HOLOMORPHIC VECTOR FIELDS
ON COMPLEX MANIFOLDS

Leon Karp

1. Introduction. Let M” be a compact complex manifold of complex dimen-
sion n, and let Hol(M) denote the biholomorphisms of A ”. It is known [2] that
Hol(M) is a Lie group which, in general, is not compact. The identity compo-
nent Hol(M)? is generated by vector fields which, when “transferred” to M”, are
holomorphic —that is, locally of the form Z = Y a,(d/0z,), where the a; are holo-
morphic functions. More precisely, if ¢, is a one-parameter subgroup of Hol(M)
then its generator X is an infinitesimal automorphism of the complex structure,
and Z is holomorphic exactly when Z =X —iJX for such a real vector field X.
Here J denotes the complex structure. If the subgroup ¥, has no fixed points then
X (and hence Z) is nonsingular.

It was shown by Matsushima [11], using Blanchard’s theorem [I] on projective
embeddings, that if A" is projective algebraic with first Betti number b,(M)=0
then M " admits no nonsingular holomorphic vector field. This result was extended
to all compact Kdhler manifolds by Carrell and Lieberman [4], and by Sommese
[12]. In this paper we extend the theorem to more general complex manifolds,
and prove an analogue for all compact complex manifolds that is similar to a re-
sult of Bott [3].

To formulate the simplest of our results we recall the definition of the Hodge
numbers AP 9(M) = dimc H9(M, Q”). It is known [5] that the Euler characteristic

x(M")=0 2 (=1D)PTIRPYM)
=p,q=n
=2+ p hP9MY— S P YM).
O<p+qg=even<2n p+qg=odd

Consequently, if X, ;= odqa #7°9=0 then, according to the well-known theorem
of Poincaré-Hopf, M " admits no nonsingular vector field. For holomorphic vec-
tor fields we have the following refinement.

THEOREM A. Let M" be an n-dimensional compact complex manifold. If
Yo<p=n—1 AP PV (M)=0 then M" admits no nonsingular holomorphic vector
field.

In Section 2 we prove Theorem A and in Section 3 we present two generaliza-
tions of the theorem of Carrell-Lieberman and Sommese. Section 4 treats some
related results and points out some open problems.

Most of the results of this paper are contained in part of the author’s thesis [9].
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2. Preliminaries and the proof of Theorem A. Throughout the paper we will
let Z denote a vector field of type (1, 0), that is, of the form X —iJX for some
real vector field X. Let g be an hermitian metric and, if Z is nonsingular, set

1
1Zz|?
Thus ¢ is a form of type (1,0) and iz { = {(Z) =1, where i, denotes contraction
with Z.

We will make repeated use of the fact that the operator
(2.2) g°iz+l'z°550

if Z is holomorphic. This fact is well known and may be proved by noting that
d°iz+iz°d is a derivation of degree zero on the bundle of smooth forms, and
then checking that (deiz+i-d)a=0if a=fe C=, dz*, or dz*.

(2.1) §= g(-, 2).

LEMMA 2.1. If Z is a nonsingular holomorphic vector field on a complex man-
ifold M then iz 3¢ =0, where ¢ is given by (2.1).

Proof. Using (2.1) and (2.2) we have iz0{= —0iz ¢ = —ad(1)=0. O
LEMMA 2.2. Let the compact complex manifold M" admit a holomorphic vec-

tor field Z. If So<p<n—1 h?"P*1=0 then there exists a sequence of differential
Jorms a4 of type (q, q) such that daz=iza,.) for0=g=n—1.

Proof. Let a, be a volume form for M” (which exists since M” is orientable).
Then do, =0 and 5o diz o, = —iz 8, =0. If h" 1" =0, then (by Dolbeault’s the-
orem, cf. [15]) 3«,_; of type (n—1, n—1) such that da,_, =iz «,. It follows that

digoy_1=—iz00y_1=—i%0,=0, and so 3a,,_, such that dot,,_» = icty_1. In gen-
eral, if there exist {o,, o) — 1 - .» &gy1} such that do, 4y =i, 42, g=<r=n-—2, then
dizag 1= — :Zaaq+,_ —zzaq+2—0and so, if A9t =0, there exists o of type

(g, q) such that do; =iz a4+ This completes the proof. ]
We can now turn to the

Proof of Theorem A. If Z is a nonsingular holomorphic vector field we can de-
fine the (1,0) form ¢ as in (2.1), and then the operator

