DENSE ORBITS ON THE INTERVAL

Marcy Barge and Joe Martin

Introduction. Let I be a closed interval, and $f: I \to I$ be continuous. Associated with f is the inverse limit space $(I, f) = \{(x_0, x_1, \dots) \mid x_i \in I, \text{ and } f(x_{i+1}) = x_i\}$, and the induced homeomorphism $\hat{f}: (I, f) \to (I, f)$, given by $\hat{f}(x_0, x_1, \dots) = (f(x_0), x_0, x_1, \dots)$. In [2] it is shown that (I, f) can be topologically realized as a global attractor for a homeomorphism of Euclidean space. Indeed, it seems likely that such objects as the "strange attractor" of Henon [6] can be described as inverse limits.

In this paper we explore the relationship between the dynamics of f on I, and \hat{f} on (I, f), with an emphasis on the existence of a dense orbit, and its consequences. It is the existence of a dense orbit on (I, f) which makes the attractor "visible" under the computer generated iteration of a randomly chosen point. For particular examples of (I, f) the reader is referred to [3], [4], and [10].

Suppose now that $f: I \to I$ has a dense orbit; that is, there is an x such that $\{f^n(x) \mid n \ge 0\}$ is dense in I. There are really two distinguishing cases. See [3, Lemma 2].

Case 1: $\{f^{2n}(x) \mid n \ge 0\}$ is dense in *I*. This is the most natural case, and the one which we will study in detail in this paper.

Case 2: $\{f^{2n}(x) \mid n \ge 0\}$ is not dense in *I*. See [3, Example 3]. In this case, the interval *I* splits into two subintervals *J* and *K* such that $I = J \cup K$, $J \cap K = \{pt\}$, f(J) = K, and f(K) = J. Letting $g = f^2 \mid J$, we have by [3, Lemma 2] that g^2 has a dense orbit, and so we are back in Case 1 for $g: J \to J$. As a consequence of this we adopt the more natural hypothesis that f^2 has a dense orbit.

Definitions and terminology. If a and b are distinct real numbers, we will let [a, b] denote the smallest closed interval containing both a and b, and let (a, b) denote the associated open interval. We will generically let I be a closed interval and will be considering continuous functions $f: I \to I$. All of the functions which we consider are continuous.

If $f: I \to I$, and n is a nonnegative integer, then $f^n: I \to I$ is the n-fold composition of f with itself. If $f: I \to I$, and $x \in I$, then the *orbit* of x under f is $\{f^n(x) \mid n \ge 0\}$. The orbit of x will be denoted O(x). The statement that x has period k means that k is a positive integer, $f^k(x) = x$, and if f is an integer $1 \le j < k$, then $f^j(x) \ne x$. The statement that f has a dense orbit means that there is a point $y \in I$ such that O(y) is dense in I.

Associated with $f: I \to I$ is the compact, connected metric space $(I, f) = \{(x_0, x_1, \dots) \mid f(x_i) = x_{i-1}\}$ with metric

$$d((x_0, x_1, ...), (y_0, y_1, ...)) = \sum_{i=0}^{\infty} \frac{|x_i - y_i|}{2^i}.$$

Received October 25, 1984. Revision received August 13, 1986. Michigan Math. J. 34 (1987).

(I, f) is an example of what Bing [4] has called a *snake-like continuum*. The reason for this terminology is that for each $\epsilon > 0$, there is a finite open covering $\{g_1, g_2, ..., g_n\}$ of (I, f) such that (i) $\operatorname{diam}(g_i) < \epsilon$, and (ii) $g_i \cap g_j \neq \emptyset$ if and only if $|i-j| \leq 1$. We will denote elements of (I, f) by subbarred letters as $\underline{x} = (x_0, x_1, ...)$. The *projection maps* Π_n , of (I, f) onto I, given by $\Pi_n(\underline{x}) = x_n$, are continuous. If H is a *subcontinuum* (compact, connected subspace) of (I, f) we will let H_n denote $\Pi_n(H)$. Note that H_n is a closed interval or point and that $f(H_{n+1}) = H_n$.

