DENSE ORBITS ON THE INTERVAL

Marcy Barge and Joe Martin

Introduction. Let 7 be a closed interval, and f: I — I be continuous. Associated
with f is the inverse limit space (7, f) = {(xo, X1,...) | Xi€ I, and f(x;;1) =x;},
and the induced homeomorphism f: (7, f)— (I, f), given by f(xo, X1,...)=
(f(x0), X0, X1, ...). In [2] it is shown that (Z, f) can be topologically realized as
a global attractor for a homeomorphism of Euclidean space. Indeed, it seems
likely that such objects as the “strange attractor” of Henon [6] can be described
as inverse limits.

In this paper we explore the relationship between the dynamics of f on 7, and
f on (I, f), with an emphasis on the existence of a dense orbit, and its conse-
quences. It is the existence of a dense orbit on (/, f) which makes the attractor
“visible” under the computer generated iteration of a randomly chosen point.
For particular examples of (Z, f) the reader is referred to [3], [4], and [10].

Suppose now that f: 17— I has a dense orbit; that is, there is an x such that
{f"(x) | n=0} is dense in I. There are really two distinguishing cases. See [3,
Lemma 2].

Case 1: { f*"(x) | n =0} is dense in 7. This is the most natural case, and the one
which we will study in detail in this paper.

Case 2: { f*"(x) | =0} is not dense in /. See [3, Example 3]. In this case, the
interval 7 splits into two subintervals J and K such that 7=JUK, JNK = {pt},
f(J)=K, and f(K)=J. Letting g = f2 | J, we have by [3, Lemma 2] that g2 has
a dense orbit, and so we are back in Case 1 for g: J — J. As a consequence of this
we adopt the more natural hypothesis that 2 has a dense orbit.

Definitions and terminology. If ¢ and b are distinct real numbers, we will let
[a, b] denote the smallest closed interval containing both @ and b, and let (a, b)
denote the associated open interval. We will generically let 7 be a closed interval
and will be considering continuous functions f: 7 — I. All of the functions which
we consider are continuous.

If f:I—-1, and n is a nonnegative integer, then f": I — I is the n-fold com-
position of f with itself. If f: I— I, and x €1, then the orbit of x under f is
{f"(x) | n=0}. The orbit of x will be denoted O(x). The statement that x has
period k means that k is a positive integer, f K(x)=x, and if j is an integer 1 <
J <k, then f7(x) # x. The statement that f has a dense orbit means that there is
a point y € I such that O(y) is dense in /1.

Associated with f:7I— 17 is the compact, connected metric space ([, f)=
{(x0, X1, ...) | f(xi) =xi_1} with metric
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(Z, f) is an example of what Bing [4] has called a snake-like continuum. The
reason for this terminology is that for each ¢ >0, there is a finite open cover-
ing {g1, &2, ..., &} of (4, f) such that (i) diam(g;) <e, and (ii) giNg;#* D if and
only if |i—j| =1. We will denote elements of (Z, f) by subbarred letters as x =
(xo, X1, -.. ). The projection maps I1,,, of (I, f) onto I, given by I1,(x) =x,, are
continuous. If H is a subcontinuum (compact, connected subspace) of (7, f) we
will let H, denote I1,(H ). Note that H,, is a closed interval or point and that
S(Hy)=H, )
If f:I—-1, then finduces a homeomorphism f: (I, f)— (I, f) by

S((x0, X1, .. )) = (f(x0), X0, X1, ... ).

Notice that foIl,=II,f, II,=11,,,°f, and feIl,,,=1I,.

If S is a snakelike continuum, then the intersection of any collection of sub-
continua of S is a subcontinuum of S. See [4].

If S is a continuum, the statement that S is indecomposable means that S is
not the union of two of its proper subcontinua. If S is a continuum, and pe S,
then the composant of S containing p is the union of all proper subcontinua of
S which contain p. The continuum S is indecomposable if and only if S has un-
countably many composants and they are mutually disjoint. See [7, pp. 139-141].

If S is a continuum, then a set A C S is residual if and only if 4 is dense in S
and is the intersection of countably many open sets in S.

We will utilize the following lemma from [1].

LEMMA 0. Suppose that X is a compact metric space and that f: X - X is
continuous. Then f has a dense orbit if and only if for each nonempty open set
UcX, Uy=1 f(U) is dense in X.

Proof. See [1, Lemma 3]. O
In all that follows, 7 is a closed interval, and f: 7 — I is continuous.

