (M) and in general we let L7, (M) be the vector space spanned by HS (M) and
all Lie brackets at p of elements in H (M) up through length j. Note that the
length of a Lie bracket is the number of vector fields in the bracket, that is, A,, =
(Ly, [L2y.--s [Liu—1, L], ...]1 has length m. This notion of length is the same as
that in [4] and length = order + 1 where order is the concept used in [8]. Note that

HS (M) C Ly(M)C LY (M) c TE(M)
for all nonnegative j and in particular 2n—2d < dimc¢ L{, (M)=2n—d.

DEFINITION 1.1 [4]. Let M be a generic submanifold of real codimension d
(d <n) of C", and let p e M. We say that p is a point of type [ = (/,, ..., {;) where
Iy=l,=< --. <l; are integers if the following holds:
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(i) dimc L{(M)=2n—2d for all j <I;.
(ii) dlmcL (M)=2n—-2d+i forall j withl;=j</l;;, i=1,...,d—1.
(iil) dimc LJ' (M)=2n—d for all j=1,.

Let us write C" as C?x C™ with coordinates z=x+iy and weC™. If /=
(1, ..., 1) is a d-tuple of positive integers with /; < /;,,, then (z, w, /) is said to be
a weighted coordinate system if each w; and w; has weight 1 for 1 </ < m while
each z; and Z; has weight /; for 1 =i <d. A monomial in z,Z, w, w has weight
if the sum of the weights of the z;, Z;, w;, w; which occur is y. A smooth function
Jf: C"— C has weight v if among the monomials in the formal Taylor series ex-
pansion of f (about 0) there is one of weight v but none of lower weight.

The main theorem from {[4] is that if 0 e M is a point of type I=(/y,...,14),
then a weighted coordinate system (z, w, /) and functions

h=(hy,....,hy): RYxC™ > R?

can be chosen so that, near 0, M = {x = h(y, w, w)} and furthermore each A4; can
be put in standard form; that is, fori=1,...,d,

(1‘2) h(y’ w, w) =pl-(w9 wyyh "-,yi—-l)+El-+l(w’ wa y)’

where each p, is a polynomlal of weight /; with no pure terms (that is, no mono-
mials of the form w® or w® or y*w® or y*w?) and E; +) is smooth of weight at
least /; +1.

Following [2], if O € M is a point of type (/;, ..., [z) then we say that M is semi-
rigid if [Amy, Amylo=0 for all Ay, =[Ly, [L2,.eer [Loy—1s Lim;1, ... 1, Lj€ HE(M),
with m;+m, <!, and m; =2, my=2. In terms of the normal form given above,
this simply means that the polynomials p;; are homogeneous of degree /; in w and
w only (no y dependence) and with no pure terms. The functions Ej;+ may still
depend on y.

For p e M, we set N,(M) to be the set of all vectors in 7,(C") which are nor-
mal to M. If Q is the local hull of holomorphy of M, then we are interested in
the size of N,(M)NQ. If codimg M =2, then N,(M) is a real two-dimensional
plane. In this case we define the following triangular wedges. For a, b >0 and
v e Np(M) a unit vector, we set

a|x|
Ww,a,b)={xeN,(M): x- 0> ——,0=<x-v<ay.
Here (-) denotes the Euclidean inner product on R?". W(v, a, b) is an isosceles
triangle in N,(M) with altitude @ and base 2b and the triangle is bisected by v.
Finally, we let B(p, r) be the open ball in C” centered at p of radius r. We now
state our theorem.

THEOREM 1.3. Suppose M is a smooth CR generic semirigid submanifold of
C" of real codimension two. Let pe M be a point of type (I,,13) with 2<I;<
I, < oo, Then given an open set w in M with p € w, there exists an open set 2 in
C" such that each continuous CR function on « extends to a unique holomor-

/,
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phic function on Q. Moreover, there exists a unit vector ve N,(M) and there
exists an ro> 0 such that if 0<r<rg and if B(p,r)NM C w then

W, ror', ror’2)+(MNB(p,ror'2~") cQ.

The theorem conveys the following picture of .

rorfz
D ror’t -——-»--—i Q
p
M cross section of

REMARKS. 1. The case when /; =/, is not handléd in the above theorem since a
stronger result about the size of the local hull can be given. This result (for arbi-
trary codimension) will be forthcoming in a later paper.