If $f: I \to I$, then f induces a homeomorphism $\hat{f}: (I, f) \to (I, f)$ by

$$\hat{f}((x_0, x_1, \dots)) = (f(x_0), x_0, x_1, \dots).$$

Notice that $f \circ \Pi_n = \Pi_n \circ \hat{f}$, $\Pi_n = \Pi_{n+1} \circ \hat{f}$, and $f \circ \Pi_{n+1} = \Pi_n$.

If S is a snakelike continuum, then the intersection of any collection of subcontinua of S is a subcontinuum of S. See [4].

If S is a continuum, the statement that S is indecomposable means that S is not the union of two of its proper subcontinua. If S is a continuum, and $p \in S$, then the composant of S containing p is the union of all proper subcontinua of S which contain p. The continuum S is indecomposable if and only if S has uncountably many composants and they are mutually disjoint. See [7, pp. 139–141].

If S is a continuum, then a set $A \subset S$ is *residual* if and only if A is dense in S and is the intersection of countably many open sets in S.

We will utilize the following lemma from [1].

LEMMA 0. Suppose that X is a compact metric space and that $f: X \to X$ is continuous. Then f has a dense orbit if and only if for each nonempty open set $U \subset X$, $\bigcup_{n=1}^{\infty} f^{-n}(U)$ is dense in X.

In all that follows, I is a closed interval, and $f: I \rightarrow I$ is continuous.

LEMMA 1. Suppose f has a dense orbit. Then there is a residual set C in (I, f) such that if $\underline{x} \in C$, then both $\{\hat{f}^n(\underline{x}) \mid n \ge 0\}$ and $\{\hat{f}^{-n}(\underline{x}) \mid n \ge 0\}$ are dense in (I, f).

Proof. Let x be a point of I whose orbit is dense under f. Let $x_1, x_2, ...$ be chosen so that $f(x_1) = x$ and if $i \ge 1$, $f(x_{i+1}) = x_i$. Let $\underline{x} = (x, x_1, x_2, ...) \in (I, f)$. Then $\hat{f}^n(\underline{x}) = (f^n(x), f^{n-1}(x), ..., f(x), x, x_1, ...)$ and it is clear that $\{\hat{f}^n(x) \mid n \ge 0\}$ is dense in (I, f). It follows from [1] that there is a residual set $A \subset (I, f)$ such that if $y \in A$ then $\{\hat{f}^n(y) \mid n \ge 0\}$ is dense in (I, f).

Since the homeomorphism \hat{f} has a dense orbit, so does \hat{f}^{-1} . Thus, again by [1], there is a residual set $B \subseteq (I, f)$ such that if $\underline{y} \in B$ then $\{\hat{f}^{-n}(\underline{y}) \mid n \ge 0\}$ is dense in (I, f). Let $C = A \cap B$.

LEMMA 2. Suppose that $x \in I$, and that $\{f^{2n}(x) \mid n \ge 0\}$ is dense in I. Then if j and k are integers, $j \ge 0$, $k \ge 1$, the set $\{f^{kn+j}(x) \mid n \ge 0\}$ is dense in I.

Proof. This is a portion of Lemma 2 of [3].

NOTATION. If X is a compact metric space with a given metric, we let D(X) be the diameter of X.

THEOREM 3. Suppose that f^2 has a dense orbit. Let H be a proper subcontinuum of (I, f). Then $\lim_{n\to\infty} D(\hat{f}^{-n}(H)) = 0$.

Proof. Let H be a proper subcontinuum of (I, f) and for each integer $n, n \ge 0$, let $H_n = \prod_n (H)$ be the projection of H onto the nth coordinate space. It is clearly enough to show that $\lim_{n\to\infty} D(H_n) = 0$.