Td‘-‘—gffg-°i§+l.§°f§-,

where ¢; denotes left exterior multiplication by ¢, is just multiplication by {(Z)=
1 (i.e., the identity operator) on forms. Let w = o, be a volume form and let {o},
0=<qg=n—1, be the forms of type (q, g) described in Lemma 2.2. Then, since
TAQ=0if Qis of type (n, n),

w=Tw=¢Nizw=§{ANda,_
=3¢ Ao, _;+an exact form
=T?w=¢Ad¢ANiga,_;+an exact form

= (8¢)2A apy—» +an exact form,
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where we have used Lemma 2.1 in deriving the third line. Continuing in this fash-
ion we have

w= (5?)"/\ a,_i+an exact form (k=1)
and, finally,

w=ag-(0¢)" +an exact form,
where oge C™. Applying 7 one more time, we obtain
w = an exact form,

since iz(8¢)"=0. This contradicts the assumption that §,, » >0 and completes
the proof. |

Theorem A may be applied to derive a number of interesting results concern-
ing group actions. We mention only the following.

COROLLARY A.l. Let M" be a compact complex n-manifold with
> wPPrl=o0.

O=s=p=sn-—1
If M" is homogeneous (i.e., if Hol(M)° acts transitively on M"), then Hol (M)°
is not nilpotent.

Proof. If G =Hol(M)is nilpotent then the center C of the Lie algebra of G is
nontrivial (cf. [7]). Since the action is transitive it follows that every Z’e C in-
duces a nonsingular holomorphic vector field on M”. The desired conclusion now
follows from the theorem. ]

REMARK. According to a result of Bott [3], if a compact complex #-manifold
admits a nonsingular holomorphic vector field then its Chern numbers vanish.
This result neither includes nor is included in Theorem A.

3. Generalizations of the theorem of Carrell-Lieberman and Sommese. In
order to formulate our results in this section in a simple manner, we introduce
the following generalization of the notion of a Kéihler manifold.

DEFINITION. A compact complex manifold M with dim¢ M =n s of type K,
if there exists a family {g;} of d-closed forms y; of degree =<2+ p and positive in-
tegers {r;} such that the exterior product J] uj’f is of type (n, n) and §,, I1 pf!' #0.

M" is of type K}, if there exists a d-closed form p of type (2+ p, 2+ p) such
that n=r(2+p) and § u"#0.

REMARK. If M" is of type K, then it is certainly of type K,, and every com-
pact n-dimensional Kdhler manifold is of type K{§ as is every compact complex
manifold with Chern number [C{]#0.

We can now formulate the main result of this section.

THEOREM B. Let M" be a compact complex n-manifold of type Ko. If M"
admits a nonsingular holomorphic vector field then h®'(M")+h"»O(M") #0.
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Since for compact Kihler manifolds we have # "0 =p%1 = %b 1(M), it is evident
that we have the following.

COROLLARY B.1 (Matsushima [11], Carrell-Liebermann [4], Sommese [12]).
If M" is an n-dimensional compact Kdhler (esp. projective algebraic) manifold
which admits a nonsingular holomorphic vector field, then b,(M) # 0.

Arguing as in Section 2, we have the following analogue of Corollary A.2.

COROLLARY B.2. If M" is an homogeneous compact complex n-manifold of
type Ko then Hol(M")° is not nilpotent.

Proof of Theorem B. Since M" is of type K, we have forms {u;}, each of degree
<2, and integers {r;} with {IT x// > 0. We may decompose the product IT p;/ as

H [,Ljr-’= IA’]Fpk’qk=F0’l/\Fl‘OAFl'lAFO'ZAFZ'O,

where F?% % js a product of d-closed forms, each of type (px, qx), and
O=<pr+aqgr=<2.

We may assume that the factor F%!is absent, for otherwise there exist d-closed
forms p of type (0, 1) which are not exact (because { I'l ,uj'i #0) and so

oY (M™ =0.