2. Except for the proportionality constant rg, these results are best possi-
ble. For example, if M ={(z,22, w) € C’: Re(z;) = |w|?, Re(z2) = |w|? Re(w)}
(here p=0, /;,=2, /,,=3) then the convex hull of MNB(0, r) is contained in
M+ W(v, r?, r?), where v is the unit vector along the positive Re z, axis.

The desired set © in the above theorem will be realized as a subset of a family
of analytic discs. Let D be the open unit disc in C. An analytic disc is a contin-
uous map A4: D — C” which is holomorphic on D. The boundary of A4, denoted
bA, is the restriction of 4 to S! (the unit circle in C).

The main contribution of this paper is the following theorem on analytic discs.

THEOREM 1.4. Under the assumptions given in Theorem 1.3 on M, p, I, [,,
and w, there is an open set Q in C" which satisfies the size description given in
Theorem 1.3 such that each point in 2 lies in the image of an analytic disc whose
boundary has image contained in w.

Theorem 1.3 can easily be proved as a consequence of Theorem 1.4 and the
CR approximation theorem in [3, Theorem and Remark 2.1] and the maximum
principle. Details are left to the reader; see also [7, §2].

2. The generalized Bishop’s equation. In this section, we discuss the solution
of Bishop’s equation which is used in the construction of analytic discs alluded
to in Section 1. Let us assume the given point p in Theorem 1.3 is the origin and
that M is locally graphed over its tangent space at p = 0. Let us choose coordi-
nates (z,w) for C” with z=x+iye C? and we C™, where d+m=n and d=
codimzx(AM). Later d will be 2, but this section is valid for arbitrary codimen-
sion. Since M is generic, we may describe it locally as M = {x = h(y, w, W)}, where
h: Rx C™— R? is smooth with 4#(0) =0 and Dh(0) =0.

In formulating Bishop’s equation, we shall make use of the Poisson kernel
which is defined as follows: if ze D and u: S'— R? is continuous, then
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_ 1 1—|z|* ) d¢
Plowi=o5 S|c|=1”m[|§—z|2] ¢

Now suppose W: D — C™ is a given analytic disc and suppose ye R, we C",
and z € D are also given. We say that v: S' —» R? satisfies the modified Bishop’s
equation if

2.1 v()=THW+y, W+w, W+w))($)— Pz, T(H(v+y, W+w, W+ w)))
for ¢ € S!, where T is the Hilbert transform and where we have used the notation
H@+y, W+w, W+w)($)=h@()+3, W) +w, W(S)+w).

Clearly v($)=v(W, y,w,2)({) depends on the parameters W, y, w and z. The
smoothness of v on S! will be specified later.
If v satisfies the modified Bishop’s equation, then we define

VO)=V((W,y»,w,z)($)
by
VW, y,w,2)($):=P(5, T(H(v+y, W+w, W+w)))
—P(z, TH(v+y, W+w, W+Ww))),

for || =1. Clearly V is harmonicin ¢, |§| <1, and V(§) = v($) for |§| = 1. More-
over, we record for future reference that

(2.2) VW, y,w,z)(§ =2)=0.
We also define
UW, y,w,2)($):=P(, Huo(W, y,w,2)+y, W+w, W+w)) for |[{|=<1.
Clearly U is harmonic in {, || <1. Moreover,
UE)+iV()=H@+y, W+w, W+w) ()
+i[T(H(W+y, W+w, W+w))($)
— Pz, T H(v+y, W+w, W+Ww)))]

for |¢| =1. Since P(z, T(H(v+y, W+w, W+w))) is constant in ¢, U({$) +iV({)
is analytic in §, |{| <1, by definition of the Hilbert transform. So, we may define
the analytic disc A with parameters W, v, w, z by

AW, y,w,2)(§):=(UW, y,w,2)+i(V(W, y,w,2)({)+y), W(E)+w).
Note that A(W, y,w,z): D— C%x C™=C". Since
UN=H@+y, W+w, W+w)(¢) for |§'|=I,

we must have that the image of A is contained in M. Therefore, a solution to
equation (2.1) generates an analytic disc with boundary in M.

