ON SOME GENERALIZATIONS
OF THE TRANSFINITE DIAMETER

Li-kui Jiang

In this paper we will establish a useful form of the Golusin inequalities [3]
for univalent functions in a multiply-connected domain. We will utilize them to
obtain a generalization of the concept of the transfinite diameter of a bounded
closed set, which in turn can be used to obtain some interesting distortion theo-
rems in conformal mapping.

1. Let A be a domain in the complex ¢-plane which contains the point at in-
finity and is bounded by N smooth curvesT', (v =1, ..., N). The orientation of ",
is chosen so that A lies to the left. Let f({) be univalent and regular analytic in A,
except for a simple pole at infinity, such that f’(e0) = 1. Define the functional

S —f(Sx)
$i— Sk

for n given points {; € A and #» fixed real constants x;. Here

log|(f($) =S/ (§i—§1)]

is to be replaced by log|f’($;)| for i = k. We ask for the functions f({) of the
above type which maximize the functional.

The existence of such extremum functions is ensured by the compactness of
the function class considered. Let then f({) be such an extremum function and
let D= f(A) be the image domain of A in the z-plane. We can characterize the
extremum function and the extremum domain by the method of variations. We
choose a point zg on 8D and consider a function

2

+o(p?), la|=1,

<0

(1) olf1= X Xxixilog

i, k=1

a
) z*=z+zf

which is univalent in the whole z-plane except for a small subcontinuum of D
around zo. The existence of such variation is well known [5].
The function

3 *($) = e 2
3) SHE) = f(§)+f(§_) +0(p )
is then in the same family of functions and competes with f({). We easily calculate
4 *1= —R 2 — ,
@ SLf*1=Lf] e{ap P f(m) }+o(p )

and because of the extremality of f({), we obtain the inequality
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5 R
() e{ap (1=1Z0 f(g‘z)) ]""O(P )>0

for all admissible variations (2). By Schiffer’s fundamental lemma [5] we conclude
that D is a slit domain bounded by analytic arcs with the differential equation

6 ’ 2 - Xi 2
© (2 7)) 1=

where 7 is a properly chosen real parameter. This leads to

d n
(7) . 2 xilog|z—f(§)| =0
T i=
That is,
(8) ,§1x,-]logf(§)—f(§;)| =k, oneachT,.

Equations (7) and (8) characterize the extremum function f({) and the extremum

domain.
To evaluate these results, we introduce the Green’s function g(¢, ) of A, which

is harmonic in A except for the logarithmic pole at the point y:

1
&) g(&,n)=log +v($, ),
|&—n|
and which vanishes if { — dA. We define
(10) g(s“)—g(s*,oo)—loglfl+p+0(m)

where p is the Robin constant of A. We need also the harmonic measures of the
various curves I',, defined by

1 ag(n, §)
11 =
an @, (§) 27 SI‘,, an d
and their periods

1 ow
12 - v
(12) Pr=o0 Sr'ﬂ on as,

where n denotes the interior normal of dA. It is well known that the matrix
Py, ..., n—1 is negative definite and hence possesses a negative-definite inverse
matrix ((mw,,))1,...,N—1-
Now we can conclude that (8) leads to the identity
N—1

(13) 2 x;log| () —f($)| =s8(8)— E xig(5, $)+ X kiw, (8)+kn,

i=1 r=1

with s =X7_; x; and k¥X=k,—kn.
We still have to determine the constants k). Observe that

1
(14) log| f(§) — £(57)| = log|¢] +o(m) as ¢ — co.
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Hence, letting ¢ — oo in (13), we find

N=1
asy 0=sp— EX,g(i',)+ 2 kiw,(o)+kn.

i=1 v=1

Next, we use the fact that log(f({) — f(¢;)) does not change if ¢ circulates around
each closed curve I'',; that is,