Suppose to the contrary that $\lim_{n\to\infty} D(H_n) \neq 0$. Then there is a positive number ϵ and an increasing sequence n_1, n_2, \ldots of integers such that for each i, $D(H_{n_i}) > \epsilon$. Now, there is a closed interval J which is contained in infinitely many of the intervals H_{n_1}, H_{n_2}, \ldots . That is, there is a closed interval J and an increasing sequence m_1, m_2, \ldots such that for each i, $J \subset H_{m_i}$. Now since the periodic points of f are dense ([8] or [3, Corollary to Lemma 2]), there are distinct periodic points f and f in f. We suppose that the period of f is f and the period of f is f and the period of f is f and f in f.

We will next show that H contains two distinct periodic orbits. Now, since at least one of the numbers $(m_i - m_1) \mod r_1$ must be repeated infinitely many times, there is a subsequence t_1, t_2, \ldots of m_1, m_2, \ldots such that for each i and j, $(t_i - t_j) = 0 \mod r_1$. We now construct, in (I, f) the point

$$\underline{p} = (..., p_{t_1}, ..., p_{t_2}, ..., p_{t_3}, ...)$$

where $p_{t_i} = p$. Then $\underline{p} \in (I, f)$, $\hat{f}^{r_1}(\underline{p}) = \underline{p}$, and in fact $\underline{p} \in H$ since $\Pi_n(\underline{p}) \in H$ for infinitely many values of n. Similarly, we construct $\underline{q} \in H$, with $\hat{f}^{r_2}(\underline{q}) = \underline{q}$, and $\underline{q} \neq \underline{p}$.

Now let K be the intersection of all subcontinua of (I, f) which contain both \underline{p} and \underline{q} . Because (I, f) is a snakelike continuum [4], K is a subcontinuum of (I, f) and $K \subset H$. Moreover, $\hat{f}^{r_1 r_2}(K) = K$. This is because \underline{p} and \underline{q} belong to both $\hat{f}^{r_1 r_2}(K)$ and $\hat{f}^{-r_1 r_2}(K)$.

Now, since K is proper, there is an integer n such that $\Pi_n(K) = K_n$ is a proper subinterval of I. Using the fact that $f^{r_1r_2}\circ\Pi_n = \Pi_n\circ \hat{f}^{r_1r_2}$, we have that $f^{r_1r_2}(K_n) = f^{r_1r_2}(\Pi_n(K)) = \Pi_n(\hat{f}^{r_1r_2}(K)) = \Pi_n(K) = K_n$. Thus K_n is a proper subinterval of I which is invariant under $f^{r_1r_2}$. This is impossible since it follows from [3, Lemma 2] that there is a point x such that $\{f^{nr_1r_2}(x) \mid n \ge 0\}$ is dense in I. This establishes Theorem 3.

THEOREM 4. Suppose that f^2 has a dense orbit. Suppose that C is a composant of (I, f), k is a positive integer, and $\hat{f}^k(C) = C$. Then there is a unique point $p \in C$ such that $\hat{f}^k(\underline{p}) = \underline{p}$, and if $\underline{x} \in C$ then $\{\hat{f}^{-kn}(\underline{x}) \mid n > 0\}$ converges to \underline{p} .

Proof. We first argue that there is a point $\underline{p} \in C$ such that $\hat{f}^k(\underline{p}) = \underline{p}$. Let $\underline{y} \in C$. Then since $\hat{f}^k(C) = C$, we have that $\hat{f}^k(\underline{y}) \in C$. Let H be a proper subcontinuum of (I, f) which contains both \underline{y} and $\hat{f}^k(\underline{y})$. Let $L = \text{cl}(\bigcup_{n=0}^{\infty} \hat{f}^{nk}(H))$. L is a subcontinuum of (I, f). We distinguish two cases.

Case 1: Assume that $\bigcup_{n=0}^{\infty} \hat{f}^{-nk}(H)$ is closed. Then $L \subset C$, and hence L is proper. Furthermore, $\hat{f}^{-k}(L) \subset L$. Since L has the fixed point property [5], there is a point $\underline{p} \in L$ such that $\hat{f}^{-k}(\underline{p}) = \underline{p}$. Then $\underline{p} = \hat{f}^k(\underline{p})$.

