THE EINSTEIN-KAHLER METRIC ON {|z|?>+|w|* <1}

John S. Bland

S. Y. Cheng and S. T. Yau showed in [2] that any C? bounded pseudoconvex
domain in C” has a complete Einstein-K&dhler metric with negative Ricci curvature;
their solution satisfied the Monge-Ampére equation Det[azg/aziazj] =e("__+')g,
g = o on the boundary, where the metric is given by (62g/az,-6zj)dz’®dz’ . N.
Mok and S. T. Yau [4] have extended this result to arbitrary bounded pseudo-
convex domains in C”. Explicit solutions, however, are only known in the very
simplest cases. The purpose of this paper is to describe the Einstein-Kédhler metric
for the domain Q, = {|z|*+ |w|* <1}, p > 0. These domains exhibit a wide range
of boundary behavior. For p > 1, the special boundary points |z] =1 are C? weakly
pseudoconvex, and the domains interpolate between B” and B"~'x B. For 1<
p <1, the domains are C! strictly convex. For p < 1, the boundary intersects cer-
tain real planes in cusps.

The main technique is to use the (2n —1)-dimensional noncompact automor-
phism group of @ and the biholomorphic invariance of the Einstein-Kahler metric
to reduce the Monge-Ampeére equation for the metric to an ordinary differential
equation in the auxiliary function X = |w|%/(1— |z|?)"”. This differential equa-
tion can be easily solved to give an implicit function in X; however, all informa-
tion of interest is obtained by indirect methods.

The function X contains geometric information about the domain. The leaves
X = constant define a real foliation of the domain, the leaves of which converge
at the special boundary points |z| =1, w=0. The automorphism group of the
domain preserves this foliation, and acts transitively within each leaf. Thus, any
biholomorphically invariant quantity can be reduced to a function of X, and it as-
sumes its full range of values arbitrarily near the special boundary points |z|=1;
in particular, any nonconstant biholomorphically invariant quantity exhibits no
limiting behavior near these boundary points.

The results of these calculations have some interesting consequences. When
p>1, the special boundary points are C? weakly pseudoconvex, and the Rie-
mannian sectional curvature for the domain is bounded between negative con-
stants. In particular, a local Schwarz lemma can be used to obtain bounds on the
metric for any domain locally approximating Q on the inside (see Theorems 4 & 5).
On the other hand, there are C! strictly convex domains for which the Einstein-
Kéahler metric has strictly positive holomorphic sectional curvature in certain di-
rections at some points (see Theorem 4). In all cases where p > 0, volume esti-
mates on the Einstein-Kahler metric for locally approximating domains can be
obtained (Theorem 5).
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Throughout the paper, the coordinates (z, w)=(z,,...,2,-1, w) will be usasd
on C”.

1. The metric.
THEOREM 1. Consider the bounded pseudoconvex domain
Q={|z|*+|w|* <1},

where p > 0. Define the auxiliary function X = |w|*/(1—|z|?)"?. Then there exists
some function of X, say Y(X), such that the Einstein—-Kdhler metric for Q is given

by
gij=Y(log X);; +(Y/X)X; X5

and the volume for the metric is
|gizl = (¥/p)" 'Y (1= [2|?) "7 1P.
Further, Y satisfies the ordinary differential equation in X:
XYY" 'y =y""' —pY"+a,
where
_(p=1)(np+1)" np+1

et YO=57H

and Y(1—X), Y'(1—X)?are uniformly bounded from above and below by posi-
tive constants.

b4

The function X has been introduced primarily for notational convenience and
computational simplicity; however, the importance of this auxilliary function
should not be underestimated. For instance, 0 <X <1on @, and X —1is a local
defining function for the smooth strongly pseudoconvex boundary points of Q.
Thus, Y(1—X) and Y’(1 — X )2 being uniformly bounded from above and below by
positive constants really reflects how the Einstein-Kédhler metric behaves asymp-
totically at the smooth strongly pseudoconvex boundary points. Near the special
boundary points |z| =1, X can assume any value less than 1 in any arbitrarily small
region, and for ce (0, 1), the regions X < ¢ will be used as approach regions to
the special boundary points in describing the asymptotic behavior of the metric.
Finally, it should again be noticed that the function X is preserved under the auto-
morphism group of Q, and that the automorphism group is transitive on any leaf
X = constant.

