CHARACTERIZING CERTAIN INCOMPLETE
INFINITE-DIMENSIONAL ABSOLUTE RETRACTS

Mladen Bestvina and Jerzy Mogilski

0. Introduction and preliminaries. The study of infinite-dimensional manifolds
modeled on Q=[—1,1]7 and s =(—1, 1)® reached a climax when H. Torunczyk
gave a topological characterization theorem for these spaces: A locally compact
ANR is a Q-manifold if and only if any map f: C —» X of a compact (metric)
space can be approximated by a closed embedding. Similarly, a complete ANR
X is an s-manifold if and only if any map f: C — X of a complete (metric) space
can be approximated by a closed embedding.

The second author has characterized manifolds modeled on o ={(fy, f2,...) €
[—1,1]%°: ¢; =0 for all but finitely many i} and X = {(#, #,...) € Q% : ¢; =0 for all
but finitely many i} in the same spirit [20]: An ANR X is a o-manifold if and
only if X can be represented as a countable union of finite-dimensional com-
pacta, each of which is a strong Z-set in X, and any map f: C —» X of a finite-
dimensional compactum C, that is a Z-embedding when restricted to a closed
subset D = C, can be approximated by a Z-embedding g: C — X so that g |D =
S| D. (The characterization theorem for X-manifolds is obtained by deleting the
words “finite-dimensional.”) Although the resemblance with the characterization
theorems for O-manifolds and s-manifolds is obvious, one cannot avoid observ-
ing the much cleaner structure of Torunczyk’s theorems. However, the mention
of strong Z-sets is necessary, since examples of fake s-manifolds constructed in
[4] lead to a straightforward construction of an AR X that can be represented as
o U{point}, such that X s ¢, but X satisfies the hypotheses of the characterization
theorem for o, after deleting the word “strong.” Similarly, if we replace the rela-
tive approximation condition by an absolute one (i.e., requiring D = J), then a
counterexample is constructed by J. P. Henderson and J. J. Walsh [18].

In this paper we introduce a notion of strong C-universality for a class C of
(separable, metric) spaces. In the case that C = {(finite-dimensional) compacta}
this is precisely the property stated in the characterization theorem for X (respec-
tively o).

The key idea that allows one to prove the characterization theorem for ¥ and
o is the notion of an (f.d.) cap set (finite-dimensional compact absorption set),
due to R. D. Anderson [2]. Loosely speaking, ¥ = Q—s C Q is a cap set, since it
is strongly C-universal (€ = {compacta}) and there are small maps Q - X C Q.
This notion has been subsequently generalized by different authors (cf. [5], [24],
[27], [14]). In §3 we introduce the definition of a C-absorbing set, which represents
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a slight modification of the above concept. It enables us to study the geometry of
certain (incomplete, non-o-compact) subsets of the Hilbert space. The lack of
completeness of these spaces is remedied by two facts: (1) they embed nicely into
s =(—1,1) so that any Gjs-subset of s containing them must be a copy of s, and
(2) they can be represented as a countable union of Z-sets.

A sufficient knowledge of geometry of the space, via a now routine decompo-
sition theory argument due to R. D. Edwards (“Edwards strategy” [9]), leads to
the topological characterization of the space.

Carrying out this program, we reprove the characterization theorems for £
and o, and obtain new characterization theorems in the same spirit. In partic-
ular, we characterize £ X s (Corollary 6.3); the absolute Borel sets Q2,, A, (Theo-
rem 6.5), which include A;=X, ;=X Xs, 2, =X%; and ARs that have a form
W(T, *)={(t1, t2,...) € T”: t;= % for all but finitely many i/} (the weak product)
for an AR 7 (Corollary 5.5).

All spaces in this paper are separable and topologized by a metric d.

For a subset AC X and x € X we set d(x, A) =inf{d(x,a): a € A}. By defi-
nition, d(x, @) = . For ¢ >0 we set N, (A)={xe X:d(x,A) <e}. As usual,
diam A =supf{d(x,y):xe A, ye Aland ClyA={xe X:d(x, A) =0}. By cov(X)
we denote the set of all open covers of X. For U, Ve cov(X) we define

mesh U =sup{diamU: Ue U} and St(U,V)={St(U,V):Ue U},

where St(A, V)= U (Ve V: ANV = T} for Ac X. We use St U to denote
St(U,U) and inductively St”"*!'U =St(St”U,U). For U,V ecov(X), V<U
means that V refines U. For maps f, g: X — Y and for U ecov(Y) the symbol
(f, 8) < U means that for each x € X there is Ue€ U such that {f(x), g(x)} = U.
For a map e: Y — (0, ©) we say that g is e-close to f provided d(f(x), g(x)) <
e(f(x)) for x e X. It is well known that two topologies on the set of maps X —» Y
given by open covers and maps e respectively coincide, so we use both concepts
interchangeably. A homotopy H: X x[0,1] — Y is said to be a U-homotopy (e-
homotopy) if for each x € X there is U e U with

H({x}x[0,1DcU  (d(H(x,t), H(x,0)) <e(H(x,0)).

A function e: X — (0, o) is said to be Lipschitz if |e(x)—e(x’')|<d(x,x’) for
x,x'e X. For any €¢: X — (0, ) there is a Lipschitz function €’: X — (0, o) such
that e’(x) <e(x), xe X.

X e ANR (AR) means that X is an ANR (AR) for the class of (separable,
metric) spaces.

A map f: X —Y is a near-homeomorphism if for any U e cov(Y) there is a
homeomorphism 4: X — Y such that (4, f)<U. For X, Ye ANRamap f: X —> 7Y
is said to be a fine homotopy equivalence if for any U € cov(Y) there is a map
g: Y — X such that fg is U-homotopic to idy and gf is f ~'(U)-homotopic to
idy. Amap f: X — Y between ANRs is a UV *-map provided for each y e Y and
any neighborhood U of y € Y there is a neighborhood V of y € Y such that V< U
and the inclusion f ~Y(V) —» f ~1(U) is null homotopic. It is well known (cf. [15))
that f is UV * if and only if f is a fine homotopy equivalence. If f,: X - Y is a
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UV -map, n=1,2,3,... and f,, = f uniformly, then f is a UV *-map. In par-
ticular, near-homeomorphisms between ANRs are fine homotopy equivalences.
The converse holds if X and Y are assumed to be Q-manifolds or s-manifolds;
we expand this list by adding manifolds modeled on certain (incomplete) spaces.

We say that a map f: X — Y is closed over a subset A = Y if for each a € Aand
each neighborhood U of f ~!(a) (which might be empty) there exists a neighbor-
hood V of a such that f~!(V) < U.

If f: X—> Y is amap, and ACSY a closed subset, we can form the adjunction
space X UrA. As a set,

XUrA=(X—f "' 4)ua4;

the topology on X UrA is generated by the open sets in X — f ~!(A) and by the
sets of the form f~Y{(U—-A)U(UNA) for open sets U< Y. Note that f: X—Y
factors through XUrA via p: X > XUrA4 and g: X Uy A — Y defined by

=1 xeX—f7'(A4), oy =1 SO xeX—f71(A),
PX)= f(x) xef YA, X =1 &, xeA.

If f is a fine homotopy equivalence, then X U, A4 is an ANR and both p and ¢
are fine homotopy equivalences.
Finally, N denotes the set of positive integers.

1. Strong Z-sets and the Strong Discrete Approximation Property. A closed
subset A of X € ANR is a Z-set in X if for each U € cov(X) there is a map
S X - X with (f,idy)<U and f(X)NA =D (cf. [1], [16]). Analogously, a
closed subset 4 of X € ANR is a strong Z-set (in X)) if for each U € cov(X) there
is amap f: X — X with (f,id,y)<U and Cly f(X)NA= . Although the dis-
tinction between these two notions was apparently known to D. W. Henderson,
it has been rediscovered recently in [4], where an example of a planar, one-di-
mensional, complete ANR is constructed, containing a point x such that {x]isa
Z-set but not a strong Z-set.

