HOLOMORPHIC VECTOR FIELDS ON COMPLEX MANIFOLDS

Leon Karp

1. Introduction. Let M^n be a compact complex manifold of complex dimension n, and let Hol(M) denote the biholomorphisms of M^n . It is known [2] that Hol(M) is a Lie group which, in general, is not compact. The identity component $Hol(M)^0$ is generated by vector fields which, when "transferred" to M^n , are holomorphic—that is, locally of the form $Z = \sum a_k(\partial/\partial z_k)$, where the a_k are holomorphic functions. More precisely, if ψ_l is a one-parameter subgroup of Hol(M) then its generator X is an infinitesimal automorphism of the complex structure, and Z is holomorphic exactly when Z = X - iJX for such a real vector field X. Here J denotes the complex structure. If the subgroup ψ_l has no fixed points then X (and hence Z) is nonsingular.

It was shown by Matsushima [11], using Blanchard's theorem [1] on projective embeddings, that if M^n is projective algebraic with first Betti number $b_1(M) = 0$ then M^n admits no nonsingular holomorphic vector field. This result was extended to all compact Kähler manifolds by Carrell and Lieberman [4], and by Sommese [12]. In this paper we extend the theorem to more general complex manifolds, and prove an analogue for all compact complex manifolds that is similar to a result of Bott [3].

To formulate the simplest of our results we recall the definition of the Hodge numbers $h^{p,q}(M) = \dim_{\mathbb{C}} H^q(M, \Omega^p)$. It is known [5] that the Euler characteristic

$$\chi(M^n) = \sum_{0 \le p, q \le n} (-1)^{p+q} h^{p, q}(M)$$

$$= 2 + \sum_{0 < p+q = \text{even} < 2n} h^{p, q}(M) - \sum_{p+q = \text{odd}} h^{p, q}(M).$$

Consequently, if $\sum_{p+q=\text{odd}} h^{p,q} = 0$ then, according to the well-known theorem of Poincaré-Hopf, M^n admits no nonsingular vector field. For holomorphic vector fields we have the following refinement.

THEOREM A. Let M^n be an n-dimensional compact complex manifold. If $\sum_{0 \le p \le n-1} h^{p,p+1}(M) = 0$ then M^n admits no nonsingular holomorphic vector field.

In Section 2 we prove Theorem A and in Section 3 we present two generalizations of the theorem of Carrell-Lieberman and Sommese. Section 4 treats some related results and points out some open problems.

Most of the results of this paper are contained in part of the author's thesis [9]. It is a pleasure to thank L. Nirenberg for his encouragement and support.

Received September 4, 1985.

Research partially supported by NSF Grant MCS 81-02051.

Michigan Math. J. 34 (1987).

2. Preliminaries and the proof of Theorem A. Throughout the paper we will let Z denote a vector field of type (1,0), that is, of the form X-iJX for some real vector field X. Let g be an hermitian metric and, if Z is nonsingular, set

(2.1)
$$\zeta = \frac{1}{\|Z\|^2} g(\cdot, \overline{Z}).$$

Thus ζ is a form of type (1,0) and $i_Z \zeta = \zeta(Z) \equiv 1$, where i_Z denotes contraction with Z.

We will make repeated use of the fact that the operator

$$(2.2) \bar{\partial} \circ i_Z + i_Z \circ \bar{\partial} \equiv 0$$

if Z is holomorphic. This fact is well known and may be proved by noting that $\bar{\partial} \circ i_Z + i_Z \circ \bar{\partial}$ is a derivation of degree zero on the bundle of smooth forms, and then checking that $(\bar{\partial} \circ i_Z + i \circ \bar{\partial})\alpha = 0$ if $\alpha = f \in C^{\infty}$, dz^k , or $d\bar{z}^k$.

LEMMA 2.1. If Z is a nonsingular holomorphic vector field on a complex manifold M then $i_Z \bar{\partial} \zeta = 0$, where ζ is given by (2.1).

Proof. Using (2.1) and (2.2) we have
$$i_Z \bar{\partial} \zeta = -\bar{\partial} i_Z \zeta = -\bar{\partial} (1) = 0$$
.