The remainder of this section will provide the calculations necessary to estab-
lish Theorem 1. The basic idea is to use the automorphism group of @ and the
transformation properties of the Einstein-Kéhler metric to reduce the differential
equation for the metric to an ordinary differential equation.

A. THE TRANSFORMATION FORMULA. During the course of the calcula-
tions, it will prove convenient to introduce the function —¢(z, w) =e %", Then
2

9z; 32]‘

(_log(—¢(zs W))),

gif(zs W) =
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and (—¢(z, w)) "D is the volume for the Einstein-Kihler metric.
For any automorphism F of the domain, the invariance properties of the metric
imply
(—o(z, w)) "+ =Det[g;5(z, w)]
= |dF(z, w)|? Det[gij(F(z, ))]
=|dF(z, w)|*(—¢(F(z, w)))~"*V

(1.1) d(z, w) = |dF(z, w)| "tV ¢(F(z, w)),

where |dF(z, w)| denotes the absolute value of the determinant of the differential
of the mapping F. Formula (1.1) will be referred to as the transformation prop-
erty of ¢.

B. AUTOMORPHISMS OF Q = {|z|*+|w|* <1}. The domain Q is obviously
invariant under unitary transformations in the z coordinates and the w rotations
(z, w) — (z, we'?) for arbitrary 6 € R. The transformation property then implies
that ¢(z, w) = ¢(|z],0, ..., 0, |w|), where |z| = (Z7=!|z;|>)"/? is the usual length
of the vector z. The determlnatlon of ¢ now depends upon the two parameters
|z|, |w|. Consider the additional automorphisms given by
2,1/2 (1—n2)V2 (1—n2)/2r ]

zZi—y ({—77) 2
1—nz,” 1—19z 1—nz; "7V (1—qz))VP

A EEEE)

F(z,w)= [

Then
(1 _ n2)(np+l)/2p

|dF(z, w)|*=

(l—nz])("”“)/”

Applying the transformation property for ¢,

¢(n,0 o, w)=09¢(0 0 _(_l_i_z_)]/iw 11— 2)(np+l)/p(n+l)
T” g3 vy ] - g seey Py (l_nZ)l/p T’
SO
¢(Z,W)=¢(O,...,O,(1—|z|2)"/2p|w|)(1_|z|2)(np+1)/p(n+l).

Define X (z, w) = |w|%*/(1—|z|?)"/P. Then X <1 on Q and for some function A#(X) >
0,

(1.2) —(z, w) = (1—|z|?) PP+ Dy (X)),
C. GENERAL FORM OF THE METRIC.
gi7(z, w) = (—log(—¢(z, w)));7

np+1

= il (logX),-J-—( )XX X,;
np+1 RN 1 Hh

= —— —_ X+
(n+1 [(h X h ]X J

Y’
(1.3) gij(z, w) =Y(log X),7+ ~ XiXG
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- (k)
Using the fact that X; X7 is a matrix of rank 1, the volume of the metric is
Det[gi7(z, w)] =Det[g;7(|z|,0, ..., 0, w)]
=(Y/p)" (= |z|)"XY"|w| 7
(1.4 Det[g;(z, w)]=(Y/p)"~'Y'(1—|z|) ™"~ "7

D. THE EINSTEIN CONDITION. Recall that for the Kéhler metric g;7, the com-
ponents of the Ricci tensor are given by
2

where

R;7 = ——(log Det[g;7]).
i7 az,-az;(og etlg;7])

The condition that the Ricci curvature is equal to the negative constant —(n+1)

then becomes )

5797 (oe Detleiy(z, W) = (n+ Dgig(z, w).