We shall now summarize the construction of the solution to equation (2.1).
For j a nonnegative integer and 0 <« <1 and K C RY, we let C/**(K, R') be the
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space of R'-valued functions on K whose derivatives up through order j are
Holder continuous with exponent «. The norm on Cf (K, R") will be denoted
|- lci.«xy- The set K will either be S' or D. We let O/**(D, C™) be the space of
analytic discs W: D —» C™ with W |s1e C/%(S!, C™).

THEOREM 2.3. Let h: RYx C™ — R? be of class C**¢ for k =3 and for some
€ >0, and suppose D(h)(0)=0. Fix 0<a<1 and let k' and j be integers with
O=sj=<k’'=k.

(@) There exist neighborhoods W**c o**(D,C™), Wc C™, and YCR*?

containing the origins, and there exist 6 = 6(a, €) >0 and a map

v: Whkex Yx WxD - C’%(S', RY)
which is uniformly C*~7 in the sense of Banach spaces such that for each
(W, y,w,z2)e WhexYx Wx D,

the function v(W, y,w, z) € C/*°%(S') is the unique solution to equation (2.1).
(b) There exists a constant C > 0 with

(2.3) [o(W, ¥, w, 2)|ciésty < ClW]ckash
forall Wewk* yeY, weW, zeD.

The proof of this theorem can be found in [8, Theorem 4.7]. Part (b) follows
from the fact that v is Lipschitz in its dependence on W and because V=0 when
W = 0. We shall use this theorem with & = o0 and with &’ =/ = 1. In this case 6 can
be chosen to equal a as shown in the proof of Theorem 4.7 in [8].

LEMMA 2.4. Let O be a point of type l = ({,, ..., l3) and assume M is presented
as M = {x = h(y, w, w)}, with h(y, w, w) in normal form (1.2) (semirigidity is not
assumed here). Fix 0 <« <1. There exist neighborhoods W"*c O"*(D, Cc™),
W C C™, YCR? containing the origins, and there is a constant C > 0 such that
for Wew'® weW, yeV, and ze D,

max{|v/ (W, y, w,2)|ctasly, |V(W, y, w,2)|clap))
=CUy|+IwDIW]crasy+I Wllgl-a(sl)) for 1=j=d.

Proof. We shall prove the above estimate for v;. The estimate for V; will then
follow because V; = Pv; where P: C"*(S') — C"*(D) is the bounded linear map
given by Pu(z) = P(z,u), |z|<1forue C"*(S"). |

In view of Theorem 2.3, we can for a given ro> 0 choose W"%, Y, W so that

max{|W|cLe«sty, [o(W, ¥, w,2)|cteistys | Y], W]} <ro

for We W'*, yeY, we W, ze D. The number ry will be chosen later.
We first show that

d .
llcnasy= 2 [v/]cragst
(2.5) J=1 ,
=CWly[+1wDIWlcLesy+ W] nasy)
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In view of equation (2.1) we have
"qul-o‘(Sl) = Ca"T(H(U'i"y, W+ w, W+ w))"CI.a(sl)

with C, = (1+ | P|), where |P| is the operator norm of P: C!*(8!y » C*(D).
We have

TH@+Yy, WH+w, W+w)=T(H(y, W+w, W+ w))
(2.6)
+5; T(DyH)(y+to, W+w, W+w)-vldt,

where (D, H)(-, -, -) denotes composition with D, A, which is the differential of
h with respect to y. Now we Taylor expand H(y, W+ w, W+ w) about (y, w, W)
in powers of W and W. Noting that T(A(y, w, w)) = 0 (because h(y, w, W) is just
a constant with respect to ¢ on S'), we obtain
T(H(y, W+w, W+ w))
1 I+ PBlay, w,w) _ -
= 22—~ T(WYWP)+ T(R(W, W)),
O<|'y|§](3|<11 'Y"B! IwYawh (

where R is just the Taylor remainder of order /,. From the normal form in (1.2),
we see that 4 is of weight at least /,. Since each w; and w; is counted with weight
one, clearly each derivative of 4 in the first term on the right vanishes at y =0,
w = 0. Therefore

||T(H(y, W4+w, W+ W))“Cl,a(sl)
!
= C|T|crasyy (| ¥+ |W|)“W|lclsa(sl)+ IW 1 agsty)s

where |T'| c1.«sty is the operator norm of 7°: ch*sh - clesh).
By the choice of the neighborhoods W%, Y, W, and since Dh vanishes at the
origin, clearly

2.7)