LEMMA 2.2. Let the compact complex manifold M^n admit a holomorphic vector field Z. If $\sum_{0 \le p \le n-1} h^{p,p+1} = 0$ then there exists a sequence of differential forms α_q of type (q,q) such that $\bar{\partial}\alpha_q = i_Z\alpha_{q+1}$ for $0 \le q \le n-1$.

Proof. Let α_n be a volume form for M^n (which exists since M^n is orientable). Then $\bar{\partial}\alpha_n=0$ and so $\bar{\partial}i_Z\alpha_n=-i_Z\bar{\partial}\alpha_n=0$. If $h^{n-1,n}=0$, then (by Dolbeault's theorem, cf. [15]) $\exists \alpha_{n-1}$ of type (n-1,n-1) such that $\bar{\partial}\alpha_{n-1}=i_Z\alpha_n$. It follows that $\bar{\partial}i_Z\alpha_{n-1}=-i_Z\bar{\partial}\alpha_{n-1}=-i_Z^2\alpha_n=0$, and so $\exists \alpha_{n-2}$ such that $\bar{\partial}\alpha_{n-2}=i\alpha_{n-1}$. In general, if there exist $\{\alpha_n,\alpha_{n-1},\ldots,\alpha_{q+1}\}$ such that $\bar{\partial}\alpha_{r+1}=i\alpha_{r+2},\ q\leq r\leq n-2$, then $\bar{\partial}i_Z\alpha_{q+1}=-i_Z\bar{\partial}\alpha_{q+1}=-i_Z^2\alpha_{q+2}=0$ and so, if $h^{q,q+1}=0$, there exists α_q of type (q,q) such that $\bar{\partial}\alpha_q=i_Z\alpha_{q+1}$. This completes the proof.

We can now turn to the

Proof of Theorem A. If Z is a nonsingular holomorphic vector field we can define the (1,0) form ζ as in (2.1), and then the operator

$$T \stackrel{\mathrm{def}}{=} \ell_{\zeta} \circ i_{\zeta} + i_{\zeta} \circ \ell_{\zeta},$$

where ℓ_{ζ} denotes left exterior multiplication by ζ , is just multiplication by $\zeta(Z) \equiv 1$ (i.e., the identity operator) on forms. Let $\omega = \alpha_n$ be a volume form and let $\{\alpha_q\}$, $0 \le q \le n-1$, be the forms of type (q,q) described in Lemma 2.2. Then, since $\zeta \wedge \Omega = 0$ if Ω is of type (n,n),

$$\omega = T\omega = \zeta \wedge i_Z \omega = \zeta \wedge \bar{\partial}\alpha_{n-1}$$

$$= \bar{\partial}\zeta \wedge \alpha_{n-1} + \text{an exact form}$$

$$= T^2 \omega = \zeta \wedge \bar{\partial}\zeta \wedge i_Z \alpha_{n-1} + \text{an exact form}$$

$$= (\bar{\partial}\zeta)^2 \wedge \alpha_{n-2} + \text{an exact form,}$$

where we have used Lemma 2.1 in deriving the third line. Continuing in this fashion we have

$$\omega = (\bar{\partial}\zeta)^k \wedge \alpha_{n-k} + \text{an exact form} \quad (k \ge 1)$$

and, finally,

$$\omega = \alpha_0 \cdot (\bar{\partial}\zeta)^n + \text{an exact form,}$$

where $\alpha_0 \in C^{\infty}$. Applying T one more time, we obtain

$$\omega =$$
 an exact form,

since $i_Z(\bar{\partial}\zeta)^n = 0$. This contradicts the assumption that $\int_M \omega > 0$ and completes the proof.

Theorem A may be applied to derive a number of interesting results concerning group actions. We mention only the following.

COROLLARY A.1. Let Mⁿ be a compact complex n-manifold with

$$\sum_{0 \le p \le n-1} h^{p, p+1} = 0.$$

If M^n is homogeneous (i.e., if $Hol(M)^0$ acts transitively on M^n), then $Hol(M)^0$ is not nilpotent.