Using (1.4) to compute the left-hand side, this equation becomes
2

0z;0z7

(log(Y"~'Y"(1—[z|?) ="+ VPYy)

(Yn—]Y/)/ (Yn—lYI)I ’
=(np+1)(log X);;+ WXF-*— —}—’—”—_T_Y—'—] X: X5

(Yn—lyr)r X(Yn—lYI)I ]r XIX_,T

=((np+l)+X iy S

)(log X)ij+ [

X: X~
=(n+1)Y(logX);j+(n+l)Y’-'7L.
Setting the coefficients in the last two lines equal (note that the coefficients of

X;X7/X are just the derivatives of the coefficients of (log X);5):

(np+1)+X% =(n+1)Y.
Solving:
(np+1)Y" 'Y+ [ X(Y" Y)Y =Y Y =(n+1)Y"Y’
[X(Y"™'Y)) = (Y"1 —p(Y"y
1.5) XY ly'=y""'_pY "+«

for some constant «.

E. ESTIMATES FOR A(X), Y(X). It is important to know how the metric be-
haves at the boundary of @ and hence how A, Y behave at X — 1, as well as how
h, Y behave at X =0.
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For the boundary behavior, consider the complex line given by z=0. This
intersects 92 at strongly pseudoconvex boundary points, and locally the function
X —1 acts as a defining function. Using (1.3) and the asymptotic behavior of the
Einstein-Kédhler metric at the smooth, strongly pseudoconvex boundary points
[11, it is immediate that ¥(1—X), Y’(1—X)? are uniformly bounded from above
and below by positive constants in a neighborhood of the boundary.

For the behavior at X =0, consider the function 4 X(z, w). Since the metric
and its volume [—¢(z,w)]™""*? are smooth on ©, and (1—|z|?)"P+V/Pin+1) jg
smooth on @, it follows from (1.2) that 4+ X is a smooth strictly positive function
on Q. The symmetry of A+ X implies that VA-X(0,...,0)=0, or

d , w
T hoX(0,...,0)=h'(0) A=12P7 | 0.0 =0,
whence XA'(X)|x=0=0. Since Y=(np+1)/(n+1)—X(h'/h) by definition,
Y(0)=(np+1)/(n+1). Using (1.4) and (1.5), it is clear that

XYn_IY'|X=0=O and Y"‘H-—pY"—i—alX:o:O.

Solving:
o (P N\_[(pP-1\
(1.6) Y”“(O)_(Y(O) 1)_ np+l)’
(p—1D)(np+1)"
(1-7) = (n+1)n+l

Finally, it is clear from the positivity of the metric that Y’(X) > 0. This, together
with (1.6), implies a fact that will be needed later in the analysis of the curvature,

namely
(0, p—1 ] if p=>1,
(1.8) —2 ¢ np+l
. Y p—1 0 if p<1
[np+1’ ) hp=_

2. The curvature tensor. The calculations presented in this section will estab-
lish the following result.

THEOREM 2. The components of the curvature tensor for the metric in Theo-
rem 1 are given by

no
Rizkr= —1{8i7 8«1 + &iT 8k7} (1 — —}-m)
— Y?{(log X);5(log X )1+ (log X )r(log X )47}

r\2
_(Y )[XiX;Xer](n(n+1)a),

(n+1)o
"Tz;TJET")

X Y”n +1
where
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—1
(0, P ] if p=1,

o np+1
——— €
yn+1 p—1
, 0 / <l1.
[np+1 ) vp

A. SOME NOTATION AND FORMULAE. Throughout this section, the coordi-
nates (z, w) = (21, ..., Zn—1, w) Will be used on . By z;, it will be meant

z; if i<n,
0 if i=n.
The computations will be performed at the point (z;,0,...,0, w), but the final

formula for the curvature will be quite general. It can be routinely verified that
the following formulae hold at the point (z;,0,...,0, w):

gi7=Y(log X);i;+(Y/X)X; X7,

[ (/Y)(1=|z)? | 0 0 i —zw-—|z|*)/Y
"""""" o
= 1 |
g’ = : L (p/Y)(1—|z|*)T ! ,
i —z;w(1—|z|?)/Y | |w|*(|z|/pY +1/XY"
—= =(0,...
X g ( ’ ’ XY’ )9
w_ 1[I —wzi/p(1—|z|?)
ol — | _Z_y el PAC 1T 7
(IOgX)Ug Y[ 0 E 0 :|s
(lOgX)Uk‘—(IOgX)u 1— I l2 +(lOgX)jk_:—|i;|':2—’
(log X)ijrr=p {(108 X)ij(log X)ir+(log X)ij(log X)ir
Zk Zi
+ (log X)iﬁ‘l_w + (log X)jk'__l——_fz—ﬁ} ,
Xier X X7 Xi X;
(log X)ixr= ¥  x2 x (IOgX)fT~‘)—(—(10gX)kT,
Xin X7 XX, X; X5 X X7
[#]I_sz(logX),-k7+ L (log X)ir+ (logX)k,+-—§—(—JL.