Similarly, we may assume that the factor F!? is absent. Thus
S”frj — FLIp F2.05 0.2

Suppose now that Z is a nonsingular holomorphic vector field. Since Z is of type
(1,0), izF%2=0. On the other hand, we may also assume that iz F*°=0. In
fact, F>° =TT B; for some holomorphic 2-forms §;, izF%0= 2 izB8 k= Bi
and the holomorphic 1-forms {izG;} must vanish if A L0=0. Set F=F"!, R=
F*9A F%2 (the factors annihilated by i) and factor Fas F=I1/, «;, where the
o;’s are d-closed (1, 1) forms. As in the proof of Theorem A, set T=~{;ciz+ize{,
with ¢ as in (2.1). With P=FAR and i =iz we have

P=TP={NiIP=¢(Ai(F)AR
m
=§'/\[ 2 i) I1 aj]"\R-
k=1 i=k
Hence, for some k, i(ay) #0. Now 3i(ay) = —id(ax) =0, so i(ay) is d-closed. To

show A% '3 0 it suffices to show that there do not exist {fx}¥=1, fre C=, such
that dfx =i(ay) for all k. Suppose such fi did exist. Let

def ~ ~ ~
II(P1, .o s DE) S A - Nép A oo N&p, N oo Ny, A==+ AN,

where the caret * indicates omission. Extend the definition of Il so that I1(p,, ..., px)
is symmetric in (py, ..., px). Let
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E}(’l‘_‘ E fpl"'fpkn(pl""spk), ISksms

1<p,<--<pg=m
and let Zo=F=]I7-, «;. We claim that
) i(Zk') = 3(Tki1)-
We postpone the proof of (*) until the proof of the theorem is completed. Now
FAR=T(FAR)={Ni(F)AR=¢ANi(Z¢")AR
=AIEPHAR=—F(¢AZP'AR)+IEAZT'AR
=3¢ ALV AR+ §-exact form.

Applying T again we have FAR=T*(FAR)=¢ANi(3¢ A AR+ F-exact form =
EAIENI(Z) AR+ J-exact form = (3¢)’A XS AR+ §-exact form. It is easy to see
that continuing in this fashion we have, for 1 <k <m,

FAR=038wi+(30)*ANT(AR, where wre A™" "\,

Choosing k = m in this last expression we have:

m
P=FAR=8w,+(3¢)" II fiAR
Jj=1
m

=dwn+ IT f7(3)" AR,
j=1

J =
since dw = 0w if we A™"~!. Applying Stokes’ theorem we find that

m
SP= S I1 £;(35)"AR % 0.
j=1
However, this is absurd, since

IT /;(35)" AR = T[ _1‘[11’,-(55“)"'/\13]
J= Jj=

m

= ,1‘[1 Ji EALIBE)"AR+(3F)"AIR] =0.
j=

To complete the proof it only remains to prove (*):

i(Zph= > oy o iAN(P1, ..o, PK))

l=p|<---<pr=m

- fp,---fpk[Eléfqn(p.,...,pk,q)]
Z

pl<p2<...<pk

= X b fpl"'fpkgfqn(pla---spst)
g=11=p)<---<pp=m
q# Py
= 2 5(fp1"'fpqu)r-[(pls'-',pksq)z

D j’s and g in
ascending order
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= 2 g(fp]"'fpk_*_l)n(pla"'spk+l)

l=py<--<pgy=m

=0X fp, S, JU( D1, ooy Pk+1)  (since da;=0)
=dTkir.
This completes the proof of the theorem. U

THEOREM C. If M" is a compact complex manifold of type K¢ which admits
a nonsingular holomorphic vector field, then h®'(M") # 0.

The proof is exactly the same as the proof of Theorem C; however, the consid-
eration of 4" ° is no longer necessary since no factors of type (1, 0) or (2, 0) can
occur. Theorem C also generalizes the result of Matsushima, Carrell-Lieberman,
and Sommese. O

REMARKS. (1) According to the result of Bott [3] cited at the end of Section 2,
if M" admits a nonsingular holomorphic vector field then {,, Ci'=0, where [C|]
is the first Chern class. It follows from Theorem C that | w” =0 for every closed
(1,1) form on M" if, in addition, A% (M")=0

(2) The theorems of this section have real analogues which will be described
elsewhere [10].

4. Related results and open questions. When M " is Kihler it is possible to ob-
tain certain refinements of the preceding results for group actions even when b, is
not necessarily zero. For this purpose we let HoI(M )° denote the connected sub-
group of Hol(M")° with Lie algebra [L, L], where L denotes the Lie algebra of
Hol(M) (i.e., the holomorphic vector fields).