Proof. If $G = \operatorname{Hol}(M)^0$ is nilpotent then the center C of the Lie algebra of G is nontrivial (cf. [7]). Since the action is transitive it follows that every $Z' \in C$ induces a nonsingular holomorphic vector field on M^n . The desired conclusion now follows from the theorem.

REMARK. According to a result of Bott [3], if a compact complex *n*-manifold admits a nonsingular holomorphic vector field then its Chern numbers vanish. This result neither includes nor is included in Theorem A.

3. Generalizations of the theorem of Carrell-Lieberman and Sommese. In order to formulate our results in this section in a simple manner, we introduce the following generalization of the notion of a Kähler manifold.

DEFINITION. A compact complex manifold M with $\dim_{\mathbb{C}} M = n$ is of $type K_p$ if there exists a family $\{\mu_j\}$ of $\bar{\partial}$ -closed forms μ_j of degree $\leq 2 + p$ and positive integers $\{r_j\}$ such that the exterior product $\prod \mu_j^{r_j}$ is of type (n, n) and $\int_M \prod \mu_j^{r_j} \neq 0$.

 M^n is of type K_p' if there exists a $\bar{\partial}$ -closed form μ of type (2+p,2+p) such that n=r(2+p) and $\int \mu' \neq 0$.

REMARK. If M^n is of type K'_p then it is certainly of type K_p , and every compact *n*-dimensional Kähler manifold is of type K'_0 as is every compact complex manifold with Chern number $[C_1^n] \neq 0$.

We can now formulate the main result of this section.

THEOREM B. Let M^n be a compact complex n-manifold of type K_0 . If M^n admits a nonsingular holomorphic vector field then $h^{0,1}(M^n) + h^{1,0}(M^n) \neq 0$.

34 LEON KARP

Since for compact Kähler manifolds we have $h^{1,0} = h^{0,1} = \frac{1}{2}b_1(M)$, it is evident that we have the following.

COROLLARY B.1 (Matsushima [11], Carrell-Liebermann [4], Sommese [12]). If M^n is an n-dimensional compact Kähler (esp. projective algebraic) manifold which admits a nonsingular holomorphic vector field, then $b_1(M) \neq 0$.

Arguing as in Section 2, we have the following analogue of Corollary A.2.

COROLLARY B.2. If M^n is an homogeneous compact complex n-manifold of type K_0 then $Hol(M^n)^0$ is not nilpotent.

Proof of Theorem B. Since M^n is of type K_0 we have forms $\{\mu_j\}$, each of degree ≤ 2 , and integers $\{r_j\}$ with $\int \prod \mu_j^{r_j} \neq 0$. We may decompose the product $\prod \mu_j^{r_j}$ as

$$\prod \mu_j^{r_j} = \prod_k F^{p_k, q_k} = F^{0, 1} \wedge F^{1, 0} \wedge F^{1, 1} \wedge F^{0, 2} \wedge F^{2, 0},$$

where F^{p_k,q_k} is a product of $\bar{\partial}$ -closed forms, each of type (p_k,q_k) , and

$$0 \leq p_k + q_k \leq 2.$$

We may assume that the factor $F^{0,1}$ is absent, for otherwise there exist $\bar{\partial}$ -closed forms μ of type (0,1) which are not exact (because $\int \prod \mu_j^{r_j} \neq 0$) and so