It is much easier to detect Z-sets than strong Z-sets: a closed subset 4 of X e
ANR is a Z-set if and only if for each open subset U of X the inclusion U— A— U
is a (weak) homotopy equivalence [16]. The nice case occurs when X € ANR has
the property that each Z-set in X is a strong Z-set in X. Examples of nice ANR’s
are: (1) locally compact ANR’s; (2) manifolds modeled on metrizable locally con-
vex topological vector spaces F with F* = F [16]} (including /; =s); (3) ANR’s
that can be embedded into nice ANR’s so that the complement is locally homo-
topy negligible (e.g., the pseudoboundary ¥ of the Hilbert cube Q). A set ACX
is locally homotopy negligible if for every open set U € X the inclusion U—A4—-> U
is a weak homotopy equivalence [22].

In this section we establish basic properties of strong Z-sets and give two more
properties that imply “niceness.”

LEMMA 1.1. Let X € ANR, A< X astrong Z-set, Wecov(X),and f:C—Xa
map from a space C. Suppose that D < C is a closed subset such that f|D: D— X
is a closed embedding. Then there isamap g: C - X such that (f,g)<U, g|D=
fID, g(C—D)NA=O, and g is closed over A.
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Proof. We construct sequences {f;: C— X}, {C;: C; is a closed subset of C},
and {W;: “W; e cov(X)]} satisfying the following conditions:

@ filD=Jf;

(b) C; UNi(D)=C, C;_, cintC;, and C;ND = J;

© filCi—i=/fi-1lCiyand Cly fi(C))NA= O;

(d) StW;<W;_;, diam(f;=}(W)—C;)<1/i for each W e St>W;, mesh W; <

2~ % and

(e) (.f;s ﬁ—l) < W,’.

The construction starts with Co= &, Woe cov(X) with St Wo< U, and fo=
J. Suppose that “W;_,, fi_, Ci_1 have been constructed. First choose a locally fi-
nite “W; € cov(X) such that We “®; implies diam (f;Z}(W)ND) <1/3i (this is
possible since f;_; | D is a closed embedding). Let “W; € cov(.X') be such that St?<W,
refines both W; and “W;_; and mesh “W; <2 ~’. Note that

U={ceC: if WeW; and f;_,(c) e Clx W, then d(c, fiZ\(Clx W)ND) <1/3i}

is an open subset of C containing D. Choose a closed set C; € C such that C;UU =
C, and such that (b) holds.

Let N be a closed neighborhood of A4 such that Cly f; _(Ci_ ;)N N= . Since
A is a strong Z-set in X € ANR, there exists a small homotopy H: Cx[0,1] - X
with Hy= f;_;, Clx H{(C)NA= . The homotopy H and the neighborhood N
can be chosen so small that H(C;_; X[0,1DNN=O and H(CX{1})NN=O.

Let «: C—[0,1] be a map with «(DUC;_)={0} such that the graph of
a | C; misses H '(N) (which is a closed subset of Cx[0,1] disjoint from
Ci_1X[0,1]JUCXx{1}). Finally, let f;(c)= H(c, a(c)).

Setting g =1im;_, » f;, we have (f,g)<U, g|D=f|D, and g(C—D)NA=
&.Forae A, g~ (a)=_f " (a)ND is a singleton, say {a}. Let i € N be given and
choose W e St?W; withae W. By (d), de fi_{ (W) —C; € Ny,i(@), and thus ¢ ¢ C;
and c ¢ Ny (@) imply f;_i(c) & W. Since We St2w; was arbitrary with a € W, we
conclude that c¢ C; and c & Ny /;(@) imply fi_i(c) & St2(a, “W;). Finally, (e) im-
plies that in such case g(c) and a are not “W;-close. If We“W; is any element
containing a, we have g ~'(W) Ef,-ill(W)—C,-gNl/,-(d), and hence g is closed
over A. : L]

COROLLARY 1.2 (cf. Theorem 2.4 in [22]). A closed subset A of X € ANR isa
strong Z-set if and only if there is a homotopy H: X X [0,1] —» X such that
(1) H(x,0)=x, xe X,
- (2) HXX0,1DNA=I, and
(3) H is closed over A.

Proof. Suppose that A is a strong Z-set. An application of Lemma 1.1 to C=
Xx[0,1] (f: C— X defined by f(x,t)=x) and D=X X {0} C C produces a map
g(=H): Xx[0,1] - X with (1)-(3). (In addition, H can be chosen to be as small
as we want.)

On the other hand, if H: X X [0, 1] — X satisfying (1)-(3) is given, and if U €
cov(X), choose a map «: C— (0, 1] such that the map g: X — X defined by g(x) =
H(x, a(x)) is U-close to id x. The verification that Clyg(X)NA= O is left to
the reader. ]
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The next goal is to establish that the property of being a strong Z-set is local.

LEMMA 1.3. Let X ANR, AC X a strong Z-set in X, and U< X an open
subset. Then ANU is a strong Z-set in U.

Proof. By Corollary 1.2 there is a homotopy H: X X [0,1] = X closed over
A with Hy=idy and H(X X (0,1])NA=. Choose a map «: U— (0,1] such
that H{(x,?):xe U, 0=<ft=<a(x)}<U and let G: Ux[0,1] - U be defined by
G(x,t)=H(x,t-a(x)). It is easy to verify that G is closed over ANU, G(x,0) =
x, and G(Ux(0,1)DNA=. Thus, by Corollary 1.2, ANU is a strong Z-set
in U. O

LEMMA 1.4. Let X€ ANR, A< X a Z-set in X, A; X a strong Z-set in X
(i=1,2,...), and A==, A;. Then A is a strong Z-set in X.

Proof. Without loss of generality, we assume that ;S A, €43 ---. Wecan
approximately factor id y: X — X through a o-compact space P (say, a locally
finite countable simplicial complex). We show that each map f: P — X can be
approximated by amap g: P—> X with Clxy g(P)NA=O.

Write P=U;Z, P;, with each P; compact and PSS P, S P3;< ---. We define
sequences {U;: WU;ecov(X)}, {fi: P— X}, and {(V;, W;): V;, W; are open in X,
V:2Cly W; 2 W; 2 A,;} with the following properties: _

4) StU;<U;_q, StU; <{V;_1, X—Clxy W;_,1, mesh ‘u,,-<2"’;

S) (i, fim)<WU, fil Pica=fio1|Pi—1, Clx fi(P)NA; =9, fi(PYNA=D;

and

©6) fi(P)NV,=09.

For the inductive construction, observe that A; is a strong Z-set in X — f; _(Pi_;)
(by Lemma 1.3), and hence we can let f;=~hf;_;, where h: X—f; _(P;i_) —
X —fi_1(P;_y) is a suitably chosen map that extends to #: X —» X by h(x)=x,
x€ fi—1(Pi-1)-

Setting g =1lim;_, » fi, we have (f, g) <StU; and Cly g(P)NA=, since

gPN(UW)=0.
Thus, A4 is a strong Z-set in X. |

COROLLARY 1.5. Let A be a closed subset of X € ANR. Then A is a strong
Z-set in X if and only if there is a U € cov(X) such that ANU is a strong Z-set in
U, for each U e U.

Proof. Necessity follows from Lemma 1.3. To prove sufficiency, we can as-
sume without loss of generality that U = {Uj, Us, ...} is countable. Write ANU; =
UF=1 A/, where each A/ is closed in X. Then each A/ is a strong Z-set in X, A=
Ufj=1A/, and A is a Z-set in X (the property of being a Z-set is local)! Conse-
quently, by Lemma 1.4, A4 is a strong Z-set in X. 4

COROLLARY 1.6. If A is a topologically complete closed subset of X € ANR,
and if A=, A;, where each A; is a strong Z-set in X, then A is a strong Z-set
in X.

Proof. By [7], A is a Z-set, hence (by Lemma 1.4) a strong Z-set. ]
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The following approximation property plays the crucial role in the theory of
Hilbert space manifolds (see [23], [26], [4]): A (metric) space X has the Strong
Discrete Approximation Property if for each map f: @i Q; = X of a count-
able disjoint union of Hilbert cubes into X and for each ‘U € cov(X) there exists
a map g: @i ; Q; — X U-close to f, such that the collection {g(Q;)}i=; is dis-
crete in X.

The following proposition is proved in [4] for complete X.

PROPOSITION 1.7. Let X € ANR satisfy the Strong Discrete Approximation
Property. Then every Z-set in X is a strong Z-set in X.