1 d
(16) 5 o 3 108/ = F ()] ds =0
Hence, by Definitions (11) and (12), we have from (13) the N equations
N—1
(17) —Swv(w)— E xlwv(g‘l)_*_ 2 k*pvya V= 1’ °"9N-

i=1
Using the inverse matrix ((w,,))1, ..., n—1, we find

N-—1
(18) = 2 Tua EX;(wa(i'z) we()), p=1,..., N—1,

a=1

while from (15)

(18) kn=—sp+ E x; g($i)— E Ty @y (0) E Xi (0, () — w,(0)).

i=1 n,r=1
We combine (13) with (18) and (18’) to obtain
3 xilog f‘?:?“’ ‘=s(g(s°)—p>+ 3 xia() = B 5y 6)
N-—-1
(19) 3 mu,(6) =0, () E] Xi(@, (1) — w0, (0)).
By v = i=

By writing (19) for ¢ = {&, multiplying by x; and summing over k, we obtain

¢[f]—252x:g(§':) S p_ E xlxk'Y(g'ng‘k)

i=1 }

(20)
+ E Wvu( E kay.(g‘k) SQ)#(CD))( 2 kav(g‘k)_swv(oo)>-

pv=1

Because f is extremal, we have the general estimate

¢[f]<252x:g(§r) —s? P— E xlxk'Y(g.lsg./\)

i=1

+ E 7rv;¢< E ka,u.(g‘k) Swp,(oo))( 2 kav(fk) Sw, (00)

nyv=1

(21)

for every admissible function f(¢). Since the matrix ((wu))1, ..., N—1 1s negative

definite, we have

2r) d)[f]<252x,g(§‘z) —S p— E xzxk'Y(i'us“k)

i=1
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2. In 1923, Fekete [2] introduced an important set measure in the complex
plane defined as follows. Let I be a bounded closed set in the {-plane. Define the
nth diameter of I by

1/(3)
22) dy=max( TI |s“,-—s“k|) .

el \l=<i<k=n

It is easily seen that d, ., =<d, and therefore

23) d= lim d,

n— 0o
exists. Fekete called d the transfinite diameter of the set I' and made interesting
applications of this concept to algebraic problems.

Szegd [6] pointed out the potential theoretic significance of this measure. In-
deed, let I' = 9A = U)_, T',. Consider a positive mass distribution x on the com-
pact set I' with u(I") = 1. The logarithmic potential of x and its energy integral are
defined by

@4) p@)= log; = o7 k)
and
(25) 1iw= | log - du(z) du(s),
rJr |z —¢|
respectively. Let
1 og
2 -2
(26) dii >m o ds,
where g is the Green’s function of A with a pole at oo. It is obvious that
1 ag
i(M)=—1\ —ds=1.
(27) A =0 Sr on %
It is well known that
(28) 1[.&]=mljn ITp]l=p,

where p is the Robin constant of A.
Now take n points {; on I' and write (22) in the form

n 1
29 — logd, =~ 1
@) (3) 8=z B loe gy

izk

Multiplying (29) by IT/ - dji(¢;) =0 and integrating over all {;, we find that in
view of (27) and (28)

@2

and in the limit, as n — oo,

log —
31 ogd<p

To prove the simple relation between the Robin constant and the transfinite
diameter
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32 =1 !
(32) p=log =,
one has to ‘prove the inverse inequality to (31). This was achieved by an inge-
nious application of the theory of Chebyshev polynomials. We will now apply
the Golusin inequality (21) to achieve the same result, and this method will allow
us to deal analogously with many generalizations of the Fekete concept.