$$h^{0,1}(M^n)\neq 0.$$

Similarly, we may assume that the factor $F^{1,0}$ is absent. Thus

$$\int \mu_j^{r_j} = F^{1,1} \wedge F^{2,0} \wedge F^{0,2}.$$

Suppose now that Z is a nonsingular holomorphic vector field. Since Z is of type (1,0), $i_ZF^{0,2}=0$. On the other hand, we may also assume that $i_ZF^{2,0}=0$. In fact, $F^{2,0}=\prod \beta_j$ for some holomorphic 2-forms β_j , $i_ZF^{2,0}=\sum_j i_Z\beta_j\prod_{k\neq j}\beta_k$, and the holomorphic 1-forms $\{i_Z\beta_j\}$ must vanish if $h^{1,0}=0$. Set $F=F^{1,1}$, $R=F^{2,0}\wedge F^{0,2}$ (the factors annihilated by i_Z) and factor F as $F=\prod_{j=1}^m \alpha_j$, where the α_j 's are $\bar{\partial}$ -closed (1,1) forms. As in the proof of Theorem A, set $T=\ell_{\zeta}\circ i_Z+i_Z\circ \ell_{\zeta}$, with ζ as in (2.1). With $P=F\wedge R$ and $i=i_Z$ we have

$$P = TP = \zeta \wedge iP = \zeta \wedge i(F) \wedge R$$

$$= \zeta \wedge \left[\sum_{k=1}^{m} i(\alpha_k) \prod_{j \neq k} \alpha_j \right] \wedge R.$$

Hence, for some k, $i(\alpha_k) \neq 0$. Now $\bar{\partial}i(\alpha_k) = -i\bar{\partial}(\alpha_k) = 0$, so $i(\alpha_k)$ is $\bar{\partial}$ -closed. To show $h^{0,1} \neq 0$ it suffices to show that there do not exist $\{f_k\}_{k=1}^m$, $f_k \in C^{\infty}$, such that $\bar{\partial}f_k = i(\alpha_k)$ for all k. Suppose such f_k did exist. Let

$$\Pi(p_1,\ldots,p_k)\stackrel{\mathrm{def}}{=} \alpha_1 \wedge \cdots \wedge \hat{\alpha}_{p_1} \wedge \cdots \wedge \hat{\alpha}_{p_2} \wedge \cdots \wedge \hat{\alpha}_{p_k} \wedge \cdots \wedge \alpha_m,$$

where the caret $\hat{}$ indicates omission. Extend the definition of Π so that $\Pi(p_1,...,p_k)$ is symmetric in $(p_1,...,p_k)$. Let

$$\Sigma_k^{1,1} = \sum_{1 \le p_1 < \dots < p_k \le m} f_{p_1} \dots f_{p_k} \Pi(p_1, \dots, p_k), \quad 1 \le k \le m,$$

and let $\Sigma_0 = F = \prod_{j=1}^m \alpha_j$. We claim that

$$i(\Sigma_k^{1,1}) = \bar{\partial}(\Sigma_{k+1}^{1,1}).$$

We postpone the proof of (*) until the proof of the theorem is completed. Now

$$F \wedge R = T(F \wedge R) = \zeta \wedge i(F) \wedge R = \zeta \wedge i(\Sigma_0^{1,1}) \wedge R$$
$$= \zeta \wedge \bar{\partial}(\Sigma_1^{1,1}) \wedge R = -\bar{\partial}(\zeta \wedge \Sigma_1^{1,1} \wedge R) + \bar{\partial}\zeta \wedge \Sigma_1^{1,1} \wedge R$$
$$= \bar{\partial}\zeta \wedge \Sigma_1^{1,1} \wedge R + \bar{\partial} \text{-exact form.}$$

Applying T again we have $F \wedge R = T^2(F \wedge R) = \zeta \wedge i(\bar{\partial}\zeta \wedge \Sigma_1^{1,1}) \wedge R + \bar{\partial}$ -exact form $= \zeta \wedge \bar{\partial}\zeta \wedge i(\Sigma_1) \wedge R + \bar{\partial}$ -exact form $= (\bar{\partial}\zeta)^2 \wedge \Sigma_2^{1,1} \wedge R + \bar{\partial}$ -exact form. It is easy to see that continuing in this fashion we have, for $1 \le k \le m$,

$$F \wedge R = \bar{\partial}\omega_k + (\bar{\partial}\zeta)^k \wedge \Sigma_k \wedge R$$
, where $\omega_k \in \Lambda^{n, n-1}$.

