SMOOTH S' ACTIONS ON HOMOTOPY CP*’S

David M. James

Introduction. If the circle group S! acts smoothly on a 2n-manifold P which is
homotopy equivalent to the complex projective n-space CP”, then the tangent
and Hopf bundle fibers over fixed points give a set of S' representations. For
n =3 Petrie constructed smooth S' actions which do not have the fixed point
representations of linear actions ([6, 11§4] and also [4, 11§8]; a /inear action on
CP" is one given in homogeneous coordinates by #[zg: ... :2,] =[£Z0:...: t"7,]
for some ay, ..., a,€ Z). For n=4, Theorem 4.1 of this paper has the following
corollary.

THEOREM 1. If P is a homotopy CP* which has a smooth S' action, then
there is a linear S' action on CP* with the same fixed point tangent and Hopf
bundle representations as those of the action on P.

In particular, as pointed out by J. Shaneson, Petrie’s exotic actions on CP?3do
not extend smoothly to cP*.

Petrie conjectured that if P is a homotopy CP" which admits a nontrivial S!
action then A(P)=A(CP") in H*(P; Q) ([6, p. 105]). This has been verified for
n=3 by Dejter [2] and for various fixed-point set conditions by Wang [8],
Tsukada and Washiyama [7], and Masuda [5]. Hattori [3, Prop. 4.15] has shown
it for quasilinear actions (Definition 1B of this paper), which together with
Theorem 1 yields the following.

THEOREM 2. If P is a homotopy CP* which has a nontrivial smooth S' action
then A(P)=A(CP*%).

In this paper the definition of Petrie’s ¢ polynomials and some of his results on
them are quoted (§1) and the possibilities for these polynomials for homotopy
CP*s are restricted by using properties of stationary sets of subgroups of
S! (§2 and §3), ultimately leaving quasilinearity as the only possibility (§4).
Throughout, the real dimension of a manifold M is denoted by dim M, the set
of points of M fixed by GC S! by F(M, G), and the order of the largest sub-
group of S! which fixes all points of M by |Stab M|; N C M indicates that N is
a smoothly and equivariantly embedded submanifold of M, with normal bundle
v(N,M).

1. Let P be a homotopy CP” with an effective smooth S! action. Choose a
lifting of the action to the Hopf bundle 5 over P so that 5 is an S' equivariant
vector bundle (see [6, II, Prop. 1.1]). Let P,,..., Px be the components of
F(P,S"). For each P;, 0<i =<k, there are elements 5 | x=1¢% and »(P;, P) | x=

n_1i¢%i of R(S')=Z[¢t,t™'], where m; =% dim P; and x is any point of P;.
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DEFINITION 1A. (Notation as above.) For xe P;,
n—m;
Y, ) =TT (A—¢%~%9)" TT (1—¢Pi)~",
JEi k=1
Petrie defined these polynomials and established their major properties, scme
of which we quote as the following lemma (see [6, I1§2]; also [2, p. 86]).

LEMMA 1.1. Let xe P;C F(P, S").
(i) ¥(x,1)eR(S).

(ii) For me Z let n(m) and d(m) be the number of numerator exponents and
denominator exponents, respectively, of Y(x,t) which are integral multi-
ples of m. Then n(m) =d(m) and if m is a prime power then n(m) =d(mn).

(iii) |¢¥(x,1)| =1 and consequently 11;:;|a;—a;| = T1¥=7" |bix|.

If P is the standard CP" and the action is linear then each Y (x, ¢) is a unit in
R(S"), as is clear from homogeneous coordinates. However, the ¥ polynomials
of Petrie’s exotic actions on _CP3 are not units ([6, pp. 150-151]). This leads to
the following definition (cf. [2, p. 87], [5, p. 131]).

DEFINITION 1B. An S! action on P is quasilinear if y(x, t) is a unit in R(S")
for each xe F(P, S').

We will be using invariant submanifolds of P to relate the two sets of represen-
tations in the ¢ polynomials. We quote a useful result of Petrie ([6, p. 135-137]).

LEMMA 1.2. Let x, y € F(P, S') have Hopf bundle fiber representations t° t°
respectively. If m is a prime power then x and y are in the same component of
F(P, Z,,) if and only if a= b(mod m).

The simplest nontrivial S' manifolds are 2-spheres. A nontrivial smooth S'
action on S? clearly has exactly two fixed points and exactly one nonfixed orbit
type, so that it is given by #[z¢, 2] =[20, #""21], for a unique positive integer m,
in some system of homogeneous coordinates on S?= CP".

DEFINITION 1C. For me Z, S?(m) denotes an S' manifold which is equi-
variantly diffeomorphic to CP! with the S' action #[zo, 2] = [20, "'z1].