3. We define the continua I',(¢) in A which are homotopic and close to the
I', and on which g({) <e. We apply the inequality (21) to the identity function
J($) = ¢, the constants x; =1/n (so that s = 1), and choose the points {; on I'(¢) =
UN_, I',(e) such that
(33) di(e)P= " TI |&i— %l

l=si<k=n

Since ¢[f]=0 for f(§) = ¢ and g($, n) = —log|{ —n|+v(S, 1), we have, by (21'),

2 2 1
G4 3 2 logffi—tkl=2e—p—— X g(i’i,i'k)—;;;_zv(i'f,é’i)-

l=i<k=n Il<i<k=n i=1
Let maX§-eF(E)|’Y(§', §‘)| =M. ThUS,

n—1

2 M
logd,(e)<2e—p—— 2 g )+ —
R° 1<i<k=n n

(35)
M
=2e—p+—,
n

since g({, ) >0 in A. We find in the limit, as #n — oo,
(36) log d(e) <2e—p.

It is easy to show that lim,_, o d(e) =d, and so we obtain
1

37 log — = p.

37) 0g < =p

This is the sought opposite inequality which allows us to infer the identity (32).

We have proved the identity in the case that the point set considered consists of
N smooth curves. In the usual way, the same identity can be extended to the most
general set.

4. We can now extend our treatment to more general set measures. Suppose,
for example, the bounded closed set I' can be decomposed into two disjoint closed
sets A and B. We define the nth modulus of A and B as follows:

(38) M, (A,B)= max Hi<k|§i——§‘k|Hi<k|m—nk|)l/(z)

¢i€eA,neB Hi,klg‘i_nk|

where i, ke {l,..., n}. We also define

. - . - 1/(3)

tieA,n;eB ITi il $i —nel
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By the same reasoning as in the case of the transfinite diameter used by Fekele,
one finds that M}, (A, BY <M} (A, B). Hence the limit of M}(A, B), as n — o,
exists. It is trivial to show that

L}

(39) M}(A, BYd~#""D< M, (A, By< M}(A, B)p Y"1,
where d =max¢ec 4,,e8|$—n| and p=min¢c 4 ,¢p|—7n|. It is obvious that
(40) M(A, B) = lim M,(A, B)

exists. We call the limit M (A, B) the modulus of 4 and B.
To determine the potential theoretic significance of the modulus, we deﬁne the
functional

1
Tyl = § log 7
1)

dpi(z) dp($)

du(z)du()—2{ | log E

i’l fl

+{ [ 1og— g D@ dia($),

where u; and p, are positive mass distributions on 4 and B, respectively, with
m(A)=1and u(B)=1.

Now let
A
(42) w($) = Elwa(f),
where w, (<) are the harmonic measures of I', of which the set A consists. Let
A -1
(43) S=—( gj pa3> .
Define ’
. S dw
w dig=— > 9n ds on A,
dj —S— —aﬁ ds on B
H2 27 dn

It is clear that ji;(A) =1 and ji,(B)=1. Let

1
45) hz)=| log dis ()= | log e+ dia(5)-

1
|&—z|
It is easy to show that
(46) h(z)=Sw(z) for zeA.

Since by (41) and (45) I'[ju1, 2] =§ 4 h(z) dij1(z) —§ 5 h(2) dii2(z), and since h(z) =S
on A and A(z) =0 on B, we have

“7) Iljy, g21=S
Next we show that
(48) I[ay, fi2]=min Iy, p2].

K> B2
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Indeed, let py = i, + v1, p2=jfia+ v2. Then v (A) =v,(B)=0. It can be seen that

49 Ilu, m2l =11, il +1 v, w2142 | h@)dvi@) =2 n@)dva(@).

By equation (2-3) of [1], we find that

_ 1 dvi($) dva(§) 71
(50) Iv, val=5— || [SA Tl Ii—ZIJ dxdy=0.
Observe that
(51) SA h(z) dvi(z) =0, SB h(z) dv,(z) =0

since A(z) =Sw(z)=S on A, h(z)=w(z)=0 on B, and »{(A)=0. Thus, it fol-
lows from (49), (50), and (51) that

(52) Ilpy, w21 =11y, f2]

for any positive mass distributions pu, p with g (A)=1and pu(B)=1.
We proceed now as in the case of the transfinite diameter. We take n points
¢i€ A and n points »; € B and write, in view of (38),

1 1 1
83) X log——F—+ X log——F—Ylog——= —(n>log M, (A, B).
i<k |¢i— | i<k |mi—ne|l %k | i — k] 2

By multiplying (53) with IT/-; da;($:) ITZ = d,uz(nk) > 0 and integrating over all
¢ and 7, we arrive at

1
6 —(} )losa A, By = () )i, il +n [ ] log e i (6) dipat).