Case 2: There is a point $\underline{p} \in L - \sum_{n=0}^{\infty} \hat{f}^{-nk}(H)$. Then there is an increasing sequence n_1, n_2, \ldots of integers and a sequence of points $\underline{x}_1, \underline{x}_2, \ldots$ such that $\underline{x}_i \in \hat{f}^{-n_i k}(H)$ and $\{\underline{x}_i \mid i \geq 0\} \to p$. Now it follows from Theorem 3 that

$$\lim_{i\to\infty}D(\hat{f}^{-n_ik}(H))=0.$$

Since both $\hat{f}^{-n_i k}(\underline{y})$ and $\hat{f}^{-(n_i+1)k}(\underline{y})$ belong to $\hat{f}^{-n_i k}(H)$, we have that

$$(\hat{f}^{-n_i k}(\underline{y}) | i \ge 0) \rightarrow \underline{p}$$
 and $\{\hat{f}^{-(n_i+1)k}(\underline{y}) | i \ge 0\} \rightarrow \underline{p}$.

From this it follows that $\hat{f}^{-k}(\underline{p}) = \underline{p}$, and hence that $\hat{f}^{k}(\underline{p}) = \underline{p}$. It remains to be shown that $p \in C$.

If $p \notin C$, then L is not a proper subcontinuum of (I, f) and hence L = (I, f). The previous argument shows that if $\underline{z} \in L - \bigcup_{n=0}^{\infty} \hat{f}^{-kn}(H)$, then $\hat{f}^k(\underline{z}) = \underline{z}$. Since (I, f) - C is dense in (I, f), it follows that \hat{f}^k is the identity, and hence that f^k is the identity. Then every point of I is periodic, and this contradicts the fact that f^2 has a dense orbit. Thus $p \in C$.

The uniqueness of \underline{p} , and the fact that if $\underline{x} \in C$, then $\{\hat{f}^{-kn}(\underline{x}) \mid n \ge 0\} \to \underline{p}$, both follow immediately from Theorem 3. This establishes Theorem 4.

NOTATION. If $\underline{y} \in (I, f)$ we let $C(\underline{y})$ denote the composant of (I, f) which contains \underline{y} . In other words, $C(\underline{y})$ is the union of all proper subcontinua which contain \underline{y} .

COROLLARY 5. Suppose that f^2 has a dense orbit. Let \underline{z} be a point of (I, f) such that $\{\hat{f}^{-n}(\underline{z}) \mid n \ge 0\}$ is dense in (I, f). Then if $\underline{y} \in C(\underline{z})$, $\{\hat{f}^{-n}(\underline{y}) \mid n \ge 0\}$ is dense in (I, f).

Proof. Let $\underline{x} \in (I, f)$ and let $\epsilon > 0$. Let H be a proper subcontinuum of (I, f) which contains \underline{y} and \underline{z} . Now, by Theorem 3 and the fact that $\{\hat{f}^{-n}(\underline{z}) \mid n \ge 0\}$ is dense, there is a positive integer j such that (i) $d(\hat{f}^{-j}(\underline{z}), \underline{x}) < \epsilon/2$, and (ii) $D(\hat{f}^{-j}(H)) < \epsilon/2$. Then $d(\hat{f}^{-j}(\underline{y}), \underline{x}) < \epsilon$, and so $\{\hat{f}^{-n}(\underline{y}) \mid \ge 0\}$ is dense in (I, f).

THEOREM 6. f^2 has a dense orbit if and only if, for each subinterval J of I and each pair $c, d \in \text{int } I$, there is an integer N such that if n > N then $[c, d] \subset f^n(J)$.