LEMMA 1. Suppose f has a det}se orbit. Then there is a residual set C in (I, f)
such that if xe C, then both {f"(x)|n=0} and {f~"(x)|n=0)} are dense in

, f).-

Proof. Let x be a point of I whose orbit is dense under f. Let x;, X3, ... be cho-
sen so that f(x;)=xandif i =1, f(x;;)=x;. Letx = (x, x3, X2,...)€ (I, f). Then
Fr(x)=("x), f7U(x), ..., f(x), x, x1,...) and it is clear that { f"(x) |n =0} is
dense in (Z, f). It follows from [1] that there is a residual set A C (Z, f) such that
if y e A then [f"(z)lnzO} is dense in (Z, f). O

Since the homeomorphism f has a dense orbit, so does f "'.A Thus, again by
[1], there is a residual set B S (7, f) such that if y € B then [f_"(,_v) |n=0} is
dense in (Z, f). Let C=ANB.

LEMMA 2. Suppose that x € I, and that {f*"(x) |n=0} is dense in I. Then if
Jand k are integers, j=0, k=1, the set {fk”“(x) | n =0} is dense in I.

Proof. This is a portion of Lemma 2 of [3]. 0
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NOTATION. If X is a compact metric space with a given metric, we let D(X)
be the diameter of X.

THEOREM 3. Suppose that f* has a dense orbit. Let H be a proper subcon-
tinuum of (I, f). Then lim,,_, . D(f~"(H))=0

Proof. Let H be a proper subcontinuum of (Z, f) and for each integer n, n=0,
let H,, =1I1,,(H) be the projection of H onto the nth coordinate space. It is clearly
enough to show that lim,, , - D(H,)=0

Suppose to the contrary that lim,, _, . D(H,) # 0. Then there is a positive number
e and an increasing sequence n,, n,, ... of integers such that for each i, D(Hy;) > €.
Now, there is a closed interval J which is contained in infinitely many of the in-
tervals H,,, Hp,,.... That is, there is a closed interval J and an increasing se-
quence m,, m,, ... such that for each i, J C H,»;. Now since the periodic points of
f are dense ([8] or [3, Corollary to Lemma 2]), there are distinct periodic points
p and g in J. We suppose that the period of p is r; and the period of g is r,.

We will next show that H contains two distinct periodic orbits. Now, since at
least one of the numbers (#7; — m,;) mod r; must be repeated infinitely many times,
there is a subsequence ¢, 5, ... of m;, my, ... such that for each i and j, (¢;—¢;) =
Omod r;. We now construct, in (7, f) the point

=( sptp' spfzs- 9pt3,’~-)

where p;;=p. Then pe (1, f), f’l(p) = p, and in fact p € H since I1,(p) € H for
infinitely many values of n. Similarly, we construct q € H, with f ’Z(q) =gq, and
q*Dp.

Now let K be the intersection of all subcontinua of (Z, f) which contain both
p and q. Because (/, f) is a snakelike continuum [4], K is a subcontinuum of
(I, f) and K C H. Moreover, f1"2(K) =K. This is because p and g belong to
both f"1"2(K) and f ~"1"2(K).

Now, since X is proper, there is an integer n such that Il,(K) = K,, is a proper
subinterval of 7. Using the fact that f71720I1,, = I1,o f"1"2, we have that f"1"2(K,) =
S2(I1,(K)) =T1,(f""2(K)) =I1,(K) = K,. Thus K,, is a proper subinterval of
I which is invariant under f"1"2. This is impossible since it follows from [3,
Lemma 2] that there is a point x such that {f"1"2(x) | n =0} is dense in I. This
establishes Theorem 3. O

THEOREM 4. Suppose that f? has a dense orbit. Suppose that C is a compo-
sant of (I, f), k is a positive integer, and f* (C) = C. Then there is a unique point
p e C such that f¥ (p)=p, and if x € C then (f~*"(x) | n> 0]} converges to p.

Proof. We first argue that there is a pomt p € C such that f F( p)=p.Let yeC.
Then since f¥(C) = C, we have that f¥( Y)e = C. Let H be a proper subcontinuum
of (Z, f) which contains both y and f"(z) Let L=cl(U;=0 f”"(H)) L is a sub-
continuum of (Z, f). We distinguish two cases.