B. GENERAL FORM OF THE CURVATURE. Recall the formula for the com-
ponents of the curvature tensor:

Rijur= —gijki + 8ikp 8798471
Computing:
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gikp =Y (10g X)ipx + Y {(log X )ip Xy +(log X)ip Xi} + (Y’ Xix +Y"X; X)) (Xp /X ),

gl_]kl Y(IOg X)ljkl +Y’ {(IOgX)ukXI'*'(lOg X)llek+(lOg X)jkIX
+ (X [ X7 /X Dr+ (log X )7 Xir+ (log X ) x5 Xir}
+Y”{(logX),-;XkX7+(logX)ij,-X,-+(logX),-,—X,-Xk
X*ka X,'kX"X,T'FXiXkXT
X' J J J
AT X }
+Y”,{X,-XijX7}

X
= pY{(log X).-;(log X) 7+ (log X)ir(log X )ik}

7z
+Y{(10g X)m + (log X)ka—_‘fzv}

||2

+y {X,-(log X )77+ X7(10g X inr+ X (1og X )57+ X7(10g X )i

X X X: X~

+ (log X )7 Xxr+ (log X )7 Xir+ (log X) 7 X+ (log X )7 ra
X,'ka_{
+_._
s

+Y” {(log X),'ijX/'-I" (log X)k,-X,-X;+(log X),-erX;+(Iog X)ij,'X/'
+ Xie X5 X7+ X; X X7 + X; X5 X X7
X X2
X X5 X X7
X .

+ YIII {

Writing gix5g”? as a row vector indexed by gq:

_ YZ YZ;
gikﬁgpq—_‘ I:[———-'_I'{—l?"l‘Y’Xk:l(logX)lp [ | |2

+Y'X; ] (log X)kp]
+(Y' Xix + Y”X,-Xk)}ﬁ—

YZi 1 zZiw
=|—F+Y'Xi|= |67, ————
[1—|z|2+ ]Y[ p<1—|z|2>]

YZ: 1 4
o[ ] L [5q __v_v___]

1—|z|? £ p(1—1z[?)
(Y’ Xie +Y"X: X50) lud
k k XY’

where (67, 0) denotes the vector with 1 in the ith spot if / < n, and the 0-vector if
i =n.
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gtkpg gqjl glkpg [[
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Yz;

—|2|?

X,
+ (Y X7+ Y”X;Xr)—)?"]

YZx
1—|z)?
- vz,
TP
[ YZ;
TRt

+

|

+

1

v

g
¥ |-
Jrle=
|

+Y’X]

Yz;
1—|z|?

Yz,
|Z|2

—IZ|2

Yz,

1—|z|?

+Y' X7

+Y' X5

S
+Y' X7

+ Y’X—} (log X) 7+ [

1z ]2 +Y’X7](logX)q,

+ Y’XJ—-:I (log X);r

(log X)ji
(log X)i7

(log X);5

+(Y' Xy +Y"X; X)) (Y X7+Y" X5 X7)(1/XY').

Subtracting and cancelling terms:

Rijkr=

—8ijkI + 8ikp gﬁngj—l

= —pY{(log X);7(log X )7+ (log X),r(log X)jx}

X,
— XY’ {(IOg X)i7(log X)ir+ (log X)ir(log X)jx + (log X);5

XX
+(og X)ij—5—

Xy X
+ (lOg X)ll

X;
+ (log X )7

]

X2

—-Y” [(log X)if Xi X7+ (log X)ir X7 X + (log X )7 X; X7+ (log X ) x7 X; X5

X; X5Xr X7

X2
X,‘X_,"Xka
X

—Y"” {

Y'Y’
Y

+

}

}

{XkX;(log X )i+ X, X7 (log X )7+ X: Xi(log X )7

+ X X7(log X),-j}

Y”Yﬂ
+

X,'XkaXl‘

{

Y’ X

}

Rizrr= —{(log X);7(log X )x7+ (log X)7(log X )7} (pY +XY")
—{(og X)i7 X\ X7+ (log X )it X5 X + (log X) 1 X; X7+ (log X )7 X; X7}