Choosing k = m in this last expression we have:

$$P = F \wedge R = \bar{\partial}\omega_m + (\bar{\partial}\zeta)^m \prod_{j=1}^m f_j \wedge R$$
$$= d\omega_m + \prod_{j=1}^m f_j (\bar{\partial}\zeta)^m \wedge R,$$

since $d\omega = \bar{\partial}\omega$ if $\omega \in \Lambda^{n, n-1}$. Applying Stokes' theorem we find that

$$\int P = \int \prod_{j=1}^m f_j(\bar{\partial}\zeta)^m \wedge R \neq 0.$$

However, this is absurd, since

$$\prod_{j=1}^{m} f_{j}(\bar{\partial}\zeta)^{m} \wedge R = T \left[\prod_{j=1}^{m} f_{j}(\bar{\partial}\zeta)^{m} \wedge R \right]
= \prod_{j=1}^{m} f_{j} \zeta \wedge [i(\bar{\partial}\zeta)^{m} \wedge R + (\bar{\partial}\zeta)^{m} \wedge iR] = 0.$$

To complete the proof it only remains to prove (*):

$$i(\Sigma_k^{1,1}) = \sum_{1 \leq p_1 < \dots < p_k \leq m} f_{p_1} \dots f_{p_k} i(\Pi(p_1, \dots, p_k))$$

$$= \sum_{p_1 < p_2 < \dots < p_k} f_{p_1} \dots f_{p_k} \left[\sum_{q=1}^m \bar{\partial} f_q \Pi(p_1, \dots, p_k, q) \right]$$

$$= \sum_{q=1}^n \sum_{1 \leq p_1 < \dots < p_k \leq m} f_{p_1} \dots f_{p_k} \bar{\partial} f_q \Pi(p_1, \dots, p_k, q)$$

$$= \sum_{\substack{p_j \text{'s and } q \text{ in} \\ \text{ascending order}}} \bar{\partial} (f_{p_1} \dots f_{p_k} f_q) \Pi(p_1, \dots, p_k, q) =$$

$$\begin{split} &= \sum_{1 \leq p_1 < \dots < p_{k+1} \leq m} \bar{\partial} (f_{p_1} \dots f_{p_{k+1}}) \Pi(p_1, \dots, p_{k+1}) \\ &= \bar{\partial} \Sigma f_{p_1} \dots f_{p_{k+1}} \Pi(p_1, \dots, p_{k+1}) \quad \text{(since } \bar{\partial} \alpha_j = 0) \\ &= \bar{\partial} \Sigma_{k+1}^{1,1}. \end{split}$$

This completes the proof of the theorem.

THEOREM C. If M^n is a compact complex manifold of type K'_0 which admits a nonsingular holomorphic vector field, then $h^{0,1}(M^n) \neq 0$.

The proof is exactly the same as the proof of Theorem C; however, the consideration of $h^{1,0}$ is no longer necessary since no factors of type (1,0) or (2,0) can occur. Theorem C also generalizes the result of Matsushima, Carrell-Lieberman, and Sommese.

REMARKS. (1) According to the result of Bott [3] cited at the end of Section 2, if M^n admits a nonsingular holomorphic vector field then $\int_M C_1^n = 0$, where $[C_1]$ is the first Chern class. It follows from Theorem C that $\int \omega^n = 0$ for every closed (1,1) form on M^n if, in addition, $h^{0,1}(M^n) = 0$.

- (2) The theorems of this section have real analogues which will be described elsewhere [10].
- 4. Related results and open questions. When M^n is Kähler it is possible to obtain certain refinements of the preceding results for group actions even when b_1 is not necessarily zero. For this purpose we let $Hol(M)^0$ denote the connected subgroup of $Hol(M^n)^0$ with Lie algebra [L, L], where L denotes the Lie algebra of Hol(M) (i.e., the holomorphic vector fields).

THEOREM D. If M^n is a compact Kähler manifold then $Hol(M)^0$ cannot act freely on M^n (unless, of course, $Hol(M)^0 = \{id\}$). Thus, if G is a connected subgroup of $Hol(M)^0$ that acts freely on the compact Kähler manifold M^n , then G is abelian.