Proof. As in the proof of Lemma 1.4, approximately factor id y through a
locally compact space P, and let f: P — X be a map. Write P=P’'UP”, where

=Ujiz, P/, P"=Uix P/, and {P/}i~1, {P{};=, are discrete families of com-
pacta. For U € cov(X) choose V € cov(X) such that each map «: P’— X thatis
“V-close to f | P’ extends to a map &: P — X that is U-close to f. Let A be a Z-set
in X, and let oot P’ — X — A be a map such that {«(P/)};~,is discrete in X, and «
is ‘V-close to f | P’. Thus there is an extension &: P — X of « such that (&, f)<
U. Choose W e cov(X) such that if 8: P —» X is W-close to &, then {S(P/)}i%,
is discrete and S(P’)NA = . Repeating the construction for P”, we produce a
map fB: P— X such that (&, 8) <U, (&, B) <W, B(P")NA= D, and{B(P/)}i-,
is discrete. For a small map /#: X — X — A the collections [hB(P Ny, (hB(P/
are discrete, and consequently Cly A8(P)NA = O, and hf approximates f. [

COROLLARY 1.8. Let X € ANR satisfy the Strong Discrete Approximation
Property. Then every compact subset of X is a strong Z-set in X.

Proof. For a given map f: Q — X, apply the Strong Discrete Approximation
Property to @i, f;: @21 Qi — X, with f; = f. If D{>, g; approximates D/~ f;,
and if {g;(Q;)};=1is discrete, then at least one g;(Q;) misses a given compactum
K, which is therefore a Z-set in X. By Proposition 1.7 it follows that K is a strong
Z-set in X. ]

There are many interesting spaces that can be written as countable unions of
strong Z-sets. The next lemma establishes that such spaces are “nice.”

LEMMA 1.9. Suppose X € ANR can be represented as X =\U;~, X;, where
each X; is a strong Z-set in X. Then X satisfies the Strong Discrete Approxima-
tion Property.

Proof. By Corollary 1.6, each compact subset K of X is a strong Z-set in
X. Let f:@i~; O;— X be a map and let U € cov(X). We construct sequences
fgi: X > X}, {U;: U;ecov(X)} and ((V;, W;): V;, W; are open sets in X, V;2
Cly W, 2 W, 2 X;UUi_ 1 gjgj—1-- &1 (@} _, Ox)} such that

(7)) g(X)NV,=,

8 StuU;<U;_;, StU;<{V;_1, X—ClxyW;_,}, and

) (gi,idx)<U;. ‘

Define f’: @;L; Q; > X by
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S(@)=gig-1--&af(q), for gqeQ;.

Then f’ is St U,-close to f, and {f’(Q;)}i~: is a discrete family in X (since
S (D1 QINWi=D, i=1,2,...). 0

The next lemma will be needed in the sequel.

LEMMA 1.10. Let f: X — Y be a fine homotopy equivalence between ANR’s,
and let A be a closed subset of Y. Then A is a strong Z-set in X U; A if and only
if A is a strong Z-set in Y.

Proof. Assuming that A is a strong Z-set in X U;A, we can construct a small
map h: Y — Y with Cly /(Y)N A= by choosing an approximate right inverse
g: Y - X UrA to the induced fine homotopy equivalence p: XU, A4 — Y, and pick-
ing a map h’: XU;A— X UsA close to id with ClXUfA(h'(XUfA))ﬂA=®.
Then h= ph’g: Y — Y has the desired properties.

Now suppose that A4 is a strong Z-set in Y, and let U ecov(X U,A4). Cover
ACY by a family ©V of open sets in Y such that p ~!(V) refines U. Let V=
U V and let W ecov(V) such that St W <V and, for each We W, diam W<
inf{d(w,y):we W, ye Y—V}. Let F, G, H be open subsets of Y such that A <
FcClyFeGeClyGe HcClyHCV. Since A is a strong Z-set in F (by Lem-
ma 1.3) there is a map ¢: Y—> Y such that o |Y—F=id, ¢|V: V>V is W-
close to idy, and ¢(Y)NM = & for some closed-in Y neighborhood M < F of A.
Since p | p Y(V—M)—>V—M is a fine homotopy equivalence, there is a map
q:V—M—p '(V—M) and a p ' (“W)-homotopy #,: p ' (V—-M) > p~ ' (V-M)
such that hg=id, A =gp |p'1(V—M). Let A: p~ (V) > [0, 1] be a function such
that A\™'(0)=p~'(V—H) and A\7'(1) = p " (Cly G). Define g: XU; 4> XU, A4
by

X for xep W(Y—-H)
g(x) =14 M(x) for xep " (V-F)

qep(x) for xep ' (G)

Then (g, idXUfA) < U, and g(XUsA) Npi(M)= . Thus A is a strong Z-set in
X UrA. ]

In [22] it was shown that every ANR X can be embedded into a complete ANR
X so that X — X is locally homotopy negligible in X.

LEMMA 1.11. Suppose an ANR X is embedded into a complete metric space
T, and A is a strong Z-set in X. Then there is a Gs-subset X of T such that
(i) X is an ANR,
(i) X< X and X — X is locally homotopy negligible in X, and
(iii) A=Clzx(A) is a strong Z-set in X.

Proof. By Corollary 1.2, there is a homotopy H: X x[0,1] — X so that (1)-(3)
holds. By [22], there is a Gs-subset X; of 7T such that X < X;, X, is an ANR, and
X,—X is locally homotopy negligible in X,. Note that, by [22], any Gs-subset
X of X, with X € X < X, is an ANR (and X —.X is locally homotopy negligible
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in X). Then H:Xx[0,1]— X, extends to a Gs-set containing X x[0,1] (see
[10]). Trimming it down, we obtain a G;-subset X, of X;, and an extension
H:X,%x[0,1] - X, of H. Note that H(x,0) =x and H(X,x[0,1])NA= O, since
H(sz[e 1])CC1X1H(X><[e 1]) € X,— A. Moreover, H(X,x(0,1]) misses a
G;-set A < A. Similarly, H is closed over A (from the density of X in X5). By [11]
the set C(H) of pomts in X, over which H is closed is of type G; in X, and it
contains 4. Let X;=X,— (ClX2 C(H) —C(H))— (CIXZA A), and observe that
X3;2 X and X; is of type G; in X,. Inductively choose a sequence {X =4 such
that X< X, < X,_;, X, is a Gs-subset of X,,_;, and H(X,x[0,1]1) = X,_,. Then
let X =N—| X,, and note that A | X x[0,1]: X X [0, 1] - X is a map closed over
A=ClzAwith H(x,0)=x and H(X x(0,11)NA = &. Hence, by Corollary 1.2,
A is a strong Z-set in X, which is a G;-set containing X.

2. Strong universality. Let € be a class of (separable metric) spaces. We say that
C is a topological class if for every C e C and every homeomorphism A: C —>D
it follows that D e C. A topological class C is hereditary with respect to closed
(open) subsets if every closed (open) subset of any C e C belongs to C.

A (separable, metric) space X € ANR is C-universal if for everymap f: C—-X
of a space C e € and for every U € cov(X) there exists a Z-embedding #: C - X
such that (f, #) < U (an embedding /#: C — X is a Z-embedding if h(C) is a Z-set
in X).

A space X is strongly C-universal if for every map f: C— X from a space
C e @, for every closed subset D < C such that f|D: D — X is a Z-embedding,
and for every U € cov(X), there exists a Z-embedding #: C — X such that 4 | D—

SID and (f, h) <U.

PROPOSITION 2.1. Let C be a topological class hereditary with respect to
closed subsets, and let X € ANR be strongly C-universal. Then every open sub-
set of X is strongly C-universal.