Dy H) (¥ + tv, W+w, W+ W)| ctasty < A(ro)

for (y,w, W,z2)e YXWx W'%x D, where A(ry) — 0 as ro— 0. Putting this to-
gether with (2.6) and (2.7), we have

!
lvlcrasty = Cal(|Y| +WDIWlctaisy H W Aasy]

+AT) [T | crasy V] cnagsty-

Now choosing r¢ small enough so that A(ro) |T|ctesy < % and then absorbing
the second term on the right yields (2.5).
The proof will be complete when we show by induction on j=1,...,d that

- ,.
lo7 | ctasty+ -+ + "Ud"cl-a(si) =C(J Y|+ IwDIWlctasy W énasty)-

The case j =1 has been handled in (2.5), so we assume that j >1 and that (2.8)
holds when j is replaced by k for 1<k =<, —1. We let

v'=w',..., v/ Y, H'=H,...,H'™,
v =(v’,...,v%; H”"=(H’, ...,Hd).
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We have

o lcLasy < C TH" (V' +y', ", W+w, W+w))|c a(s1)

2.8) _
+ SO |TUDy-H") (v 4", y"+ 10", WA w, W+ ®)-0")]| crast) dL.

where D,-H"(-, -, -) denotes composition with D,-A”, which is the differential
of h” with respect to y”. We now Taylor expand H"(v’'+y’, y”, W+w, W+ w)
about (', y”, w) in powers of v¥, W;, W; 1<k < j—1,1=<i=<m). We shall assign
weight 1 to W; and W; and weight /; to v, for 1 <k < j—1. Since A”(y, w, w) has
weight at least /;, the coefficients of the monomials in v’, W, W in this Taylor ex-
pansion of weight less than /; will vanish at the origin. In addition, the induction
hypothesis assumes

o lctay = CUY |+ WD W | crasy +| W&, ashy)s 1=k=j-—1.
Therefore one easily obtains
|TH" (v +y,y", W+w, W+ W)ty

1.
= C, (|| +|wDIW|crLasy +IW [ dest)

for some constant C,, which depends only on «. Moreover, an argument analogous
to that in the case when j = 1 shows that the second term on the right side of (2.8)
is bounded by A(ro)|T|ch«sh|vlctasty for (y,w, W,z)e YXWxW"*xD,
where A(rg) — 0 as ro— 0. Combining this with (2.9) and (2.8) and choosing rg
small enough so that A(ro) | 7| ct.o(s1) < 1 yields the desired estimate on |v’|c1.«(s1y-
This completes the proof. ]

2.9)

Our job ahead is to select a family of analytic discs W so that the images of the
corresponding analytic discs 4 sweep out the desired Q for Theorem 1.4.

3. The proof. In this section, we complete the proof of Theorem 1.4. We shall
assume that M is a semirigid smooth submanifold of C" of real codimension two
and that 0 e M is of type (/4,/,), with 2 </, </, <oo. From section 1, we have

M ={(z1,22, W) e C2X C™: Re(z;) =x; = h’/(y,w, W), j=1,2},
where

(.1 B (p, w, W) = pi(W, W)+ E1(, W, W), 1=<j=2,

where py; is a nonvanishing homogeneous polynomial of degree /; and Ejy; 4 has
weight at least /;+ 1. By a complex linear change of variables in w we may assume
that both p,; and p;, are nonvanishing on the complex line w; #0, wy=w;=

-« =w,,=0. By a linear change of scale in z,, z,, and w;, we will assume that
1;—1

. dr’(0) .
3-2) 2—:1 q'(; ——q)' ( ) awfawli—1 =1 forj=12.

For r > 0, we define the set

= {(a,)\); aeC,0<A=<]1, and 1|a| sr}.
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We define the analytic disc W(a,\): D — C™ by
W(a, N (5)= W' (a, N (), ..., W"(a, N (§)),

a(i+ M)
Wla,\)($) = e
Wi(a,\)($)=0 for 2<j=m.
We have
(3.3) IW(a, Mct«sty=|W(a,Nlcropy=3r for (a,\)eT,.