Proof. We first assume that f^2 has a dense orbit. Let J be a subinterval of I. Since the periodic points of f are dense ([8] or [3, Corollary to Lemma 2]), there is a periodic point $p \in \text{int } J$. Suppose that p has period k. Let $g = f^k$. Let $L = \operatorname{cl}(\bigcup_{n=0}^{\infty} g^n(J))$. Then L is a closed interval. Now let $y \in \text{int } J$ such that $\{f^{2n}(y) \mid n \ge 0\}$ is dense in I. Then from Lemma 2 it follows that $\{g^n(y) \mid n \ge 0\}$ is dense in I. Hence L = I.

We will next show that if x is a periodic point such that $O(x) \subset \operatorname{int} I$, then there is an integer M such that $O(x) \subset f^M(J)$. To this end, suppose that x is periodic, the period of x is t, and $O(x) \subset \operatorname{int} I$. Let x_1 and x_2 be, respectively, the smallest and largest elements in O(x). We may assume that $x_1 \neq p$. Now, since $\bigcup_{n=0}^{\infty} (g^n(J)) = \operatorname{int} I$, there is an integer r such that $[x_1, p] \subset g^r(J)$. Let $h = g^r(J) \subset g^r(J)$.

and notice that $h^t(x_1) = x_1$, $h^t(p) = p$. Now it follows from two applications of Lemma 2 that there is a point $z \in \text{int}[x_1, p]$ such that $\{h^{tn}(z) \mid n \ge 0\}$ is dense in I. Therefore there is an integer m such that $h^{tm}(z) > x_2$. Then we have $h^{tm}(p) = p$, $h^{tm}(x_1) = x_1$, and $h^{tm}(z) > x_2$. It follows that $h^{tm}(J) \supset [x_1, x_2] \supset O(x)$. Thus, for $m = t \cdot m \cdot r \cdot k$ we have $f^M(J) \supset O(x)$. Then if $m \ge M$, $f^m(J) \supset O(x)$.

Now suppose that $c, d \in \text{int } I$ and that c < d. Let α and β be periodic points such that (i) $[c, d] \subset [\alpha, \beta]$, and (ii) $O(\alpha) \cup O(\beta) \subset \text{int } I$. Then there are positive integers M_1 and M_2 such that $O(\alpha) \subset f^{M_1}(J)$ and $O(\beta) \subset f^{M_2}(J)$. Let $N = \max\{M_1, M_2\}$. Then if n > N, $[c, d] \subset [\alpha, \beta] \subset f^n(J)$. This concludes the first half of the argument.

Next, suppose that for each subinterval J of I, and for each pair $c, d \in \operatorname{int} I$, there is a positive integer N such that if n > N then $[c, d] \subset f^n(J)$. We will first argue that f has a dense orbit. Let U be an open interval in I, and let $x \in U$. We will show that $\bigcup_{n=0}^{\infty} f^{-n}(x)$ is dense in I. If not, there is a closed subinterval I of I such that $I \cap (\bigcup_{n=0}^{\infty} f^{-n}(x)) = \emptyset$. But by the condition, there is a positive integer I such that I is dense in I. Hence, there is a point I is dense in I and so I is dense in I is dense in I. It follows from [1] that I has a dense orbit.

Then there is a point $z \in I$ such that $\{f^n(z) \mid n \ge 0\}$ is dense in I. If $\{f^{2n}(z) \mid n \ge 0\}$ is not dense in I, then it follows from [3, Lemma 2] that there are closed intervals C_1 and C_2 in I such that $C_1 \cup C_2 = I$, $C_1 \cap C_2 = \{pt\}$, $f(C_1) = C_2$, and $f(C_2) = C_1$. Now let $c \in \text{int } C_1$, $d \in \text{int } C_2$ and let J be C_1 . Then, for each positive integer n, $[c,d] \not\subset f^n(J)$. This is a contradiction, and hence f^2 has a dense orbit. This establishes Theorem 6.

As an interesting corollary to the argument for Theorem 6, we have the following.

COROLLARY 7. If f^2 has a dense orbit, and $x \in \text{int } I$, then $\bigcup f^{-n}(x)$ is dense in I.