Case 1: Assume that Uy_o f ~"%(H) is closed. Then L C C, and hence L is
proper. Furthermore, £ ~¥(L) C L. Since L has the fixed point property [5], there
is a point p € L such that f—k(g) =p. Then £=fk(g).
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Case 2: There is a point pe L—X7—o f 7" (H). Then there is an increasing se-
quence ni, n,, ... of integers and a sequence of points xi, x2, ... such that x;e

fM%(H) and {x; |i=0} — p. Now it follows from Theorem 3 that
lim D(f~"*(H))=0

Since both f~"*(y) and f~"*Y*(y) belong to f ~"*(H), we have that
(" (@) iz0}>p and {f~CF(y)|i=0)-p.

From this it follows that 7 ~%(p) = p, and hence that fX(p)=p. It remains to
be shown that pe C. - - -

If pg C, then L is not a proper subcontinuum of , f) and hence L = ([, f)
The previous argument shows that if ze L—Ujpy—o f *"(H), then f¥(z)=
Since (I, f)—C is dense in (Z, f), it follows that f* is the identity, and hence
that ¥ is the identity. Then every point of 7 is periodic, and this contradicts the
fact that f2 has a dense orbit. Thus peC.

The uniqueness of p, and the fact that if x € C, then {f *"(x) | n=0} — p, both
follow immediately from Theorem 3. This establishes Theorem 4. - ]

NOTATION. If ye (I, f) we let C(p) denote the composant of (Z, /) which
contains y. In other words, C(y) is the union of all proper subcontinua which
contain y.

COROLLARY 5. Suppose that f* has a dense orbit. Let z be a point of (I, f)
such that { f ~"(z) |[n=0} is dense in (I, f). Then if ye C(z), {f ~"(¥) |n=0} is
dense in (I, f).

Proof. Let xe (I, f) and let ¢ > 0. Let H be a proper subcontinuum of (Z, f)
which contains y and z. Now, by Theorem 3 and the fact that {(f~"(z)|n=0}
is dense, there is a p031t1ve integer j such that (1) d(f~/ (z),x)<e/2, and (ii)
D(f/(H))<e¢/2. Thend(f f(z),)_c)<e andso {f~ “(y)| =0} is dense in (7, f).

]

THEOREM 6. f? has a dense orbit if and only if, for each subinterval J of I and
each pair c,d e int I, there is an integer N such that if n> N then [c,d] C f"(J).

Proof. We first assume that 2 has a dense orbit. Let J be a subinterval of
I. Since the periodic points of f are dense ([8] or [3, Corollary to Lemma 2]),
there is a periodic point p € intJ. Suppose that p has period k. Let g = f*. Let
L=cl(Uy=02"(J)). Then L is a closed interval. Now let y eintJ such that
{f2"(y) |n=0} is dense in I. Then from Lemma 2 it follows that {g"(y) | n= 0]
is dense in 7. Hence L =1.

We will next show that if x is a periodic point such that O(x) Cint/, then
there is an integer M such that O(x)C fM(J). To this end, suppose that x is
periodic, the period of x is 7, and O(x) Cint/. Let x; and x, be, respectively, the
smallest and largest elements in O(x). We may assume that x; # p. Now, since
Un=o(g”(J)) =int I, there is an integer r such that [x;, p]Cg’(J). Let h=g'
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and notice that A/(x;) =x;, #'(p) =p. Now it follows from two applications of
Lemma 2 that there is a point z € int[x;, p] such that {A"(z) |n =0} is dense in I.
Therefore there is an integer m such that A’”(z) > x». Then we have 2" (p) = p,
h'""(x;) =x;, and A""(z) > x,. It follows that A"(J) D [x;, x2] D O(x). Thus, for
m=t-m-r-k we have fM(J)D O(x). Then if m=M, f"™(J)D O(x).

Now suppose that ¢,d eint I and that c<d. Let « and 8 be periodic points
such that (i) [c,d]C[a, 8], and (ii) O(«¢)UO(B) Cint I. Then there are posi-
tive integers M, and M, such that O(a) C fM1(J) and O(B) C fM2(J). Let N=
max{M,, M,}. Then if n>N, [c,d] C [a,B]C f"(J). This concludes the first
half of the argument.

Next, suppose that for each subinterval J of I, and for each pair ¢,d eint I,
there is a positive integer N such that if » > N then [c,d]C f"(J). We will first
argue that f has a dense orbit. Let U be an open interval in 7, and let x e U. We
will show that Uy~ f ~"(x) is dense in I. If not, there is a closed subinterval J
of I such that JN (U =o f ~"(x)) = . But by the condition, there is a positive
integer N such that x e fV(J). Hence, there is a point y € J such that fN(y) =x.
Then ye JN(Uy=o0 S "(x)). Therefore, Uy;—o f "(x) is dense in 7, and so
Un=0f "(U) is dense in I. It follows from [1] that f has a dense orbit.