Y’ Y'Y’
2.1 P4 Y’ —
@.1) ( L E )
YI/ Y’If Y//YII
X X, X —_ .
— (X, X7 X ,1( e Xy,)
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REMARK. The terms in { } are of the same form as the terms that arise in the
expansion of (g;7 gx7+ &i7 8x7)-

C. INVOKING THE EINSTEIN CONDITION. The coefficients in (2.1) can be
simplified by using (1.5) and its first derivative:

Xy ly=y"_pY"+a«
XY ly"=Y'"{(n+ )Y "—(np+1)Y" '—(n—-1)XY"2Y"}.
Simplifying the coefficients in (2.1):
2
Yn——i =Y (1+ Yn+1>

”+ YI _ YlYI _ XYI I-X—
X Yy /J \Y /X
Y
—_ — —nNr_—
=(Y—=p+a¥Y™") ~
YY’ no
=—x U~ yns1 )
YI/I + Y” YIIY[! XYII I
X X2 Xy

Y'\VY’
=((n+1)Y—(np+l)—(n Y)/Xz

(PY+XY')=Y?+

= 7 (1 + DY — (=D (¥ —p+aY "))

Y’ \? o
X) (2+n(n—1) Y )

The expression for the curvature of the Einstein-Kahler metric then becomes:

(84
Rifkl_ - Y {(lOg X)U (lOg X)kl + (logX),,(log X)kj} 1+ Yn+l )

’

~Y X {(log X )7 Xx X7+ (log X )ir X X5+ (log X) x5 X; X7
(2.2)
+(logX)k,XX}( Y"+1)
Y’ o
_(X ) (X; X7 X X7) (2+n(n—1) T )
or
no
R] = {gugkl +g11gkj}( yn+l )
n+1«o
@.3) ~ ?{(log X);5(log X)ur-+ (0 X108 X )i} (“grr )

Y’ \? +1
-(X) (X X7 Xx X7} (1’—%17)3)
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3. Analysis of the results. The behavior of the Einstein-Kédhler metric and its
curvature tensor on smooth bounded strongly pseudoconvex domains in C” is
already known. The interest in the domains Q, = {|z|*+ |w|*’ <1}, p >0, is that
they provide a range of examples which contain domains with C? weakly pseudo-
convex points (p >1), C! strictly convex domains which are not C? G<p<,
and pseudoconvex domains with corners (p <3). In each case, the interesting
boundary points are {(z,w): |z| =1, w=0}. The behavior of the metric and its
curvature tensor at these points is summarized.

THEOREM 3. For the domain Q,={|z|*+ |lw|? <1}, p>0, and for any fixed
size ce (0, 1) of the approach region {X < c} to the special boundary points |z|=1,
the following quantities are uniformly bounded from above and below by posi-
tive constants (u represents a holomorphic vector of unit Euclidean length, and
|u|Z; its length in the Einstein-Kdhler geometry).

(1) (- |z|2)2|u|§ if uis a multiple of (z1,...,2n-1,0).

(2) (1—|z|?)|ul| if u is Euclidean perpendicular to (z,,...,2,-1,0) and

,...,1).

3) A—=|z]»)"P|u|? if u=(0,...,0,1).
Also, for p> 3,

(4) |gi7l(distance to 89)”“(1—]2]2)“"”)/” is uniformly bounded above and

below by positive constants on . (|gi7| is the volume for the Einstein-
Kidhler metric, and distance to 052 refers to Euclidean distance.)

Proof. Parts (1), (2), and (3) follow directly from Theorem 1. For part (4), no-
tice that Y, Y’ are uniformly equivalent to (1—X)~!, (1—X) "2 respectively (see
Theorem 1) and that the defining function (1—X”)(1—|z|*)=1—|z|*—|w|?*’ is
uniformly equivalent to distance to the boundary for p > 1. O

Notice that the approach region to the special boundary points is given in terms
of X. For p> 1, these approach regions are larger than the conical approach re-
gions which are commonly used in such descriptions of the metric. However, for
p <+, the domain itself has directions with cusps, and the approach regions re-
flect this by also having directions with cusps.