THEOREM 8. Suppose that f^2 has a dense orbit. Suppose that H is a nondegenerate subcontinuum of (I, f), and that $\epsilon > 0$. Then there is a positive integer N such that if n > N and $\underline{x} \in (I, f)$, then $d(\underline{x}, \hat{f}^n(H)) < \epsilon$. In particular, $\bigcup_{n=0}^{\infty} \hat{f}^n(H)$ is dense in (I, f).

Proof. Let H be a nondegenerate subcontinuum of (I, f) and let $\epsilon > 0$. Now there is a positive integer j and a $\delta > 0$ such that if $\underline{x}, \underline{y} \in (I, f)$ and $|x_j - y_j| < \delta$, then $d(\underline{x}, \underline{y}) < \epsilon$. Since H is nondegenerate there is an integer m such that $H_m = \Pi_m(H)$ is a closed interval. Since f has a dense orbit, the image of a closed interval is nondegenerate, and it follows that $H_0 = \Pi_0(H)$ is nondegenerate.

Now it follows from Theorem 6 that there is a positive integer N, N > j, such that if n > N and $x \in I$ then $d(x, f^{n-j}(H_0)) < \delta$. Now, let $\underline{x} = (x_0, x_1, \dots) \in (I, f)$ and suppose that n > N. Then $\Pi_j(\hat{f}^n(H)) = f^{n-j}(H_0)$ and then there is a point $\underline{y} = (y_0, y_1, \dots) \in f^{n-j}(H_0)$ such that $|x_j - y_j| < \delta$. It follows that $d(\underline{x}, \underline{y}) < \epsilon$, and hence that $d(\underline{x}, \hat{f}^n(H)) < \epsilon$. This establishes Theorem 8.

THEOREM 9. Suppose that f^2 has a dense orbit. Let A be an infinite subset of the positive integers. Then there is a residual set X in I such that if $x \in X$ then $\{f^j(x) | j \in A\}$ is dense in I.

Proof. Let U be an open set in (I, f). Since every open set contains a non-degenerate subcontinuum, it follows from Theorem 8 that $\bigcup \{\hat{f}^j(U) | j \in A\}$ is dense in (I, f). Let $\{B_1, B_2, ...\}$ be a countable basis for the topology of (I, f), and for each positive integer i let $W_i = \bigcup \{\hat{f}^j(B_i) | j \in A\}$. Then W_i is an open dense set in (I, f). Let $Z = \bigcap_{i=1}^{\infty} W_i$. It follows from the Baire Category Theorem that Z is a residual set in (I, f). Now if $\underline{x} = (x_0, x_1, ...) \in Z$ then, for each $i, \underline{x} \in W_i$ and so there is an integer $j \in A$ such that $\hat{f}^{-j}(\underline{x}) \in B_i$. Thus, if $\underline{x} \in Z$, we have that $\{\hat{f}^{-j}(x) | j \in A\}$ is dense in $\{f, f\}$.

Now, if U is open in (I, f), let $\underline{x} \in Z \cap U$. It follows that $\bigcup \{f^{-j}(U) | j \in A\}$ is open in (I, f). Using the same argument as before, there is a residual set Y in (I, f) such that if $\underline{y} \in Y$ then $\{\hat{f}^j(\underline{y}) | j \in A\}$ is dense in (I, f).

Now let $X = \Pi_0(Y)$. Then X is a residual in I, and if $x \in X$ then $\{f^j(x) | j \in A\}$ is dense in I. This establishes Theorem 9.

DEFINITION. Suppose that y is a fixed point of f. The statement that x is homoclinic to the fixed point y means that $x \neq y$, and there is a choice of inverse images $f^{-1}(x)$, $f^{-2}(x)$, ... such that both $f^{n}(x) \rightarrow y$ and $f^{-n}(x) \rightarrow y$. If y is a periodic point of f with period s, then the statement that x is homoclinic to y means that x is homoclinic to the fixed point y under f^{s} .