Proof. Let d be a metric on X, U an open subset of X, and f: C —» U a map of
a space Ce Cinto U such that f|D: D — U is a Z-embedding for some closed set
Dc C. We have U=Uj-, U, where U,={xe X:d(x,X—U)=2""}. Let A,=
YU, and B,=f"Y(U—-intU,;,). Then C=Uy_; A,, A,SintA,,;, and
A,,, B, are disjoint closed subsets of C. For a given map ¢: U — (0, 1) we shall
construct a sequence { f,: C — U} satisfying the following conditions:
@ f.1B.,UD=f|B,UD,
(ii)) fn|A,UD:A,UD — U is a Z-embedding.
(i) fu|An1UB,UD=fy_1|Ay-1UB,UD,
(iv) f, is ¢,-close to f,,_;, where ¢,: X — (0,1) is a map such that ¢,(x)=
27 "minfe(x),d(x,X—-U)} for xe U, ,;, and
W) Sfu(Ani2) € Upya-
Without loss of generality, Ag= & and By= C, so we can set fy= f. Let us as-
sume that f,,_; has been constructed. Since X is a strongly C-universal ANR,
there is an ¢,-homotopy g,: C — X such that go= f,_1, &: C— X is a Z-embed-
ding, and g, |4,V (D —intB,)=f,,_1 | A1 U(D —int B,)). We can also assume
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that g,(c)=f(c) for each ce D—int B,. Define f,: C— X by f,(c)=g\c(c),
where \: C— [0, 1] is a Urysohn function satisfying A(B,) = {0}, X(A4,) = {1}.
To check (v) let ce 4, ,,. If ce A, 4+, then f,_;(c)e U, and hence, by (iv),
Ld(fu_1(c), X —U) =<d(f,(c), X —U), which implies d(f,(c), X —U) =12~ (*D
and thus f,(c)e U,4+>. If ce A, »—A,,+1 € B, then f,(c) = f(c) € U, ,. Conse-
quently, (v) holds and it implies f,(C) < U.

Defineamap h: C - U by h=1im,,_, » f,. Itis clear that 4 is e-close to f. Also,
(ii), (iii) and (iv) imply that /4 is an embedding. Note that

h(C)= Lljoh(An+1_intAn)= U fo+1(Apr1—int Ay)

n=0

is a locally finite union of Z-sets in U, and hence A(C) is a Z-set in U. ]
The following proposition helps detecting strong universality.

PROPOSITION 2.2. Let C be a topological class that is hereditary with respect
to both closed and open subsets. If each open subset of X € ANR is C-universal,
and if every Z-set in X is a strong Z-set, then X is strongly C-universal.

Proof. Let f: C— X be a given map from Ce C and the D < C be a closed
subset such that f|D: D — X is a (strong) Z-embedding. By Lemma 1.1 we can
approximate f by a map g: C— X such that g| D= f|D, g(C—D)N f(D)=
@, and so that g is closed over g(D) = _f(D). Apply the hypotheses to the map
g|C—D:C—D— X—g(D) to produce a Z-embedding g’: C—D —» X —g(D).
If g’ is sufficiently close to g | C— D, then the map g: C — X defined by g | D=
g|D, §|C—D=g’is a Z-embedding close to f with g | D= f|D. O

A topological class Q is additive if C € C whenever C can be expressed as the
union of two of its closed subsets that belong to C.

For a topological class € we can form the class @, that consists of all spaces C
that can be written as C=U, - C,,, where C,, is a closed subset of C with C, € C,
n=1,2,.... Clearly, if C is hereditary with respect to closed subsets, then C, is
hereditary with respect to both closed and open subsets.

PROPOSITION 2.3. Let C be an additive topological class hereditary with re-
spect to closed subsets. Suppose X € ANR can be written as X =\U;~ X;, where
each X; is a strong Z-set in X. If X is strongly C-universal, then X is strongly C,-
universal.

Proof. By Proposition 2.2 (see also Lemma 1.9 and Proposition 1.7) it suffices
to show .that each open subset U € X is C,-universal. Without loss of generality
(see Lemma 1.3 and Proposition 2.1) we can assume that U = X.

Let f: C— X be a map of C e C,. We assume first that C is an open subset of
some C’e C. Write C=U;~, C;, where int C; 2 C;_;, C; is a closed subset of C,
and C; e C. For a given U € cov(X), choose a sequence {U; e cov(X)}i=; such
that St U; <U;_; and St U; < U. Without loss of generality, & =X, € X, <
X3 € ---. We shall construct a sequence {f;: C — X};=, such that
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(1) fi]|Ci: C;— X is a Z-embedding.

) filCica=fi1|Cizys

(3) Cle,(C—mt C,-+1)OX,-+,= &; and

(4) f:and f;_; are close with respect to U;; the function ¢;: X — (0, 1], where

eo=1 and eg=min{te_,,8/:1<j=<i—1,j—l<k=i—1};
and 6,{:X—»(0, 1] is a map with
8l(x)=1d(x,X;) for xeCly fi(C—intC;).

We set fp=_f. Assuming that f;_; has been constructed, choose a Z-embedding
v;: C;—»> X such that v; | C;—; = fi_1 | Ci_1, and v; is so close to f;_, | C; that there
is an extension 9;: C —» X of v;, which is close to f;_;. Let 4,: X - X be a small
homotopy such that Cly (X)NX;,; =9, and define f;: C—> X by fi(c)=
hxe)(D;i(c)), where A: X — [0, 1] is a Urysohn function such that N(C;) = {0} and
NMC—int C; ) ={1}.
The reader can verify that f’=1im;_, » f; is a Z-embedding U-close to f.
Now consider the general case of Ce @,. Using the fact that for each map
g: C— X the restriction g | C;— C;_; can be approximated by embeddings, we
construct a sequence { f;: C — X} satisfying
(5) fi|C;is a Z-embedding,
©) filCioi=fi1|Cizy,s
(7) f:iis a closed map over f;(C;) and f;(C—C;)N f;(C;)= I,
®) d(fi(c), fi—1(c)) =3d(fi—1(c), fi—1(Ci_y)) for ce C—C;_;,
9 Clx filCO)N(X;i—fi-1(Ci1)) =D,
(10) d(fi(c), fi-1(€)) <zd(fi-i(c), Xi_;) for ce C—C;_;, and _
a1 (fi, fi—1)<U; for a sequence {U;ecov(X)], with meshU; <27 and
St U; < Uj—y.
As usual, fo=_f. Suppose f;_; has been constructed, and consider

Jict|C—Ci_1: C—Ci_1 > X —fi_1(Ci_y).
By the case already discussed, we can find a Z-embedding
h:Ci—Ci > X—fi1(Ci-y)

so close to f;_; | C;— C;_; that h extendsto 7: C—C;_;—> X — f;_1(C;_;) and I is
close to f;_1| C— C;_,. Note that by Lemma 1.4 each Z-setin X — f; _{(C;_;)isa
strong Z-set, and hence by Lemrga 1.1 there is a map h': C-—~C,~_1 > X—fi_1(Ci_1)
(ilOSC to 2 with ;l: |Ci—Ci—1=h|Ci—C;i_y, W' (C—C;)Nh(C;—C;_1)= I, and
h’ is closed over #'(C;—C;i_,). ~
Define f;'! C-X by _f, I Ci =_f,'_.1 I Cj_], f; IC*‘C,'_1=I’I'. Then
S'=lim f;:C-X
]’—)00
is a closed embedding St U,-close to f. Note that f’ may not be a Z-embedding

(f' can even be a homeomorphism!).
To get a Z-embedding, fix a countable set Aq = [ad, d, ...} dense in the space
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of maps Q — X. Along with the sequence {f;: C - X} we construct countable
dense sets A; = {a}, a?, ...} C C(Q, X) so that

(12) o (O)Nf;(C)) =D for k<,

(13) of=af | for k<i—1, and

(14) d(of,af ) <27 % for k=i.

This construction is possible because compact subsets of X (in particular,
Uk<i a,-k(Q)) are (strong) Z-sets in X (see Corollary 1.6). Then {of, a?,...} <
C(Q, X) is a dense set, and f(C)N(UF=, af (Q)) = &. It follows that f'(C) is
a Z-set in X. O

The following corollary summarizes the results.

COROLLARY 2.4. Let C be an additive topological class hereditary with re-
spect to closed subsets. Suppose X € ANR can be written as X =\U;- | X;, where
each X; is a strong Z-set in X. Then the following statements are equivalent:

(i) X is strongly C-universal,

(ii) X is strongly C,-universal,

(iii) each open subset of X is C,-universal,

(iv) each open subset of X is strongly C,-universal.

We close this section by three propositions detecting strong universality of cer-
tain spaces.
For a space X and a basepoint * € X, we define the weak product

W(X, *)={(x1,x2,...) e X: x,,=* for almost all n}
(with the subspace topology).