Then there is a point z I such that { f"(z) |n =0} is dense in I. If { f2"(z) |n =0}
is not dense in 7, then it follows from [3, Lemma 2] that there are closed intervals
C,and C, in I such that CiUC, =1, CiNC, ={pt}, f(C,)=C,, and f(C,) =C;.
Now let ceint Cy, d eint C, and let J be C,. Then, for each positive integer n,
[c,d]1Z f"(J). This is a contradiction, and hence f? has a dense orbit. This es-
tablishes Theorem 6. [l

As an interesting corollary to the argument for Theorem 6, we have the fol-
lowing.

COROLLARY 7. If f? has a dense orbit, and x € int I, then \U S 7"(x) is dense
inl.

THEOREM 8. Suppose that f? has a dense orbit. Suppose that H is a nonde-
generate subcontinuum of (1, f), and that e > 0. Then there is a positive integer N
such that ifn>N and xe, f), then d(x, f"(H)) <e. In particular, U>—o f"(H)
is dense in (1, f).

Proof. Let H be a nondegenerate subcontinuum of (7, f) and let e > 0. Now
there is a positive integer j and a 6 > 0 such that if x, y e (7, f) and |x; —y;| <,
then d(x, y) <e. Since H is nondegenerate there is an integer m such that H,, =
I1,,,(H) is a closed interval. Since f has a dense orbit, the image of a closed inter-
val is nondegenerate, and it follows that H,=1II,(H ) is nondegenerate.

Now it follows from Theorem 6 that there is a positive integer NV, N> j, such
that if n> N and x €I then d(x, f"/(H,)) < 8. Now, let x = (xg, X1, ...} € (I, f)
and suppose that n> N. Then Hj(f”(H)) = f""/(H,) and then there is a point
Yy=(0,>1,---) ef”"’(Ho) such that |x; —y;| <4. It follows that d(x, y) <e, and
hence that d(x, f"(H)) < e. This establishes Theorem 8. O
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THEOREM 9. Suppose that f* has a dense orbit. Let A be an infinite subset of
the positive integers. Then there is a residual set X in I such that if x€ X then
{f/(x)|je A} is dense in I.

Proof. Let U be an open set in (Z, f). Since every open set contains a non-
degenerate subcontinuum, it follows from Theorem 8 that U {f/(U)|je A} is
dense in (/, f). Let {By, B>, ...} be a countable basis for the topology of (7, f),
and for each positive integer i let W;=U {f/(B;) | e A}. Then W; is an open
dense setin (7, f). Let Z=N;~; W;. It follows from the Baire Category Theorem
that Z is a residual set in (7, f). Now if x = (xo0, X1, ...Y€ Z then, for each i, xe W;
and so there is an integer j € 4 such that f ~/(x) € B;. Thus, if x € Z, we have that
{f/(x)|je A} is dense in (Z, f).

Now, if U is open in (7, f), let xe ZNU. It follows that U {f ~/(U) | j eA} is
open in (Z, f). Using the same argument as before, there is a residual set Y in
(1, f) such that if y e Y then {ff(y) |je A} is dense in ([, f).

Now let X =II,(Y). Then X is a residual in 7, and if x € X then {f/(x) | je A}
is dense in /. This establishes Theorem 9. O

DEFINITION. Suppose that y is a fixed point of f. The statement that x is ho-
moclinic to the fixed point y means that x y, and there is a choice of inverse
images f ~1(x), f ~2(x), ... such that both S(x)—>yand f 7"(x) - y. If y is a pe-
riodic point of f with period s, then the statement that x is homoclinic to y means
that x is homoclinic to the fixed point y under f*.

THEOREM 10. Suppose that f* has a dense orbit. Let y be a point of int I which
is periodic. Then there is a point x which is homoclinic to y.

Proof. Suppose that y has period s. Let g = f°. Then g(y) =y, and it follows
that g2 has a dense orbit.