THEOREM 10. Suppose that f^2 has a dense orbit. Let y be a point of int I which is periodic. Then there is a point x which is homoclinic to y.

Proof. Suppose that y has period s. Let $g = f^s$. Then g(y) = y, and it follows that g^2 has a dense orbit.

Suppose now that $g^{-1}(y) \cap \text{int } I = y$. Since $y \in \text{int } I$ there are subintervals I_1 and I_2 of I such that $I_1 \cup I_2 = I$, $I_1 \cap I_2 = \{y\}$, $g^2(I_1) = I_1$, and $g^2(I_2) = I_2$. This is impossible since g^2 has a dense orbit and hence cannot have an invariant interval. Thus, there is a point $x \neq y$ such that $x \in \text{int } I$ and g(x) = y.

In (I, g) let $\underline{y} = (y, y, y, ...)$ and let C be the composant of (I, f) containing \underline{y} . Since C is a dense, connected set in (I, f) ([7, pp. 139–141]), we have that int $I \subset \Pi_0(C)$. Then there is a point $\underline{x} = (x_0, x_1, ...)$ in C with $x = x_0$. From Theorem 3 we have that $\{\hat{g}^{-n}(\underline{x}) \mid n \ge 0\}$ converges to \underline{y} , and it follows that $\{x_n \mid n \ge 0\}$ converges to \underline{y} . Then x is homoclinic to y.

COROLLARY 11. If f^2 has a dense orbit, then $\{x \mid \text{there is a } y \in I, \text{ and } x \text{ is homoclinic to } y\}$ is dense in I.

DEFINITION. If X is a compact metric space, $h: X \to X$ is a homeomorphism, and $x, y, z \in X$, then the statement that z is heteroclinic from x to y means that both $d(h^{-n}(z), h^{-n}(x)) \to 0$ and $d(h^{n}(z), h^{n}(y)) \to 0$.

THEOREM 12. Suppose that f^2 has a dense orbit. Suppose that $\underline{x}, \underline{y} \in (I, f)$ and, for some m, $\Pi_m(\underline{y}) \in \text{int } I$. Then there is a point $\underline{z} \in (I, f)$ which is heteroclinic from \underline{x} to \underline{y} .

Proof. Let C be the composant of \underline{x} . Since int $I \subset \Pi_m(C)$, there is a point $\underline{z} \in C$ such that $\Pi_m(\underline{z}) = \Pi_m(\underline{y})$. We then have that $d(\hat{f}^n(\underline{z}), \hat{f}^n(\underline{y})) \to 0$. Since \underline{z} and \underline{x} are in the same composant, it follows from Theorem 3 that

$$d(\hat{f}^{-n}(\underline{z}), \hat{f}^{-n}(\underline{x})) \to 0.$$

THEOREM 13. If f^2 has a dense orbit, then f has a point of odd period.

Proof. Let J and K be disjoint subintervals of I. It follows from Theorem 6 that there is a positive integer N such that if n > N then $(J \cup K) \subset f^n(J) \cap f^n(K)$.

Let p be a positive integer which is prime and larger than 2N+2. Let r=(p-1)/2, s=(p+1)/2. Then r>N, s>N, and r+s=p.

Now, since $K \subset f^r(J)$, there is a subinterval J_1 of J such that $f'(J_1) = K$. Then $J_1 \subset f^s(K) = f^{r+s}(J_1) = f^p(J_1)$. Then there is a point $x \in J_1$ such that $f^p(x) = x$. Since $x \in J_1$, $f'(x) \in K$, and $J \cup K = \emptyset$, it follows that $f(x) \neq x$. Since p is a prime we have that the period of x is p. This establishes Theorem 13.

Notice that the argument shows that every subinterval of I contains a point of odd period. Actually, it can be shown that if f^2 has a dense orbit, and J is a subinterval of I, then there is an integer N such that if n > N then J contains a point whose period is n. We will deal with this, and related questions, elsewhere.

We conclude with some examples.

