ON THE ACCESSIBILITY OF THE BOUNDARY
OF A SIMPLY CONNECTED DOMAIN

Thomas E. Gerasch

Let D be a simply connected plane domain, not the whole plane, and let w = f(z)
map |z| <1 one-to-one and conformally onto D. As is well known, for almost
every 6 (0 <0 <2), f(z) has a finite radial limit f(e’®) at e”’. Consequently, the
image under f of the radius at such an e determines an (ideal) accessible bound-
ary point of D whose complex coordinate is f(e’®) [2, pp. 357-363]. We will de-
note both the (ideal) accessible boundary point and its complex coordinate by
f(e*®); no confusion will arise provided that we treat f(e’’!) and f(e‘%2) to be dis-
tinct whenever 4; # 6, (even though the complex coordinates may be equal).

We introduce the following metric on D: the arc-length distance Ip(wy, w>)
between two points of D is defined to be the infimum of the Euclidean lengths of
the rectifiable arcs lying in D and joining w; to w,. This arc-length metric is seen
to agree locally with the Euclidean metric. Let R be the set of rectifiably accessible
points of dD. For we D and wg e R we let /p(w, wy) be the infimum of the Euclid-
ean lengths of rectifiable curves lying in D and joining w to wg. The arc-length
distance between two points of R is defined similarly. It is easily shown that /p is
a metric for DUR. The distance between two subsets S; and S, of DUR will be
denoted by /p(Sy, S2) and is defined in the usual manner. Any limits involving
elements of R will be taken using the arc-length metric.

We will let A(w, r) denote the open disc which is centered at w of radius r. Let
wp € R. Corresponding to each positive number r small enough so that the domain
D contains a disc of radius r, let

o(r, wo) =inf{lp(w, wo): A(w, r) € D}.

We say that wq is broadly accessible if lim inf, _, 3 6(r, wg)/r =1. In more pictur-
esque language, wg € R is broadly accessible if we can find discs in D close to wy
such that the center of each disc can be joined to wy by an arc whose length is
only slightly larger than the radius of the disc. We will use 8(r, ) to abbreviate
8(r, f(e'%)). Concerning the broad accessibility criterion, we will prove the fol-
lowing theorem.

THEOREM. Let D be a simply connected plane domain, not the whole plane.
Let f map |z| <1 one-to-one and conformally onto D. Then for almost every 0,

lim f(re®) = f(e’)

r—1

is a broadly accessible point of dD.
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Figure 1

Before proceeding with the proof of the theorem we refer to Figure 1 for sev-
eral examples. A rectifiably accessible boundary point need not be broadly ac-
cessible, as is seen by considering w; and w, in Figure 1. w, is the complex coordi-
nate of countably many rectifiably accessible boundary points, none of which are
broadly accessible. w3 will be broadly accessible provided that the spikes are ar-
ranged so that wj is a point of inner tangency for aD, that is, so that D contains
Stolz angles at w3 of angular opening arbitrarily near to, but not greater than, =.
In the construction suggested on the right side of the figure, each passage is of
length 3r;, where r; is the radius of the disc at the end of the passage. We let wy
denote the point of dD which is accessible via the passages. If r; = (1/2)' for each i,
then wq will be rectifiably, but not broadly, accessible. However, if r; =1/2 andif
for i =2, r;=(1/2)'r;_,, then wy will be broadly accessible. We also note that in
either construction wy will not be a point of inner tangency for aD.

While every point of inner tangency of dD is a broadly accessible point, the
last example given shows that the converse of this is not true. It should be noted
that it is possible for the points of inner tangency of 8D to correspond under f 1o
a set of measure zero on |z| =1 [3, pp. 65-66].

We now turn to the proof of the theorem. The proof makes use of the geometric
quantity called extremal length [1, pp. 10-16], and the following lemma (which is
concerned with an extremal length estimate) is essential to the argument. We are
indebted to McMillan for an earlier version of this lemma, in which the setting
was the upper half-plane [3, pp. 56-57].

LEMMA. Let 0<é6<w/2 and let A< (0,8) with outer measure m*(A). For
each 0 such that 0 < 0 < 6 let yg denote the arc which is contained in the unit disc
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of the circle orthogonal to |z| =1 at e’ and at e ™*°. Set T = {~,: 0 € A}. Then the
extremal length \(I') of the family of curves satisfies
M) =x/logk,
where k =sin §/sin[é—m*(A)].
Proof of Lemma. Suppose p(z) is an arbitrary admissible function for extremal

length, that is, o(z) is a non-negative, measurable function defined in the whole
plane such that the integral

a)=|{o?axay,

taken over the whole plane, is finite and non-zero. Set

L(T, p)= inf L(yp,p), where L(vp,0)=| pldz|,
'yaeI1 Yo

and where the integral is taken to be infinite if p is not measurable on v, and may
be infinite in any case. For almost every # € A both of the following integrals are
finite, and by Schwarz’s inequality

2
L('yo,p)2=(S7 plel) =(w—20) tanOL pzleI,
[/}

7]
where it is seen that (w —20) tan 0 is the length of v,. Hence the inequality
L(T, p)*[(x—20) tan ] ' =< S p?|dz|
T

holds for each € in a measurable subset Ay of (0, §) that contains A. It is readily
seen that

5
S [1r—20]"1c0t0d92S L otoas
Ag 6—m(Ag) T
8 1
> S — cot 0d6,
o6—m*(A) w

where m(Ap) denotes the measure of Ay. This last integral is equal to (1/#) log &,
with k& =sin §/sin[6 — m*(A)]. Since