PROPOSITION 2.5. Let X e ANR, X # {point}. Then the space X~ (W(X, %)
Jor a basepoint ¥ € X)) is strongly universal for the class C of spaces homeomor-
phic to a closed subset of X (respectively W(X, *)).

Proof. Note that X =(X*)® (and W(X, *)=W(W(X, *), *)) and hence
each point in X (W(X, *)) can be represented as (x;,x3,...), Where x;e X~
(W(X, *)). We assume that the metric d on X~ (W(X, *)) is chosen so that
d(x,x’)<27%72if x and x’ agree on the first k¥ coordinates.

Let g:C—> X (g: C— W(X, %)) be a closed embedding such that g(C) $* =
(*, *,...); if necessary replace g =(gy, g2,...) by g’'=(*’, g1, 22,...) for some
'’ x; and let f: C—> X (or W(X, *)) be a given map. We also assume that
fID:D->X~ (W(X,#*)) is a Z-embedding, and that e: X*— (0,1) (resp.
e: W(X, *)—(0,1)) is a Lipschitz map.

Note that X can be embedded into a complete AR X so that X — X is locally
homotopy negligible in X [22], and hence X * embeds into X *=s=(—1,1)*or
O=[—1,1]% [23], so that s— X (or Q—X ) is locally homotopy negligible.
(The same is true for W(X, *) € W(X, *)c X®=s or Q.) Consequently, every
Z-set in X~ (W(X, %)) is a strong Z-set. Hence by Lemma 1.1 we can assume
that f(C—D)N f(D)= I, and that f is closed over f(D).
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Define 6: X~ —[0,1) (6: W(X, *)—[0,1)) by
6(x) =minf{e(x), d(x, f(D))}.
For 2% 1'<s(f(c))=27%, k=0,1,2,..., define

1
fie)= (fl(c),fz(c), ...,fk(c),HkH(c, ) —k),

1
g(C),g(C), G(C, m—k>, *, %k, %, "-)9

where Hy ,1: Cx[0,1] - X% (W(X, *)) is a homotopy between g and f%,;, and
G:Cx[0,11- X% (W(X, %)) is a homotopy between * and g (f; is the ith coor-
dinate of f).

For ce D, let f'(c)= f(c).

Note that d(f(c), f'(¢)) =16(f(c)), and 8(f(c)) =26(f’(c)). These inequalities
imply that if f’(c,) —x e f(D) then c,— f "!(x), and hence f’ is closed over
Sf/(D). It is left to the reader to show that f’ is a Z-embedding. Cl

PROPOSITION 2.6. Let C be a topological class, and suppose X € ANR is
strongly C-universal. If Y € ANR, then X X Y is strongly C-universal provided
every Z-set in X X Y is a strong Z-set, and provided C € C implies Cx[0,1] € €.

Proof. Let e: X XY — (0, 3) be a given Lipschitz map, and f: C - X X Y a map
from C e @, with f|D: D — X XY being a (strong) Z-embedding for a closed set
DcC. By Lemma 1.1 we can assume that f(C—D)N f(D)= < and that f is
closed over D. Let 6: X X Y — [0, 1) be defined by 6(x) = min{e(x), d(x, f(D)}.
For n=1,2,..., choose a Z-embedding g,: C — X such that g, is 2"~ % homo-
topic to px f: C— X, where py: X XY — X is the projection. Without loss of
generality, we assume that g,(C)Ng,,(C) = O for n# m. Note that g, and g,
are 27"~3 homotopic, and let H,: Cx[0,1]—> X be a Z-embedding such that
H,(c,0)=g,(c), H,(c,1)=gn+1(c), and diam H,({c}x[0,1]) <23 for ce
C. Also, without loss of generality, H,(C X [0,1)DNH,(Cx[0,1]) =& for
|n—m|>1, and H,(Cx[0,1])NH,1(Cx[0,1])=g,+1(C) (by strong univer-
sality of X). For 2 ¥ 1<§(f(c))<27%, k=1,2,..., define

I’ — -_—_————1 —
r©=(Hu(e 557055 =k ) 2y 7©),

where py: X X Y — Y is the projection. For 6(f(c)) =0 (i.e., force D) let f'(c)=
f(c). Then f': C—- X X Y is a Z-embedding é-close to f. O

The next proposition detects strong C-universality of manifolds modeled on
strong C-universal spaces.

PROPOSITION 2.7. Suppose X € ANR has an open cover U such that every
Ue U is strongly C-universal for a topological class C hereditary with respect to
closed subsets. Then X is strongly C-universal.
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Proof. By Proposition 2.1 we can assume that U = {U,, U,, ...} is countable
and locally finite. Find V= (W, V>, ...} ecov(X) so that Clx V; € U;, and pick
Wo e cov(X) so that St(Clx V;, Wo) <= U;, i=1,2,3,.... Let {"W;ecov(X)] bea
sequence with St W, <W;_,, i=1,2,....

For Ce @, aclosed subset DS C, and amap f: C— X suchthat f|D:D->X
is a Z-embedding, define C;= f ~!(Clx V;). We construct a sequence {f;: C — X}
with the following properties:

1) filDUCU---UCi_ = fi|DUCU---UC;_y,

2 fi|DUCU---UC;:DUCU---UC; — X is a Z-embedding, and

3) (fi, fi-1)<W,.

Setting fu = f we proceed inductively, assuming that f; _; has been constructed.
Note that by construction Cly f;_(C;) € U;, and that f;_,: C; — U; restricted to
C;NDUCU---UC;_,) is a Z-embedding. By the strong C-universality of Uj;,
there is a Z-embedding g: C; — U; such that

glCNDUGCU---UCi_)=fi | CGiN(DUCGU ---UC;y).

We can also assume that g is so close to f;_; | C; that g extends to f;: C — X, so
that properties (1)-(3) hold.

Define f': C—> X by f'=lim;_ » f;- Then f’is a Z-embedding “Wy-close to f,
and f'| D= f|D.

3. C-absorbing sets in s-manifolds. A natural generalization of the notion of
an (f.d.) cap (finite dimensional compact absorption property) set [2] is the no-
tion of a C-absorbing set. In what follows, C will be an additive topological class
hereditary with respect to closed subsets, for example, the class of (finite dimen-
sional) compact metric spaces. As usual, s denotes the pseudo-interior (—1,1)%
of the Hilbert cube O=[—1,1]".

We say that a subset X of an s-manifold M is a C-absorbing set (in M) if
M — X is locally homotopy negligible in M, X =U,-; X, where each X, is a Z-
set in X and X, € C, and X is strongly C-universal. It follows that X is an ANR
[22] and that every Z-set in X is a strong Z-set in X.

The following result is a slight modification of the well-known theorems about
homeomorphisms between cap sets, Z-skeletons, absorbing sets, and pseudo-
boundaries (cf. [2], [5], [24], [27], [14]).

THEOREM 3.1. Let X and Y be two C-absorbing sets in an s-manifold M.
Then for every U e cov(M) there exists a homeomorphism h: X — Y that is U-
close to the inclusion X < M.

Proof (cf. [5], [24], [27]). Write X=U,; -1 X,, Y=U,=:1Y%, as in the defini-
tion. Let {U,} be a sequence of open covers of M such that St U,,;;<<U,, and
mesh U, <27". To find a homeomorphism /%: X — Y it suffices to construct se-
quences of homeomorphisms {f,: K,— L,} and {g,: L, — K},}, where K,,, K},
L,, L;, are Gs-subsets of M with K, NK,; 2 X and L,NL;>2Y, such that the fol-
lowing conditions are satisfied:
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(@), fn|Xis U,-closeto f,_;| X and g, | Y is U,-close to g,_,| 7Y,

0)n Sul| Xn-1=So-1|Xn_1and g, | Yy 1=gn—1| Yu_1,

©), fu(X,)isa Z-setin Y and g,(Y,) is a Z-set in X,

(d)n gnfn [ Xn= idX,, and f,8, | Ya =idYn'

Then the maps f=Ilim,_ . f, and g=1im,,_, . g, are well-defined and contin-
uous, and fg =idy, gf =idy.