Here « is fixed 0 <o <1. Let us also initially choose ro>0 so that if 0 <r <rg
and if (@, \) € T, then W(a,\)e W"%and {|y|<r}C Y and {|w|<r} C W, where
w' e Yy, W are the open sets that satisfy the requirements of Theorem 2.3 and
Lemma 2.4. Using Theorem 2.3, we obtain a map

v:T,x{|y|<r}x{|w|<r}xD-cC"*S")
which is at least C' and such that
via,\, y,w,2)(-):=v(W(a,N), y,w,z)(*)
is the unique solution to (2.1) with W= W(a, \). We also define
V(§)=V(a,\ y,w,2)($), U)=U(a, Ny, w,z)($)
and A($)=A(a, N\, y,w,2)({)
for |¢| =<1 as in Section 2. We need the following estimates.

LEMMA 3.4. Let M and ., 1, v, V, U and W be as above. There exist con-
stants C>0 and ro>0 such that for 0<r<rgand (a,\)eT,, |y|<r, |w|<r,
and z € D we have

(3.4a) |W(a, M ctap) < c(%\-) <cCr,

maX{uUj(a, >\3 Y, W, Z)(')“C'-H(sl), " Vj(as >\s Y, W, Z)(')“CI,G(D)}

sC[(|y| +|w|)(1|f|)\)+(llf|)\)’j] for j=1,2.

(3.4¢) fU(a, N, ¥, W, 2)|cr.epy= Cr?.

Proof. Inequality (3.4a) just restates (3.3). Inequality (3.4b) follows from
(3.4a) and Lemma 2.4. Inequality (3.4c) follows from the definition of U and
(3.4a, b) and from the fact that P: C"*(S!) -» C!"*(D) is a bounded linear map.

O

From this lemma it is clear (in particular) that |bA(a, \, y, w, 2)({)| < Cr for
|$|=1and (a,\)eT,, |y|<r, |w|<r, zeD. Therefore we may further restrict
ro so that if 0 <r <rg then the image of bA(a, N\, y,w,z)(+) is contained in w,
where w C M is the open set in Theorem 1.3.

Now consider the map f: 7, X {|y| <r}x{|w| <r}— C”" defined by

(3.4b)
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f(as )\;ys w):=A(a, >\sys w,Z2= —>‘)(§= _>\)
_(U(ask’yswsz::—)\)(g.=—)\)+ly)
w "

The second equation uses the definition of A and the fact W{(a,\)({=—N)=0
and V(a,\y,w,z2=—N\)({= —A)=0 (see (2.2)). Each point in the image of f be-
longs to the image of an analytic disc with boundary in w. So we shall complete
the proof by showing that the image of f contains the desired Q in C".

Clearly we must analyze U= (U’, U?). Now U’(a, \, ¥, w,z= —\)(¢) is har-
monic in ¢, |{| =<1, for j=1,2. So

Uj(a:v )\’ Y, W, Z = _'k)(g‘= —)\)
(3.5) =P(—\, U’(a,\, y,w,z=—N)(+))
=P(—\,H’(v(a, \, y, w,z= —\)+y, W(a,\)+w, W(a,\) +w))

for j =1, 2, where we have used that U(¢) =H(v+y, W+w, W+w)($) for [¢]|=1;
that is, bA C M (cf. the definition of U in §2).

We now wish to use the Taylor expansion of H’ (v+y, W+w, W+w) about
the point (y, w) in the right side of (3.5). We shall use the following facts: -

P(_)\, U(a, )\s YW, 2= —>\))=0,

lal 1, J —
P(—)\, Re{a ’;;(f’w) [W(a,x)]“D=0 for 0< |a| < oo,
P(=X, h(y, w)) =h(y, w). -

The first fact follows from (2.2). The second fact follows because W(a, \) is holo-
morphic in { and vanishes at { = —\, and the third fact follows because A(y, w) is
a constant (with respect to { e D). We also keep in mind that W;=0_for 2 <
J < m. Therefore, for j=1,2, o

3.6)
Uj(a: )\, YW, 2= _)\)(i-:: _)\)
i 1 d'in(y, w, w)

=h' , W, W)+ -
o ) }::1 q'(j—q)! awiawji—9

P(—\, W/Wi" %)+ P(—\,E}),

where

3.7)
EJ(VI/], VT/I’ Uy, Uz, )V, W, W)

1 7" 2h(y,w,w _
= > p(y—p ) W{’IW{’zu»f‘.x o
2=p+py<l; P1lD2! ow, 'aw; 2 o

P1Hpa+P3+Py v
+ O 1 d h(y, w, w) WPWP2PspPs
b — P p P
25p1+p2+p3+p4slj p1!p2!p3!p4! 3Wl lawl zayl 33}’24
0<pl+p251j

+le+l(I/Vla I'T/l: Uy, U2, ), W, w)s
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where R;; 11 is the Taylor remainder of order /;+1 in W}, Wi, vy, v2. Note that we
have organized the terms in this expansion as follows. The sum on the right of
(3.6) contains all the terms of order /; in W; and W,. The first sum on the right of
(3.7) contains all the monomials of order less than /; in W; and W),. The second
sum on the right of (3.7) contains all terms of order less than or equal to /; which
also contain at least one v, or v,.