Thus, because of (47), we have
(55 logM(A,B)=—S as n—co.
5. To obtain the opposite inequality of (55), we apply the inequality (21) to

the identity function f({) = ¢. Consider the approximating curves I', (¢) on which
max|y($, $)| =M. We choose the points §; € A,, u; € B, such that

Hi<k|§'i—§'k|ni<k|ﬂi“??k|)V(z)

Mn<AE,BE)=(

ILi, «| & — )
We take x;=1/nfor l=i=<mnand x;= —1/n for n+1=<i<2n, so that
2n
S = 2 x;i=0
i=1
Let ¢4, ..., &, correspond to Xy, ..., X, and 5y, ..., 9, tO X541, ..., X2,. Since @[ f]1 =

0, (21) can be written as

1
Pl 27(5’,,?/()-* Ev(m,nk 2 %T(fia"?k)s
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1 N—1
= F 2 Ty E (wu(g-k)_wv(nk)) E (wﬂ(fk)_wu(nk))-
nrv=1 k k
This leads to
L log M,,(A,, B)
1 N-—1 2M
(56) =-3 > T & E (0, (k) —w, (1)) E (w, (k) — wy(nk))+“—“+0(6),
Byv=

where the facts that g(¢,9) >0 in A and g(¢, ) = log(1/|§‘—n|) + v($, 1) have
been used again, as well as the estimate g($;, nx) = O(e). In order to evaluate the
sum in (56), we turn to the following extremum problem. Let e, (v =1, ..., N) be
real numbers such that e, >0 for vy <X\, e, <0 for y=A+1, and

A N
(57) 2 e,,=1, E ev':_l-
v=1 v=A+1
We now ask for the maximum of E,, #_1 m,,.e,€e, under the side condltions (57).
We use the Lagrange multiplier 2¢ and discuss the maximum of E,, #_, Tyu€,€,+
2032 _; e,. We find the conditions

N—1
E TopCp +£’ 0 for v=1,...,\,

(58) N 1

Y we,=0 for y=N+1,..., N—1.

n=1
Multiplying the »th equation-by p,, and summing over », we obtain

N
(59) ea=—CS Duvs a=1,...,N—1.

r=1

By (57) and (59) we have

A -1
(60) i=—( X paﬁ) =s.
a,B=1

Insert (59) in 30,1, 7, .e,e, and find

N-—1 , N=1 A A ~1
@) 3 mee=t3 m, 3 pape= ( > paﬁ) —_s.

vou=1 vou=1 a,B=1
Now let us return to (56). Since w,=0o0on T, for u# v and w,=1o0nT',, we have

n
(62) 2 (@, ($x)—w, (k) =n,+n0O(e) for » <A\,
k=1
where #n, is the number of the points {; €I, (¢), and
n
(63) 2 (@, (Sx)—w, () = —n,+nO(e) for v=N+1,
k=1

where n, is the number of the points n, e T", (¢).
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Lete,=n,/nforl<=v=<N\, e,=—n,/nfor \n+1<p<N. Then ¥)_,e,=1and
>N _,+1e,= —1. Thus we obtain, from (56) and (61),

— 1 Nl 2M
logM,,(AE,BE)sF > 1r,,#(ne,,+nO(e))(neﬂ+nO(e))+—n—+0(e)
prv=1
N1 2M
(64) = > wuee,+—+0()
pr=1 n
2M

= —S+T+O(e).
This implies that
(65) log M(A, B)< —S.
This combines with (55) to yield