Letting Ko=K{=Lo=Ly=M and fy=go=id,; we proceed inductively. As-
sume that f;, g; (satisfying (a);-(d); for i =1, ..., n—1) have been constructed. We
will construct a map f,, satisfying (a),-(c),,. Since Y is strongly C-universal, there is
a Z-embedding /#: X, Ug,,_1(Y,,—1) = Y U, ¢-homotopic to f,_; | X, Ug,_1(Y,_)
such that 2 | X,,_1Ug,_1(Y,—1)=Su-1| Xn-1Ug,-1(¥Y,—-1). By Lavrentiev’s theo-
rem [10] there is a homeomorphism 4: A — B between two G;-subsets A and B of
K, _iand L, _, respectively, satisfying

XpUgn (Y1) EA E(:1K,1_.1()(nUgn—l(Yn—])),

h(XnUgn—l(Yn-—l)) ngCILn_l h(XnUgn—l(Yn—l)),
and
h| X,Ugu_1(Y,_1)=h.

We can assume that / is U, s-homotopic to f,_, | A. Define
Ky=K, 11— (Clg, (X Ugn-1(Ys-1))—A),
Ln=Ln—l—'(CIL,,_Ih(XnUgn——l(Yn—l))_‘B)—

Then K,, and L,, being Gj-subsets of M such that M —K,,, M — L, are locally
homotopy negligible (and hence o-Z-sets), are s-manifolds, and X< K, <K, _|,
YcL,cL,_ ;. Let a: K,_; — K,, be a homeomorphism so close to the identity
idg,_, that f,_ja~'| X is U,,¢homotopic to f,_,|X. Let B:L,_,—L, be a
homeomorphism U, ¢-homotopic to id.,_,. Then Bfy_ro! | X is U,, 4+ 4-homo-
topic to f,_,| X and Bf,,_1a " '| A is U, ,-homotopic to A. Let y: L,— L, bea
homeomorphism of L, <U,,,-homotopic to id,, such that y8f,_ja™'|A=h
(the Z-set Unknotting Theorem for s-manifolds). Then the homeomorphism f,, =
YBSn—1c B K, — L, satisfies (a),~(c),.

The construction of a homeomorphism g,,: L), — K}, satisfying (a),—(d),, is sim-
ilar, and is left to the reader. ]

The powerful Z-set Unknotting Theorem for s-manifolds carries over to C-
absorbing sets.

THEOREM 3.2. Let X be a C-absorbing set in an s-manifold M, let U € cov(X),
and suppose that h: A — B is a homeomorphism between Z-sets A and B in X. If
h is YU-homotopic to the inclusion A< X, and if Vecov(X), then there is a
homeomorphism H: X — X such that H| A= h and (H,id x) < St(U, V).

Proof. Find a Gs-subset X of M containing X, open covers 1, ¥ of X, anda
homeomorphism %: A — B between two Z-sets in X such that U | X =U, V| X =
V, ANX=A, BNX=B, h|A=h, and h is St(‘U, “W)-homotopic to the inclu-
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sion A € X, where W e cov(X) is chosen so that St>“® < ¥. As before, X is an s-
manifold, and X is a C-absorbing set in X. Applying [3] we obtain a homeomor-
phism f: X — X which is St(U, St “¥)-homotopic to id z. Note that f(X) =X is
a C-absorbing set in X. By Proposition 2.1, f(X)— B and X — B are C-absorbing
sets in X — B. Applying Theorem 3.1, we find a homeomorphism g: f(X)—B —
X — B so close to identity that the map &: (f(X)—B)UB — X is well-defined by

_ .| ex), xef(X)-B
g(x) =

X, xeB

and so that g is a homeomorphism “W-close to id. Finally, H = gf | X is a homeo-
morphism of X onto itself such that H | A =h, and H is St(U, V)-close to id x.
]

Next, we identify the set of near homeomorphisms between two C-absorbing
sets as being precisely equal to the set of fine homotopy equivalences between
them.

THEOREM 3.3. Let X and Y be C-absorbing sets in an s-manifold M, and let
S+ X > Y be a fine homotopy equivalence. Then f is a near-homeomorphism.

Proof. First note that if f;: X; — Y;is an extension of f onto G;-subsets X;2 X
and Y; 2 Y, then f;is a fine homotopy equivalence. Indeed, it is easy to see that f;
is a UV ™-map, since if U is an open set in Y; we get a commutative diagram

SNy =WU)NX - 171(U)
Al Nl
UNY-U

in which the maps on the top, bottom and on the left are homotopy equivalences.
Hence f;: fi”(U) - U is a homotopy equivalence.

Let U ecov(Y). Find an open cover U of an open subset Y> of ¥; that con-
tains ¥ with U | Y= U. If we set X>=f;71(¥3) and fo=f; | X>: X, — Y>, then f>
is a fine homotopy equivalence between two s-manifolds. It follows [13] that f5
is a near-homeomorphism. Choose a homeomorphism g: X, — Y, <U-close to
J>. Since g(X) and Y are C-absorbing sets in Y, there is a homeomorphism
h:g(X)—Y <U-close to inclusion. Thus Ag: X — Y is a homeomorphism St U-
close to f. ]

REMARK 3.4. The same proof shows that, for every a ecov(Y), Vecov(Y),
and & = St(«, V), any a-equivalence [13] f: X — Y from a C-absorbing set X is
St2 @-close to a homeomorphism.

4. Resolving incomplete ANR’s. Our ultimate goal is to give a topological char-
acterization of C-absorbing sets. We are willing to include the strong C-univer-
sality into the hypotheses, but we would like to replace the assumption that the
space embeds nicely into an s-manifold by intrinsic statements about the space.
Whatever our assumptions are, they have to imply that a fine homotopy equiva-
lence (a resolving map) f: X — Y from a C-absorbing set X to the space Y that
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satisfies our assumptions is a near-homeomorphism. In this section we construct
the resolving map f.

H. Torunczyk [25] showed that if Y is a complete ANR, then there is a fine
homotopy equivalence f: M — X from an s-manifold M. An alternate proof,
based on Miller’s techniques, is given in [8].

The following lemma states that a resolving map f: M — Y from an s-mani-
fold to a complete ANR Y can be improved over a Z-set.

LEMMA 4.1. Let f: M — Y be a fine homotopy equivalence, where M is an s-
manifold and Y is a complete ANR. Assume that Z is a Z-set in M. Then, for
every W € cov(Y) and for every map 3: Z — Y that is U-homotopic to f | Z, there
exésts a fine homotopy equivalence ¢: M — Y such that ¢ | Z= and (¢, f)<
St- U.

Proof. Let {7V, ecov(Y)]} be a sequence such that St ¥, < U, StV, <V, _;, and
mesh V, <27", Let v,: Z— M be a Z-embedding such that fv, and 8 are V,,, ;-
homotopic. Then fv, and fv, + are St(V, 41, V,+2)-homotopic, and hence v, and
Yn+1 are f 1(V,)-homotopic. Let 4,: M — M be a homeomorphism f~'(V,)-
close to idy, with h,~vy,=<,+1. Similarly, let A: M — M be a homeomorphism
S 1St U)-close to idys such that /| Z =+,. Define ¢: M — Y by

o= 1lim fh,h,_,---hh. O
11— oo
THEOREM 4.2. Let Y be an ANR. Then there exists an s-manifold M such that
Jor every C-absorbing set X € M there exists a fine equivalence ¢: X — Y.

Proof. Let ¥ be a complete ANR that contains Y such that ¥Y—Y is locally
homotopy negligible in Y [22]. Let f: M — ¥ be a fine homotopy equivalence
from an s-manifold M. For a C-absorbing set X € M, write X =X,UX,U --- so
that X; € X, € X3 € --- with each X; a Z-set in X and X; € C. By Lemma 4.1 there
is a sequence {f,: M — Y} of fine homotopy equivalences such that f,,(Cl,, X,) =
Y, .fn I CIM Xn—l :—‘fn—l l ClM Xn—ls and (fns fn—l) <27 ConsequentIYs @ =
lim, .. fr: M—Y is a fine homotopy equivalence with @(X)< Y. Thus ¢ =
@ | X: X — Y is a fine homotopy equivalence. ]

COROLLARY 4.3. Suppose f: X — Y is a fine homotopy equivalence from a
C-absorbing set X in an s-manifold M to an ANRY, Uecov(Y),and Z< X is
a Z-set. Then for every map 3: Z — Y that is W-homotopic to f|Z:Z — Y there
is a fine homotopy equivalence ¢: X — Y such that (¢, f) <St*U and ¢ | Z=8.