In the next lemma, we shall estimate the error term P(—A\, E;) and then we
shall explicitly compute the first sum appearing on the right side of (3.6).

LEMMA 3.8. There exist constants C > 0 and ro> 0 such that for 0 <r <rgand
(a,\)eT, and |y|<r, |w|<r, ze D, we have
la|li+!
(1—=N2)4
Proof. We first show the following estimates for j =1, 2:

4]
a2

2
(3.8a) |P(—)\,Ej)|5C<(|y|+|w|)<1|f|)\2)+ ) for j=1,2.

(3.92) W@, M) ()] = <

P

a J
B9b)  [u@h pwz=—N ()] < [(|y|+|w|)( 2 ')\)+(%) ]|;+>\;.
The first estimate is clear from the definition of W. The second estimate is proved

as follows. For |{| =1,
|vi(a, N\, y, w, 2= —=N)({)|
=|vj(a,\, ¥, w,2=—N)()—Vj(a,\, y,w, 2= —N)(§ = —\)| by (2.2)
= |Vilcrom £+

I.
=clasi+ b (75 )+ (F25) s+,

where the last inequality uses (3.4b). We have also used that 1/(1 —\2) = 1/(1—X\)
for (a,\)eT,.

Now in the expansion given in (3.7) we assign weight 1 to W; and W, and weight
l; tov; (j=1,2). The weight of a monomial in W;, W}, vy, v, is defined to be the
minimum weight of the monomials appearing in the Taylor expansion of E in
Wi, W4, vy, v, about Wy =0, v, =v,=0. We are interested in determining which
coefficients of the monomials in the expansion in (3.7) vanish at y=0, w=0. In
view of the normal form for semirigid submanifolds given in (3.1) at the begin-
ning of this section, the coefficients of all monomials of weight less than /; in
wi, W4, v, v, must vanish at y =0, w=0. Furthermore, the coefficients of all
monomials of weight equal to /; which involve at least one v, or v, must alsc
vanish at y =0, w=0. Therefore, using (3.7) and (3.4a, b), we obtain

|E|<C[(|y]+|w|) )\)2+( jal ):+n]l§+)\|z
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Finally, we have

1 1—\2
[P(=N Ep)| = 5— S|r|=1 S\ |E;] 45|
|a|2 Iailj+1
= C[(|y|+|w|) 1—x ' (1—>\)/f]

as desired.

We also need to compute the second term on the right side of (3.6).

LEMMA 3.10. For p, m positive integers, we have

- p+m—2 aPa™
P(—X\, W{’W,'")=( p—1 >(1_)\2)p+m_l +E(a, M),
where for some positive C which is independent of a and \,
|a|p+m(l_>\)
IE(Q, >‘)| =C (1 _)\2)p+m—l °

Proof. We compute

_ 1 a’a" (¢ +N? " (N di
ANWPWTy = — .
PN W = 0 Sm=1 (1—\Z)p+m=i ¢

1 S a?a" (& +N)P a4+ !
2w Jigl=1 (1—N2)p+m=lgm
By setting A =1 in the numerator of the integrand, we obtain

3 1 apﬁrn(§.+1)p+m—~2
P(—X\, I/VI‘DI/Vlm)= Py Si§‘|=l (1_)\2)p+m—l§-m

- d{+E(a,\),
27i
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d¢ (since £ =1/¢).

where E(a, \) clearly has the estimate stated in the lemma. The last integral can

be evaluated using residue theory.

O

REMARK. Semirigidity is essential for the previous two lemmas because it
guarantees that the monomials of weight /; in the expansion of U do not involve

v; Or vy, and therefore their Poisson integrals can be easily computed.