EXAMPLE 1. Let

$$f(t) = \begin{cases} 2t & \text{if } 0 \le t \le \frac{1}{2} \\ 2 - 2t & \text{if } \frac{1}{2} \le t \le 1 \end{cases}.$$

Using Theorem 6, it can be verified that f^2 has a dense orbit. In fact, if J is a sub-interval and J contains $\lfloor k/2^m, (k+1)/2^m \rfloor$, then $f^m(J) = [0,1]$. A description of (I, f) can be found in [3].

EXAMPLE 2. Suppose that n is an odd positive integer, n = 2k + 1. Define $f: [0,1] \rightarrow [0,1]$ by

$$f(0) = \frac{k}{2k}, \quad f\left(\frac{k}{2k}\right) = \frac{k+1}{2k}, \quad f\left(\frac{k+i}{2k}\right) = \frac{k-i}{2k}, \quad f\left(\frac{k-i}{2k}\right) = \frac{k+i+1}{2k},$$

for $1 \le i \le k-1$, and f(2k/2k) = f(1) = 0, and f is linear on the intervals complementary to these points. f is the standard example of a function having period n, but no smaller period in the Sarkovskii sequence. See [9]. It can be shown, using Theorem 6, that f^2 has a dense orbit.

EXAMPLE 3. In [0, 1] let

$$\cdots < p_{-2} < p_{-1} < p_0 < p_1 < p_2 < \cdots$$

be such that $\{p_n\} \to 1$ and $\{p_{-n}\} \to 0$. For each integer n let $I_n = [p_n, p_{n+1}]$. Define $f_n: I_n \to I_{n-1} \cup I_n \cup I_{n+1}$ by $f_n(p_n) = p_n$,

$$f_n(p_{n+1}) = p_{n+1}, \quad f_n\left(\frac{2p_n + p_{n+1}}{3}\right) = p_{n+2}, \quad f_n\left(\frac{p_n + 2p_{n+1}}{3}\right) = p_{n-1},$$

and f_n is linear on the intervals complementary to these points.

Figure 1

Now, define $f[0,1] \to [0,1]$ by f(0) = 0, f(1) = 1, and $f(x) = f_n(x)$ if $x \in I_n$.

Figure 2

Using Theorem 6, it can be shown that f^2 has a dense orbit. Since $f^{-1}(0) = 0$ and $f^{-1}(1) = 1$, it can be seen that the hypothesis that $x \in \text{int } I$ is necessary in Corollary 7, Theorem 10, and Theorem 12.

REFERENCES

- 1. J. Auslander and J. Yorke, *Interval maps, factors of maps, and chaos*, Tôhoku Math. J. (2) 32 (1980), 177–188.
- 2. M. Barge and J. Martin, The construction of global attractors, preprint.
- 3. ——, Chaos, periodicity, and snakelike continua, Trans. Amer. Math. Soc. 289 (1985), 355-365.
- 4. R. H. Bing, Snakelike continua, Duke Math. J. (3) 18 (1951), 653-663.
- 5. O. H. Hamilton, A fixed point theorem for pseudo-arcs and certain other metric continua, Proc. Amer. Math. Soc. 2 (1951), 173–174.
- 6. M. Henon, A two dimensional mapping with a strange attractor, Comm. Math. Phys. 50 (1976), 69–77.
- 7. J. Hocking and G. Young, *Topology*, Addison-Wesley, Reading, Mass., 1961.
- 8. Z. Nitecki, *Topological dynamics on the interval*. Ergodic theory and dynamical systems, II (College Park, Md., 1979/80), 1-73, Birkhäuser, Boston, Mass., 1982.
- 9. P. Stephan, A theorem of Sarkovskii on the coexistence of periodic orbits of continuous endomorphisms of the real line, Comm. Math. Phys. 54 (1977), 237-248.
- 10. W. T. Watkins, Homeomorphic classification of certain inverse limit spaces with open bonding maps, Pacific J. Math. 103 (1982), 589-601.

Department of Mathematics University of Wyoming Laramie, Wyoming 82071