A
(66) M(A,B)=exp{—S]=exp{l/ > paﬁ}.
: a,3=1

The result (66) characterizes the modulus M (A4, B). It is well known that

2

is conformally invariant. Therefore the modulus M (A, B) is invariant under con-
formal mapping.

| .
Pop= 75— Sr‘ (0wg /On) ds

6. Further generalizations are obvious. We consider again the N smooth curves
I', and assign to each one a fixed real number e, such that

N
67) > e, =0.

v=1

Consider then the expression

n 1 niN
(68) ( )logvrn(e,,)=— > eiexlog|i— Skl
i#k

where on each I'',,, n points {; are located and the coefficients e; are chosen accord-
ing to the continuum I'',, on which each ¢; is located. The points are to be chosen
in such a way that =w,(e,) = max. It can be seen that =,(e;) forms a convergent
sequence and that

(69) lim n,(e,)=n(e,)

n—oo

exists. We can also characterize w(e,) using the same argument as before and get

N-—1
(70) (e, =exp{ > vruyepe#},

p,v=1

where ((7,,))1,..., n—1 is the inverse of ((p,,))1,...,n—1. This shows in particular
that = (e,) is a conformal invariant since the =, are.

,,,,,
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7. We can now combine the various definitions of potential theoretical quan-
tities by means of Fekete limits to obtain distortion theorems in conformal map-
ping in the unit disk. We follow here a device used by Pommerenke [4] in the case
of the original transfinite diameter and exemplify it for the case of the modulus.

Let

71 SO =5+ 3 6,57

be univalent and regular analytic in |{|> 1. For all such functions we have the
Golusin inequality

$H—JS($x)
$i— Sk

for real constants x; and |{;| > 1. We choose now on |{| =1 two disjoint closed
sets A and B and project them onto the circle |{| =1+ ¢ by the definition

(73) Fi=0+e);.

Thus the sets A,, B, are defined. We then choose the points ¢ e A4,, 5/ € B, such
that they yield exactly the nth modulus M, (A,, B,). Hence

Hi<k|§-;‘—§‘/’:| Hi<k|7lf‘—771t|
ILi x| &7 — k)

Let z/ = f(&}) and w/ = f(n}). Applying (72) with x; =1 for {and x; = —1 for 7/,
we find

(75)

(72) 3 xix¢ log l A

ik

> > Xi Xg log(]— 1_ )
ik $

i Sk

(74) ('2’ ) log M, (A., B.) =log

n I1: <k |zf — 28| TLi < & | Wi — wi|
log| £/ (¢S (nf)| +2log —=
[Z:] glf ( I )f (771 )I g Hi,klz;:_wltl

d 1 1 Hi<k|§‘?—§;|Hi<k|ﬂf—ﬂl’:| 2
= log(l-——-T—> (1-——7—)+410g x * +n O(E).
i§1 |72 |ni" |2 I1: 4| $7 — k]

i

Here we have made use of the fact that
(11
$T—Sk

Replacing the second term in the left-hand side of (75) by

Siar—1
$T—mk

77 Mk —1
*®

: =14+ 0(e).
ni — Nk

(76) >1, >1, and

z(’z’ ) log M,,(f(A.), f(B.))

and using (74), we have

1
log M, (f(A.), f(Be)) = 2log M, (A, Be)—m 2 log| /(5 S ()]

(7 1 1 1 n
=1 > log(l_ I;';‘lz)(l_ |n?|2)+ a1
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Observe that f/({*), |§*| =1+e¢, is bounded uniformly for fixed e > 0. It is clear
that

,}i.’.ri{ =1y > B ENS G5 % Og( I_ﬁ“lTZ‘)(l ln,liz)}_o
for fixed e. Hence it follows from (77) that
(78) log M(f(Ae), f(B.)) =2log M(A,, B.)+ O(e).
Because of the continuity of the modulus, we arrive at the elegant inequality
(79) M(f(A), f(B))=M(4, B)’
as e —»0.
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