Proof. Suppose that $\widetilde{\text{Hol}}(M^n)^0 \neq \{\text{id}\}$ and that $\widetilde{\text{Hol}}(M^n)^0$ acts freely on M^n . Let Z be a nonsingular holomorphic vector field in [L, L] that generates a flow in $\widetilde{\text{Hol}}(M^n)^0$. It follows that there exist holomorphic vector fields $\{Z_i'\}$ and $\{Z_i''\}$ and constants $\{C_i\}$ such that $Z = \sum_i C_i [Z_i', Z_i'']$. We claim that, this being the case, there exists a smooth function $f \in C^\infty$ such that $i_Z \omega = \overline{\partial} f$, where ω is the Kähler form, even if $b_1 \neq 0$. Assuming for a moment the validity of this claim and applying the arguments of the proof of Theorems B and C to the product form $P = \omega^n$, we are immediately led to contradictory conclusions. On one hand $\int \omega^n \neq 0$ while, on the other,

$$\omega^{n} = T\omega^{n} = \zeta \wedge ni_{Z}\omega \wedge \omega^{n-1}$$
$$= nf \bar{\partial} \zeta \wedge \omega^{n-1} + \text{an exact form,}$$

and so (applying T n more times)

$$\omega^{n} = T^{n+1}\omega^{n}$$

$$= n! f^{n}T(\bar{\partial}\zeta^{n}) + \text{an exact form}$$

$$= \text{an exact form.}$$

To prove the claim we recall that, for real vector fields X and Y,

$$[d \circ i_X + i_X \circ d, i_Y] = i_{[X,Y]}$$

(cf. [6, p. 93]). It is immediate that this formula extends (by linearity) without change to the complex case: $X = A + \sqrt{-1}B$, $Y = C + \sqrt{-1}D$. Now if Z' is a holomorphic vector field then $d \circ i_{Z'} + i_{Z'} \circ d = \partial \circ i_{Z'} + i_{Z'} \circ \partial$, since $\bar{\partial} \circ i_{Z'} + i_{Z'} \circ \bar{\partial} = 0$. It follows that if Z' and Z'' are holomorphic then

$$i_{[Z',Z'']}\omega = [\partial i_{Z'} + i_{Z'}\partial, i_{Z''}]\omega$$

$$= \partial i_{Z'}i_{Z''}\omega - i_{Z''}\partial i_{Z'}\omega + i_{Z'}\partial i_{Z''}\omega - i_{Z''}i_{Z'}\partial\omega$$

$$= i_{Z'}\partial i_{Z''}\omega - i_{Z''}\partial i_{Z'}\omega,$$

since $\partial \omega = 0$ and $i_{Z'}i_{Z''}\omega = 0$. Now $\bar{\partial}(i_{Z''}\omega) = -i_{Z''}\bar{\partial}\omega = 0$, and so it follows from the theory of harmonic integrals on Kähler manifolds that $i_{Z''}\omega = \alpha_{0,1} + \bar{\partial}g$, for some $\bar{\partial}$ -harmonic (0, 1) form $\alpha_{0,1}$ and some $g \in C^{\infty}$. Consequently,

$$i_{Z'} \partial i_{Z''} \omega = i_{Z'} \partial (\alpha_{0,1} + \bar{\partial}g) = i_{Z'} \partial \bar{\partial}g$$

= $\bar{\partial} (i_{Z'} \partial g)$,

where we have used the fact that $\partial \alpha_{0,1} = 0$ (since the metric is Kähler). Since a similar argument shows that $i_{Z''}\partial i_{Z'}\omega = \bar{\partial}(i_{Z''}\partial \tilde{g})$ for some $\tilde{g} \in C^{\infty}$, the $\bar{\partial}$ -exactness of $i_{[Z',Z'']}\omega$ now follows from (4.1). The claimed $\bar{\partial}$ -exactness of $i_{Z}\omega$ therefore follows from the relation $Z = \sum C_i[Z'_i, Z''_i]$, and the proof is complete. \Box

COROLLARY. If M^n is a compact Kähler manifold with geometric genus $h^{n,0} \neq 0$ then $\operatorname{Hol}(M^n)^0$ is abelian.