Proof. Completing Y to an ANR ¥ so that ¥Y—Y is locally homotopy negli-
gible, extending U, f, Z, 8; and then trimming back, we can assume that f is the
restriction of a fine homotopy equivalence f: M — ¥, that U is the restriction of
U e cov(Y), that 8 is the restriction of 3: Z — ¥ (where Z = Cly, Z), and that 3
is St U-homotopic to f|Z. By Lemma 4.1 there is a fine homotopy equivalence
@: M — Y such that (f, 3) <St? 1l and @ | Z = 8. Proceed as in the proof of Theo-
rem 4.2 to obtain a fine homotopy equivalence @: M — Y such that (&', @) < U,
@'(X)<Y,and 3’| Z=@& | Z. Then ¢ = @’ | X: X — Y is the desired fine homotopy
equivalence.
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5. Intrinsic characterization of C-absorbing sets.

THEOREM 5.1. Let @ be an additive topological class hereditary with respect
to closed subsets, and let Q be a C-absorbing set in an s-manifold M. If X is a
strongly C-universal ANR that can be written as X =\~ X; where each X; is a
strong Z-set in X and X; € C, then each fine homotopy equivalence f:Q— X is a
near-homeomorphism.

The proof of 5.1 is based on the following special case:

LEMMA 5.2 (The Strong Z-set Shrinking Theorem). Suppose that X is an ANR
and X =QUZ, where Ze C, Z is a strong Z-setin X, QNZ =0, and Qisa C-
absorbing set in an s-manifold M. Then the inclusion i: Q) — X is a near-homeo-
morphism.

Proof. Let X D X be a complete ANR such that X — X is locally homotopy
negligible in X. By Lemma 1.11 we can assume that X =QU Z, where Z=Cly Z,
Z is a strong Z-set in X, and (by trimming back and Lavrentiev’s theorem) {l is an
s-manifold. By [4] the inclusion /: @ — X is a near-homeomorphism, and X is an
s-manifold. Since both © and X are C-absorbing sets in X, the conclusion fol-
lows from Theorem 3.3.

Proof of Theorem 5.1. Choose a sequence {U;ecov(X)} such that StU; <
U;_;, and build a sequence { f;: @ — X} of fine homotopy equivalences such that:

) fi, fi-)<U;,

@) fi=fi-1on UiZh ;U £20(UZ X)),

3) fiisa homeomorphlsm over Uj_l (fi(2;)UX;) and f; is a closed map

over this set, _

@) d(fi(w), fi-i(w))=2"" min{l,d(ff—:(w),Uj—l(ﬁ 1(2,)N X))}
Welet Qo=3, Xo=O, and fo=f (2 =Uj=; Q; is the representation of Q as in
the definition of a C-absorbing set). Assume that f;_; satisfying (1)-(4) has been
constructed. We set Z = Uj-;'l (X;U fi_1(2;)). Observe that fioi(Q—fiZl(2Zn <
X —Z. By Propositions 2.1 and 2.3, the space X — Z is C,-universal. Thus there
is a Z-embedding v: Q;— f;=1(Z) - X — Z such that

d(v(w), fi—1(w)) <27 'min{l, d(fi—1(), Z)}
and v is U;,s-close to fi_|Q;— fiZ4(Z). Let g: Q— f£;Z1(Z) > X —Z be a fine
homotopy equivalence such that g is U; . -close to fi_; Iﬂ—f,-Ill(Z),
g1Qi—fiZi(Z)=v, and d(g(w), fi—1(w)) <2~ Pmin(1, d(fi—1(»), Z))

(see Corollary4 3). Let C=g(Q;—fiZ}(Z))N(X;— Z). Consider the adjunctlon
space (Q fi=lzy U, C together w1th the corresponding maps p: Q— f;_ WZ)—>
(Q—fi_ I(Z))U C and q:(Q—f" (Z))U C — X —Z such that g=gp. Observe
that

Q—fiZl@ny,c=we-rizizy-g-'(cnuc,

where (2 —f;21(Z)) — g ~}(C), being an open subset of Q, is a C-absorbing (and
hence a C,-absorbing) set in some s-manifold, and C is a strong Z-set with Ce C,
(see Lemma 1.10.) By Lemma 5.2 the adjunction space (Q—f;Z1(2)) U, C is C,-
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absorbing in some s-manifold. Thus p, being a fine homotopy equivalence, is a
near- homeomorphlsm (by Theorem 3.3).

Let £:Q— fi21(Z2) - (2 — f,_l(Z))U C be a homeomorphism so close to p
that gh is U, -close to g and d(gh(w), g(w)) < 2—"+”mm{1 d(g(w) Z)}. Also,
by Theorem 3.2, we can assume that #|Q;~f;Z(Z)=p | Q;—f;,Z}(Z). Define
fi: Q- X by setting f;=fi_; on £;iZ}(Z) and f;=qh on Q— f;~}(2).

The reader can check that f’: Q — X defined as f'=1im,,_, - f, is a homeo-
morphism St U,-close to f.

A direct consequence of Theorems 5.1 and 4.2 is the following characteriza-
tion theorem.

THEOREM 5.3. Assume that for an additive topological class C hereditary
with respect to closed subsets there exists a C-absorbing set Q1 in s. Then X € AR
is homeomorphic to Q if and only if X € C,, X is strongly C-universal, and X =
Ui~ X, where each X; is a strong Z-set in X.

COROLLARY 5.4. If Q<s is a C-absorbing set for an additive topological
class C containing [0, 1] and hereditary with respect to closed subsets, with the
property that Cy, Cy e C imply Cy X Cy € C, then a necessary and sufficient condi-
tion that QX X be homeomorphic to  is that X be a retract of Q.

Proof. Necessity being obvious, note that every Z-set in Q X X is a strong Z-set,
since 2 X X embeds into s x X =s for a complete X € AR that contains X with
X — X locally homotopy negligible in X, and hence Q@ x X embeds into s so that
the complement is locally homotopy negligible. Thus Proposition 2.6 implies
that © X X is strongly C-universal, and the assumption about € guarantees that
X XeC,. If 2=U7 Q;, where each Q; is a (strong) Z-set in @, then QX X =
UiZ1(2; X X'), where each ©; X X is a (strong) Z-set in 2 X X. Hence by Theorem
5.3 (or3.1), A xX=Q. ]

COROLLARY 5.5. (i) The topological type of W(X, *) does not depend on the
choice of the basepoint * € X, for X € AR.

(ii) For X, Y e AR we have W(X, *)=W(Y, x) if and only if X embeds as a
closed subset into W(Y, *) and Y embeds as a closed subset into W(X, *).

Proof. Let Cx = {spaces homeomorphic to a closed subset of W(X, *x)]}. It is
clear that Cy is hereditary with respect to closed subsets. To show that it is addi-
tive, fix a space C=AUB, where A, Be Cy areclosedin C. Let e : A - W(X, *),
ep: B— W(X, *) be closed embeddings. Using the fact that

W(X, *)= W(W(X, *), *)

we can assume that e,4, eg are Z-embeddings. Note that W (X, *)—e (4 —B) e AR
by [22], since e4(A — B) is locally homotopy negligible in W (X, *). Let g: B—
W(X, *)—eas(A—B)beamapextendingey | AMB: ANB— W(X, *)—e4 (A—B).
Similarly, let f: A - W(X, *)—ep(B—A) be amap extending ep | ANB: ANB —
W(X, *)—eg(B—A). Finally, define a closed embedding h: C —» W(X, *)>=
W(X, *) by
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(ea(x),ep(x)), xeANB,
h(x) =1 (ea(x), f(x)), xe€eA-B,
(g(x),ep(x)), xeB-—A.