THEOREM D. If M" is a compact Kdhler manifold then I—H(M )° cannot act
freely on M" (unless, of course, Hol(M)° = {id}). Thus, if G is a connected sub-
group of Hol(M)° that acts freely on the compact Kéihler manifold M", then G
is abelian.

Proof. Suppose that Hol(M ") {id} and that Hol(M")° acts freely on M™.
Let Z be a nonsingular holomorphic vector field in [L, L] that generates a flow in
I—T&(M ")0. It follows that there exist holomorphic vector fields {Z;} and {Z/} and
constants {C;} such that Z=; C;[Z/, Z}/']. We claim that, this being the case,
there exists a smooth function fe C* such that iz w = df, where w is the Kéhler
form, even if b; = 0. Assuming for a moment the validity of this claim and apply-
ing the arguments of the proof of Theorems B and C to the product form P =",
we are immediately led to contradictory conclusions. On one hand { " # 0 while,
on the other,

w'=Tw"=¢AnizoAw" !
=nf3¢Aw" '+an exact form,

and so (applying 7 n more times)
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= T+ "
=n! f"7(3¢")+an exact form
= an exact form.
To prove the claim we recall that, for real vector fields X and Y,
[deix+ixed,iyl=ix,vyj

(cf. [6, p. 93]). It is immediate that this formula extends (by linearity) without
change to the complex case: X=A++—1B, Y=C++/—1D. Now if Z’ is a holo-
morphic vector field then deiz +iz od=208ciz +iz <0, since iz +iz°d=0 It
follows that if Z’ and Z” are holomorphic then

l.[z"zﬂ]w= [6iz:+i2'6, izﬂ]w
(4.1) =aizliz"w—izﬂaiz'w+f2'al'zﬁw—izﬂiz'aw
=izfaiz"w—izﬂaiz'w,

since dw=0 and iz iz w=0. Now 8(iz»w)= —iz-0w =0, and so it follows from
the theory of harmonic integrals on Kihler manifolds that iz»w = g, | + dg, for
some d-harmonic (0, 1) form g, ; and some g e C”. Consequently,

l'z'afzf'w=t'z'a(ao,|+5g)=iz'agg
=a_(iZ' ag)a

where we have used the fact that dag, ;=0 (since the metric is Kéhler). Since a
similar argument shows that iz~ iz w=0(iz-3g) for some g e C®, the d-exact-
ness of iz, z-jw now follows from (4.1). The claimed d-exactness of i»w there-
fore follows from the relation Z =3 C;[Z}, Z!], and the proof is complete. [l

COROLLARY. If M" is a compact Kdihler manifold with geometric genus
h" %0 then Hol(M™)° is abelian.

Proof. 1t suffices to show that the Lie algebra L of Hol (M) is abelian, [L, L] =
{0}. Now if [L, L] {0} then there exist holomorphic vector fields Z’ and Z” such
that the commutator Z=[Z’, Z”]#0. Since h™ %0 it follows from a result of
Howard [8] that Z must be nonsingular. The argument in the proof of Theorem
D then shows that no such Z can exist. 1

REMARKS. (1) Observe that Riemann surfaces (n=1) with #"%=1 admit free
abelian holomorphic actions while, for #"°=2, Hol(M")°={id}, as is well known.

(2) Although we have treated only manifolds of type Ky and K{ in Section 3,
the methods of this paper allow one to prove analogous results for manifolds of
type K, (p =0), when the assumption 4 LOAM"y+ h%® Y (M"™) 0 is replaced by an
analogous condition on the Hodge numbers A7 °(M) for r+s=<p+1. We leave
the exact formulation and the proof to the interest reader.

(3) Sommese has shown ([12], [13]) that if A" is Kdhler and b,(M) = 0 then any
solvable subgroup of Hol(M ") has a fixed point. It would be interesting to know
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whether or not Sommese’s theorem extends to the more general situation con-
sidered in Sections 2 and 3 of this paper.

(4) 1t is reasonable to ask whether or not the fixed point theorems for 1-para-
meter subgroups of Hol(M") discussed here extend to single biholomorphisms
¥ € Hol(M")?, at least when ¥ is sufficiently close to the identity. This is the case
for the analogous situation of symplectic transformations (close to the identity)
on a symplectic manifold (cf. [14]).
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