Proof. It suffices to show that the Lie algebra L of Hol(M) is abelian, $[L, L] = \{0\}$. Now if $[L, L] \neq \{0\}$ then there exist holomorphic vector fields Z' and Z'' such that the commutator $Z = [Z', Z''] \neq 0$. Since $h^{n,0} \neq 0$ it follows from a result of Howard [8] that Z must be nonsingular. The argument in the proof of Theorem D then shows that no such Z can exist.

REMARKS. (1) Observe that Riemann surfaces (n=1) with $h^{1,0}=1$ admit free abelian holomorphic actions while, for $h^{1,0}\ge 2$, $\operatorname{Hol}(M^1)^0=\{\operatorname{id}\}$, as is well known.

- (2) Although we have treated only manifolds of type K_0 and K'_0 in Section 3, the methods of this paper allow one to prove analogous results for manifolds of type K_p $(p \ge 0)$, when the assumption $h^{1,0}(M^n) + h^{0,1}(M^n) \ne 0$ is replaced by an analogous condition on the Hodge numbers $h^{r,s}(M)$ for $r+s \le p+1$. We leave the exact formulation and the proof to the interest reader.
- (3) Sommese has shown ([12], [13]) that if M^n is Kähler and $b_1(M) = 0$ then any solvable subgroup of $Hol(M^n)$ has a fixed point. It would be interesting to know

38 LEON KARP

whether or not Sommese's theorem extends to the more general situation considered in Sections 2 and 3 of this paper.

(4) It is reasonable to ask whether or not the fixed point theorems for 1-parameter subgroups of $Hol(M^n)$ discussed here extend to single biholomorphisms $\psi \in Hol(M^n)^0$, at least when ψ is sufficiently close to the identity. This is the case for the analogous situation of symplectic transformations (close to the identity) on a symplectic manifold (cf. [14]).

REFERENCES

- 1. A. Blanchard, Sur les variétés analytiques complexes, Ann. Sci. École Norm. Sup. (3) 73 (1956), 157-202.
- 2. S. Bochner and D. Montgomery, *Groups on analytic manifolds*, Ann. of Math. (2) 48 (1947), 659-669.
- 3. R. Bott, Vector fields and characteristic numbers, Michigan Math. J. 14 (1967), 231-244.
- 4. J. Carrell and D. Lieberman, *Holomorphic vector fields and Kähler manifolds*, Inv. Math. 21 (1973), 303-309.
- 5. A. Fröhlicher, Relations between the cohomology groups of Dolbeault and topological invariants, Proc. Nat. Acad. Sci. U.S.A. 41 (1955), 641-644.
- 6. C. Godbillon, Géométrie différentielle et mécanique analytique, Hermann, Paris, 1969.
- 7. S. Helgason, *Differential geometry and symmetric spaces*, Academic Press, New York, 1962.
- 8. A. Howard, *Holomorphic vector fields on algebraic manifolds*, Amer. J. Math. 94 (1972), 1282-1290.
- 9. L. Karp, *Vector fields on manifolds*, Thesis, New York University-Courant Institute, 1976.
- 10. ——, Killing fields and cohomology, to appear.
- 11. Y. Matsushima, Holomorphic vector fields and the first Chern class of a Hodge manifold, J. Differential Geom. 3 (1969), 477-480.
- 12. A. Sommese, Borel's fixed point theorem for Kähler manifolds and an application, Proc. Amer. Math. Soc. 41 (1973), 51-54.
- 13. ——, Holomorphic vector fields on compact Kähler manifolds, Math. Ann. 210 (1974), 75-82.
- 14. A. Weinstein, *Lectures on symplectic manifolds*, Amer. Math. Soc., Providence, R.I., 1977.
- 15. R. O. Wells, Jr., *Differential analysis on complex manifolds*, Prentice-Hall, Englewood Cliffs, N.J., 1973.

Department of Mathematics and Computer Science The City University of New York H. H. Lehman College Bronx, New York 10468