To finish the proof of (ii), note that by Proposition 2.5 and Theorem 5.3 W(X, *)
is characterized among spaces W(T, *), T € AR, as being strongly Cy-universal,
and that under assumptions of (ii) Cy = Cy = {spaces homeomorphic to a closed
subset of W (Y, %)}, since W(Y, *) embeds as a closed subset of W(X, %) and
vice versa. Indeed, the homogeneity of W(X, *) (Theorem 3.2) says that we can
assume that the given closed embedding Y — W(X, *) preserves basepoints, and
hence W(Y, *) embeds as a closed subset of W(W (X, %), *) = W(X, *). Finally,
(ii) implies (i). ]

COROLLARY 5.6 (The Triangulation Theorem). Suppose that a topological
class C is additive, hereditary with respect to closed subsets, and has the property
that if Ce C and if n=0, then [—1,11" X C e C. Also assume that Q< s isa C-
absorbing set. Then

(i) any s-manifold M contains a C-absorbing set, and

(ii) a space X is an Q-manifold (i.e., admits an open cover by sets homeo-

morphic to open subsets of Q) if and only if there is a locally finite count-
able simplicial complex K such that X = | K| x Q.

Proof. (i) By the triangulation theorem for s-manifolds, M = |K|x s for some
locally finite countable simplicial complex K. Then |[K|XQ<|K|xs=M is a
C-absorbing set in M.

(ii) Suppose that X is~an 2-manifold, and let K be a locally finite countable
simplicial complex such that |K| and X have the same homotopy type. By Prop-
osition 2.7, X is strongly C-universal. By Theorem 4.2 there is a fine homotopy
equivalence f:Y — X from a C-absorbing set Y in an s-manifold M. Since M
and |K| have the same homotopy type, it follows that M = |K|xs, and hence
| K| % @ (being a C-absorbing set in | K| X s) is homeomorphic to Y. Finally, fis a
near-homeomorphism by Theorem 5.1, and therefore X =Y = |K| x Q. Cl

COROLLARY 5.7 (The Open Embedding Theorem). Let C and Q be as in Cor-
ollary 5.6. Then any Q-manifold X embeds as an open subset of ().

Proof. By Corollary 5.6, X is a C-absorbing set in an s-manifold M. By the
Open Embedding Theorem for s-manifolds [17], M embeds as an open subset of
s. Then both X and M NQ are C-absorbing sets in M, and hence X =MNQ, the
latter being open in . ]

6. Absorbing sets for classes of absolute Borel sets. In this section we derive
from Theorem 5.3 characterization theorems for certain incomplete spaces.

It is well known that o = {(¢;) € s: ¢; =0 for almost all i} is strongly C¢q.-uni-
versal for the class Cgq. of all finite-dimensional compacta. This fact is also a
consequence of Proposition 2.5, since obviously ¢ = W((—1, 1), 0). Thus we ob-
tain a characterization theorem for o, due to the second author.
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COROLLARY 6.1 (see [20]). A space X € AR (X € ANR) is homeomorphic to
o (to a o-manifold) if and only if:
(i) X is a countable union of finite-dimensional compacta,
(ii) X is strongly Cgyc-universal, and
(iii) X=U> X;, where each X; is a strong Z-set in X.
Condition (iii) can be replaced by the equivalent condition (see Corollary 1.8
and Lemma 1.9.)
(iii’) X satisfies the Strong Discrete Approximation Property.

Similarly, ¥ = W(Q, *) is strongly C.-universal for the class C. of all com-
pacta.

COROLLARY 6.2 ([20]). A space X € AR (X € ANR) is homeomorphic fo X
(to a X-manifold) if and only if
(i) X is a countable union of compacta,
(ii) X is strongly C.-universal, and
(ili) X =U72, X;, where each X; is a strong Z-set in X.
Again, (iii) can be replaced by
(iii") X satisfies the Strong Discrete Approximation Property.

Note that both W{(s, *¥) and X X s are 9®;-absorbing sets for the class I, of
all topologically complete spaces (by Propositions 2.5 and 2.6). So we have
W(s, *) =X X S, and the following.

COROLLARY 6.3. A space X e AR (X e ANR) is homeomorphic to L Xs
(X xXs-manifold) if and only if
(i) X=Uji1, X, where each X; is a strong Z-set in X and each X; is com-
pletely metrizable, and
(ii) X is strongly I,-universal.

The classes C, and I, are only the beginning of the hierarchy of Borel classes.
Recall [6] that for each space X and for each countable ordinal o we can de-
fine the additive Borelian class o, a,(X), and the multiplicative Borelian class
a, ML (X), of subsets of X as follows: ag(X) is the collection of all open subsets
of X, and Iy (X) is the collection of all closed subsets of X. Suppose that for
{ < a the collections a¢(X) and (X)) have been defined. Then a,(X) is the
collection of all subsets of X that can be represented as X;UX,UX3U --- with
each X;e U<, M(X), and M, (X) is the collection of all subsets of X that can
be represented as X;NX,NX3MN --- with each X; € U <4 a(X).

For a countable ordinal o we define the absolute Borelian classes a, and M,,.
A space X belongs to a, (I,) if and only if for any embedding e: X — Y we have
e(X)ea, (YY) (e(X)eIM,(Y)). By a result of Lavrentiev [19], X e€q, (x=2) if
and only if X e€q,(E) for some complete space £, and X e M, (a«=1) if and
only if X e I, (F£) for some complete space E.

Note that qg = J; Mo consists of all compacta, q; of all o-compacta; I, is the
collection of all completely metrizable spaces, and so forth. We construct 9¢,.-
absorbing (a,-absorbing) set @, (resp., A,) in s. As we observed above, @, =
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Wi(s,*)=Xxs and A;=X = W(Q, *) will do. Suppose that the sets 2, Ss and
A Ss have been defined for all countable ordinals { <. If a=8+1, let Q,=
A%; if « is a limit ordinal, define @, =II;<4 A{. Since s =s, we can regard Q,
as a subset of s, and set A, = W(s—Q,, *). An easy argument establishes that
Q,eM, for «=2 and that A,ea, for a=1.

The first step in proving the strong universality of these spaces consists of show-
ing that there is at least one closed embedding of each space in the corresponding
class. The proof is based on an idea of R. Sikorski (cf. [21], [12]).

LEMMA 6.3. Suppose X € M, (X €a,) for a=2 is embedded into the Hil-
bert cube Q. Then there is an embedding ¢,: Q—s such that ¢, (Q)=X

(0o (M) =X).

Proof. First consider the case « =2, and X € I,. Let v: Q —s be an embed-
ding such that v(Q)NA;= O (it exists since A;=X is a o-Z-set in §). We have X =
N~ A;, where each A; € Q is o-compact. There are homeomorphisms 4;:s — s
such that A7 '(A;) Nv(Q) = v(4;). Define an embedding ¢,: Q - 5% =5 by ¢3(q) =
{h;(v(g))}; then o5 (2,) = X.

If X € a5, then Q— X € IM,; hence the above applied to Q — X implies that there
is a map y: Q — s such that ¥ ~'(2,) = O— X, that is, Y (s —Q,) =X. If we de-
fine p;: Q=57 by 2(q) = (¥(q), *, *,...), then 3 '(Az) = X.

Now assume that X € I,, o > 2. For simplicity assume that « = 341 (the case
when « is a limit ordinal is analogous). Then X can be written as X =[\j=; 4; with
each A; € ag. By induction, there is an embedding ;: Q — s such that yb,-_'(A,@) =

A;. Define ¢,: Q— 5% =5 by ¢,(q) = (¥1(q), ¥2(q),...). Then
o ()= ) 4= X.

i=1
The case X € a, (o> 2) is completely analogous to the case o = 2. J

PROPOSITION 6.4. For a countable ordinal o« =1, the space Q0 is M -absorb-
ing, and A, is a,-absorbing.

Proof. As shown above, the statement is true for o = 1. It is clear that each Q,,
(and A,) is a countable union of Z-sets, and that both 2, and A, are embedded into
s with locally homotopy negligible complements. Lemma 6.3 coupled with Prop-

osition 2.5 implies that Q, (A,) is strongly 9t.-universal (strongly a,-universal).
O

THEOREM 6.5. A space X € AR is homeomorphic to Q, (or A,) for a=1if
and only if
() X=UiL X;, where each X;e M, (X;€ ay) and X; is a strong Z-set in X,
and
(ii) X is strongly I -universal (strongly a.-universal).

Moreover, if X is a retract of Q, (or A,) then X xXQ,=Q, (X XA,=A,). Also,
the Triangulation Theorem 5.6 and the Open Embedding Theorem 5.7 hold for
manifolds modeled on @, (or A,), a=1.
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