SAO (Lapz |dz|>d0:sA(p),
we have that
L(T, p)*(1/w) log k < A(p).
Since p is an arbitrary admissible function,
M) =sup, L(T', p)’/A(p) < w/log k,

as claimed. |
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Proof of Theorem. Let ¢, and u; be sequences of positive numbers monotonically
decreasing to zero. Let A be the set of points of |z| =1 for which lim,_,; f(re®)
exists and is rectifiably accessible. Then m(A4) =2« [4, pp. 311-312]. Since the set
of e’ e A for which f(e’®) is not broadly accessible is the countable union

Uu {eioeAzé(r,G)/r>(1+en) if r<pgl,
n k

it suffices to prove for each ¢ >0 and each x> 0 that m(E) =0, where
E={eecA:5(r,0)/r>1+e¢)if r<upul.
Let we D, A(w,r)SD and r < p. Then for any e’ € E,
Ipw, f(e”)>+er,
and as a consequence
) Ip(A(w, 1), f(e'%)) > er.

Fix a point e‘% € E and let z,, be any sequence radially approaching e‘%. Let w,=
f(z,) and let A(w,,, r,;) be the largest disc centered at w,, which is contained in D.
Since lim f(z,) # oo, we see that r,, —» 0. By choosing a subsequence and relabeling
we may assume that r,, < u for all n. Inequality (1) holds for each A(w,, r,,), using
the fixed e'%. For each » let o, be a radius of A(w,, r,) whose closure contains a
point of the boundary of D. Each «, determines a point f(&,) € aD which is seen
to be broadly accessible, and from the definition of £ we see that £,e A—E.

In what follows we will denote the length of a curve vy by /(). For each n we
define the family I'(«,,) to consist of all curves + lying in D which join a point of
o, to a point f(e’®), e’ € E. From the definitions of I'(«,,) and E and from (1)
we see that for each n,

2 I(v)=erp,=¢l(a,) for each yel'(w,).

We now prove that A(I'(«,;)) =¢/(2+ we), a quantity independent of n, where
ANI'(«,)) denotes the extremal length of the family I'(«,,).

For each n let V,,={we D:dist(w, o;) <el(e,;)}, where dist(w, «,,) is the Eu-
clidean distance from the point w to «,. Let yeI'(«,). If v contains points of
D—1V,, then there is a component v; of yMN V¥, whose length is at least equal to
el(ay,), and thus

I(yOVy) = (v1) = el(ay).

If « is contained in V,, then by (2) we have the same inequality. Hence for any
vyeTI'(a,),

Iy V) = el(ay).

Define the function on by setting p,(w) equal to 1if w e ¥V, and equal to O elsewhere.
Since V,, is open, p, is a measurable function. We see that for any yeI'(«,,),

| alaw|=el(on),
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and consequently,
L(I'(ay), pn) =inf 57 Pn |dW| =el(ay),

where the infimum is taken over all v € I'(«,,). Since A(p,,) is the area integral for
V,, we see that

Apn) = [2el(an)(an) +mlel (o))
Thus, for each n,
L(I'(ay, p)?
A(p)
o L(T(an), pn)

A(pn)

62

= .
2e+ me?

AT (o)) =sup,

(3)

Since a set of positive measure has points of outer density, we will prove
m(E) =0 by proving that each point e’ € E is not a point of outer density for E.
We continue to consider the same fixed e‘% e E. For each n define o by requiring
that f(«?) = «,. Since the mapping function f is a normal function, it has no
Koebe arcs [4, pp. 262-267]; consequently, each oZ has an endpoint e‘%7 on [z]=1
and e’’r — ¢'%, For each n, e’ ¢ E, and in particular we have e‘%n 3= ¢/%, By re-
placing {6,,} by a certain subsequence we can suppose, without loss of generality,
that 6y <60, < (6o+ w/2) for all n; the other case is analogous.

For each n, let I';, be the family of curves in |z| <1 which corresponds under f
to the family I'(«;,,), that is,

Ci={y: v stz <1}, f(v) €T (an)}.

Since extremal length is a conformal invariant [1, p. 14], A(I';) =X (I'(«,)) for
each n, and this together with (3) implies that

4) NT)=c>0 for each n,

where c is a constant independent of z.
For each n let

E,={e'tn"DeE:0<t<0,—06p},
and let Iy be the family of circular arcs contained in |z| <1 which are orthogonal
to |z] =1at e’®* 9 and ' 9 for some e'%~% e E, (see Figure 2).
If I’y = ¢ for any n, then m(E,) =0 and the outer density of E for linear mea-
sure on |z| =11is obviously zero at e‘%. We proceed with the case that I')” 5 ¢ for

any n. Each v” e I';f contains some curve v’ € I';. By the comparison principle for
extremal length [1, p. 10],

() AT = NTy).

By the lemma,
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Figure 2

ANTIY)==n/log k,,,

where k,, =sin(6,—0p)/sin[(8,—0y) —m*(E,)]. This inequality together with (4)
and (5) yields that

sin (8, — ) < e™* sin[(8, — 60) — m*(E,)]
< e™“[(0,—00) — m*(E,)],
the last inequality following from 0 < (6,,—6y) — m*(E,)] < w/2. Consequently,
m*(E)/(0,—00) <1—e~™“[sin(6, — 00)/(6,— 00)].

Hence, lim sup, m*(E,)/(6,— 6y) <1, and thus e'% is not a point of outer density
for E on |z} =1. Since e’ was an arbitrary point of E, no point of E is a point
of outer density for £, and consequently £ has measure zero. The proof of the
theorem is now complete. OJ
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