The theorem indicates that the Einstein-Kédhler metric behaves as usual in the
complex normal direction and in the smooth strongly pseudoconvex complex tan-
gential directions. In the special directions, the metric grows large slower than
usual for p > 1 (weakly pseudoconvex directions) and faster than usual for p <1
(non-smooth “sharper” directions).

The fourth statement in the above theorem indicates the interplay between the
smooth strongly pseudoconvex boundary points and the points |z| =1 in their
effect upon the growth rate of the metric.

THEOREM 4. Consider the Einstein—-Kdhler metric on the domain
Q,={|z|*+|w|*’ <1}, p>0.

(@) For p=1 (the C* weakly pseudoconvex case), the Riemannian sectional
curvature is bounded between negative constants on 1.
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(b) There exist C' strictly convex domains (and hence C* strongly convex do-
mains) for which the holomorphic sectional curvature is strictly positive at some
points in some directions.

(c) The noncompact automorphism group has elements which move any com-
pact subdomain arbitrarily close to the boundary point z,=1. Hence, the entire
range of behavior that the curvature tensor exhibits on Q,, is exhibited arbitrarily
closeto (1,0, ...,0). In particular, the curvature tensor does not exhibit any limit-
ing behavior at (1,0,...,0).

Proof. (a) The curvature tensor (2.3) is expressed as the sum of three tensors,
each of which represents the constant negative holomorphic sectional curvature
tensor for a possibly degenerate metric. (Y(log X);7 and Y’'X; X7 /X represent de-
generate metrics, each of which is dominated by the metric g;7.) By a well-known
formula (see e.g. [3, p. 166]), the Riemannian curvature tensor can be explicitly
written down for each of the three tensors. The first tensor (representing the non-
degenerate metric g;7) will give a strictly negative contribution to the Riemannian
sectional curvature tensor; the remaining two tensors will give non-positive con-
tributions. The result, of course, is a tensor bounded between negative constants.

(b) Choose p =3/4, n=10. From (1.7), «Y ~"*Ye[—1/34,0). Then

2+n(n—1)aY "*tDye[2-90/34,2)

certainly has some negative values within its possible range on 23,4. From (2.2),
there are some points at which the holomorphic sectional curvature for the d/ow
plane is positive.

(c) Obvious. |

This range of examples of Einstein-Kédhler metrics can now be used to give
metric estimates for more general domains by using the localized comparison
principles of [1]. Volume estimates use only the fact that the metric is Einstein-
Kahler (i.e., bounds on the Ricci curvature), whereas the metric estimates will
make use of the fact that for p >1, the holomorphic bisectional curvature is
bounded above by a negative constant.

THEOREM 5. Consider a pseudoconvex domain Q C C" with complete Einstein-
Kihler metric §;7 and with (1,0, ...,0) € 3Q. Consider also Q = {|z|*+ |w]2”< 1}
with Einstein-Kdhler metric g;5. Let D be a bounded neighborhood of (1,0, ...,0).
Define

Be(z, w) =exp[—pg((z, w), d(DNN2)], Bz(z, w) =expl—pz((z, w), (DN D))],

- where p, and p; denote distance in the metrics g and g respectively. Assume that
Bg(z, w) -0 and Bz(z, w)—0as (z, w)—(1,0,...,0) (hence g, g are “locally com-
plete” at (1,0, ...,0)).
(@) p>1, DNQCDNQ: For any D, ={B;<1—¢}, >0, there is a constant
¢ >0 such that [g;5]1=cl[&i7] on D..
(b) p>0, DNQCDNQ: For any D,={B;<1—¢}, >0, there is a constant
8> 0 such that |g;7| <|&i7]|(1+O(|B|%)) on D,.
() p>0, DNQCDNQ: For any D, ={B,<1—¢}, >0, there is a constant
&> 0 such that |g;7| < |gi7| (1+0O(|B]|%)) on D,.
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Proof. This is a direct application of Lemma III and Lemma IV in [1]. [
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