Now let us require @ = 0. We apply Lemma 3.10 with p=qg and m = lj—q, and
we see that the second term on the right side of (3.6) equals the left side of (3.2)
multiplied by the expression a’i/(1—»?)’~! plus an error term (which arises from
the fact that the derivatives of #* in (3.2) are evaluated at 0 instead of (v, w,w)).
We may summarize this as follows. Using the definition of f, (3.6), Lemma 3.10,

Lemma 3.8, and (3.2), we obtain
G11)  f@ yw)= (”‘y’ w;vw’+’*")+<x‘“’ *(;y’w’)eczxcm,

where x = (x!, x?) and
I

. J
(3.12) x/(a,\, y,w)= ISV

+Ej(a, )\s Vs W)
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with

|E/(a,\, y,w)|<C (|y|+|w|)( @ lz —\) la][
’ (1 )\2)1 -1

for j=1,2 and for (a,\)eT,, r<]l. |
Now we further restrict our parameters. For 0 <r <rg let

Tr:=J(a,\); a=0,0<\=<1, Ls a <r,1—A=<ryt.
2 1—X\
We shall also require max({|y|, |[w|} <ror'2~!. With these restrictions we obtain,
for j=1,2,
j a'i -

(3.13) |E/(a, )\,y,w)|sCr0W for (a,\)eT,, r<ry,
where C is some uniform positive constant.

The map

¢: {max{|y|, |w|}<ror2~'}>C",
oy, w)=(h(y,w, W)+iy, w)

appearing on the right side of (3.11) parameterizes a piece of M which contains
(M N B0, ror'2=")}. Therefore, to prove Theorem 1.4, it suffices to show that for
fixed y, w with max{|y|, [w|} <ror'2~! the image of the map

(as )\) - (Xl(as ks Vs W), XZ(a’ )\’ Vs W)) ERZ for (a’ >\) € T;'

’1,r6r’2) for some unit vector ve R? and an appro-

contains a wedge W (v, ror
priately chosen rg > 0.
For 0 <t <ror'/2%17=! define
l
~ a'l r a
={a,N)el,;a=0, ——7—=1I, =< =ri.
St {(a )eT,; a (1—A2)11—1 d 27 1=\ r}

We shall examine the image of x = (x1, x2) on the connected path S, and then let
t vary from O to ror'y/2%1-1,

If 0<t<ror'iy/221=1 and if (a,\) € S, then one easily sees that 1—\ < ry and
so S, C T;. In view of (3.12) and (3.13) with j =1, we have

=1 17 V24
(3.14) ( ) =xi1(a, N, y,w)<t(16) for (a,\)eS,;,

provided rg is chosen suitably small. We also note from (3.12) that

x2(a, N, y,w) =t T:T) (m) +E, for (a,\)eS;.
Now we use the fact that on S, the expression a/(1 —\) varies between r/2 and r
and 1/2<1/(14+\)<1/(2—rp). Thus, x “almost” varies between #(r/4)"2~'1 and
t(r/2)"2=". More precisely, we may use (3.13) with j =2to obtain
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5r\2—h

(3.152) min  x,(a, )\)_t< r) ,
) (a,\) e §; 16

: =1

(3.15b) max xz(a,N\)=t¢ z) .
(@, N €S, 16

provided rg is chosen suitably small. Therefore using (3.15a) and (3.15b) and

(3.14), we have
Iy—1
@nes, | xi(a, N) 3

mex [t = (5)
@nes, | xi(a, N) 17 ’

In addition, S; is connected and compact and so the image of the map
(@, N) = (x1(a, N, ¥, w), x2(a, N, y, w)) e R* for (a,\) €S,

is a connected path with endpoints p = (&, n;) and g = (&,, ;) such that p lies
below the line x, = x; (r/3)'2_'l and g lies above the line x, = x; (7r/17)’2_’1.

X, L—1
xz—xl( )
r\1h
X2 = X1 3

Xy

Clearly, as ¢ ranges from O to ror/t/2%17! the path from p to ¢ (the image of
S;) sweeps out the wedge

{5—1 I5—1 -1
2. ror 27N r\z2--1 Tr \'274
{(xl,Xz)eR »0=x1= 37 ( ) , x1(3) =xa=xi{ 77 .

Clearly, this wedge contains the wedge W(v, r4r’, r§ r’2) for an appropriately
chosen r§ and unit vector v e R>.
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