Suppose now that g ~!(y)Nint 7 = y. Since y eint 7 there are subintervals 7; and
I, of I such that L1UI, =1, I)NI,={y}, g*(I;)=1,, and g?(I,) = I,. This is im-
possible since g2 has a dense orbit and hence cannot have an invariant interval.
Thus, there is a point x # y such that xeint 7 and g(x)=y

In (7, g) let y=(»,»,»,...) and let C be the composant of (7, f) containing y.
Since C is a dense, connected set-in (Z, f) ([7, pp. 139-141]), we have that int 7 C
ITo(C). Then there is a point x = (xg, X1, ... ) in C with x =xo. From Theorem 3
we have that {2 ~"(x)|n=0)} converges to y, and it follows that {x,]|n =0} con-
verges to y. Then x is homoclinic to y. - (1

COROLLARY 11. If f? has a dense orbit, then {x | there isa y € I, and x is ho-
moclinic to y} is dense in I.

DEFINITION. If X is a compact metric space, #: X — X is a homeomorphism,
and x, y, z € X, then the statement that z is heteroclinic from x to y means that
both d(h ~"(z), h~"(x)) =0 and d(h"(z), h"(y)) = 0.

THEOREM 12. Suppose that f? has a dense orbit. Suppose that x, yel,f)
and, for some m, I1,,(y) €int 1. Then there is a point z € (1, f) which is hetero-
clinic from x to y.
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Proof. Let C be the composant of x. Since int 7 C Hm(C) thereis a pointzeC
such that IT,,(z) =I1,,(y). We then have that d(f"(z), f"(y)) - 0. Slnce z and x
are in the same composant, it follows from Theorem 3 that

d(f"(z), f7"(x)) — 0. O
THEOREM 13. If f? has a dense orbit, then f has a point of odd period.

Proof. Let J and K be disjoint subintervals of 7. It follows from Theorem 6
that there is a positive integer NN such that if > N then (JUK) C f"(J)NSf"(K).

Let p be a positive integer which is prime and larger than 2N+ 2. Let r =
(pr—1)/2, s=(p+1)/2. Thenr>N, s> N, and r+s=p.

Now, since K C f’(J), there is a subinterval J; of J such that f"(J;) =K. Then
JIC LK) =f"15(J1) =fP(J;)). Then there is a point x € J; such that f”(x) =x.
Since xe Jy, f'(x) e K, and JUK = &, it follows that f(x) # x. Since p is a prime
we have that the period of x is p. This establishes Theorem 13. ]

Notice that the argument shows that every subinterval of 7 contains a point of
odd period. Actually, it can be shown that if 2 has a dense orbit, and J is a sub-
interval of 7, then there is an integer N such that if » > N then J contains a point
whose period is n. We will deal with this, and related questions, elsewhere.

We conclude with some examples.

2t if 0=t
f(t)_{Z—Zt if 1<y

EXAMPLE 1. Let

Using Theorem 6, it can be verified that 2 has a dense orbit. In fact, if J is a sub-
interval and J contains [k/2", (k+1)/2""], then f"'(J)=[0, 1]. A description of
(I, f) can be found in [3].

EXAMPLE 2. Suppose that # is an odd positive integer, n =2k +1. Define f:
[0,1] - [0, 1] by

k+1 kK+1i kK—i K—i k+i+1
f(O)———, f(2k) ,f( ) : (2k >= o

forl=i<k-—1, and f(2k/2k) = f(1) =0, and f is linear on the intervals comple-
mentary to these points. f is the standard example of a function having period n,
but no smaller period in the Sarkovskii sequence. See [9]. It can be shown, using
Theorem 6, that f2 has a dense orbit.

EXAMPLE 3. In [0, 1] let

<P 2<Pa<Ppo<DI1<PpPr<ce

be such that { p,} - 1 and {p_,} — 0. For each integer n let I,, = [ p,, Prn+1]. Define
fn:In_’In—]UInUIn+l by fu(pr) =Dn,

2p,+p Pn+2p
fn(pn+1)=pn+la fn(_'j—‘é‘_nﬂ)=pn+2: fn(%>=pn—ls
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and f,, is linear on the intervals complementary to these points.

I,y
Pn+1 T
1,
Pn ]
1,
Pn I, Pn+1

Figure 1

Now, define f[0,1]—[0,1] by f(0)=0, f(1)=1, and f(x)=f,(x) if xel,.

——
-
.
—

Figure 2
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Using Theorem 6, it can be shown that f2 has a dense orbit. Since £ ~'(0)=0

and f ~!(1) =1, it can be seen that the hypothesis that x € int 7 is necessary in Cor-
ollary 7, Theorem 10, and Theorem 12.

10.
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