This notation includes the trivial action, as $2(0), and the semifree action, as
S2(1) or 8%(—1). Clearly S?(m) and S%(n) are equivariantly diffeomorphic if and
only if |m| = |n|. As usual an S?() in another manifold will be assumed smoothly
and equivariantly embedded.

LEMMA 1.3. Let x, y be two S! fixed points in an S8*(m) C P which carries
k times a generator of H,(P;Z). If the Hopf representations are n|x=1t"
and 7 |y=tb, then a—b=km and for m#=0 each of Y(x,t),¥(y,t) contains
(1—t*™)/(1—1t™) times a unit of R(S').

Proof. Chern class calculations imply that | S2(m) has underlying vector
bundle £%, the k-fold tensor product of the Hopf bundle £ over S2. Now £ and
hence £¥ can be made into S’ equivariant bundles over S2(m) by lifting the
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homogeneous coordinate action, and then (switching x and y if necessary) £¥ | x=
t®=1and £¥| y =¢*™. Since £¥ and 5 | S2(/n) have the same underlying bundle, by
[6, I, Thm. 6.1] the first is the tensor product of the second by a unit in R(S'). The
only unit which gives the right representation at x is ¢ ~ ¢, so tk=¢ IR | S2(m),
whence £¥| y=¢*"=¢%"7 This proves the first statement, and the second fol-
lows straightforwardly using Definition 1A. ]

LEMMA 1.4. If x; and x, are points in different S' fixed point set components
of a connected smooth S' manifold M with principal orbit type S'/Z,,, and each
of the tangent bundle representations TM | x;, i =1, 2, contains a t" or t ™" com-
ponent, then M contains an Sz(m) which contains x| and x,.

Proof.. The S%(m) can be constructed straightforwardly using, for example,
[1, IV§3, VI§2].

2. Henceforth P is assumed to be a homotopy CP*, so that there are at most
five components Py, ..., P, of F(P,S") and I%_,(3dim P;+1)=5 ([1, VII,
Thm. 5.1]).

Choose and label five distinct points xg, ..., X3 sO that for 0 <i =<k exaclly
%dim P;+1 of them are in P;. (These are to be chosen once for all, but the
labels —i.e., the subscripts —will be permuted as convenient.)

Henceforth, for 0 <i <35, a; is the exponent of the Hopf fiber representation
7 | xXi, and Y(x;, t) will be abbreviated ¥;(¢).

The following definition is motivated by the fact that the standard CP? con-
tains three nicely embedded (in homogeneous coordinates) 2-spheres which
determine the fixed point representations of a linear action.

DEFINITION 2. A component L of F(P, G), G a subgroup of S I will be called
standard if dim L =4, the rational Euler characteristic x(L) =3, and either
G =S! or else L contains three distinct S2(sn)’s (for up to three values of m),
each of which carries a generator of H,(P; Z) and contains exactly two of the
{x;}, and any two of which intersect in exactly one point.

LEMMA 2.1. If x; is in a standard submanifold of P and J;(t) is not a unit,
then there are positive integers a, b and r, with a>1, b>1 and (a, b) =1, such
that Y;(t) is equal to (1—t°°" YA —¢")/[(A1—t"Y(A—¢t°")] times a unit in R(S").

Proof. This follows straightforwardly from Definition 1A, Definition 2, Lemma
1.3, and Lemma 1.1. 1

The next two lemmas show that certain submanifolds of P are standard.

LEMMA 2.2. Ifdim L =4, x(L) =3, F(L, S") contains nonisolated points, and
L is a component of F(P, Z,) for Z,C S', then L is standard.

Proof. By [1, VII, Thm. 5.1] and the hypotheses, F(L,S') Cc F(P, S!) is either
a homotopy CP2—in which case it is all of L, which is thereby standard —or an
S? and a single point x. In this case L has only one non-fixed orbit type, so by
Lemma 1.4 it contains two S%(r)’s, r= |Stab L}, each of which contains x and
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one of the two labeled points in the S' fixed S?= S2(0). These carry generators
of H>(P; Z) by [1, VII, Thm. 5.1] for the $2(0) and by this and intersection class
considerations for the S?(r)’s. O

LEMMA 2.3. [f dim L =4 and L is a component of F(P, Z,,) for Z,,C S' and p
a prime power, then L is standard.

Proof. [1, VII, Thm. 3.1] implies that x (L) =3, so that the conclusion follows
from Lemma 2.2 if F= F(L, S!) contains nonisolated points. Otherwise F con-
sists of three isolated points, and the required three S2()’s are obtained in the
obv1ous way from the components of 7(L) | x; for x; e F—that is, if 7(L) | x;=
t+¢? then x; is in an S%(a) and an Sz(b) in L. Two such 2-spheres with non-
principal orbit types clearly intersect in (at least) one point of F, and cannot
intersect in two: if L contamed S%(ar), S*(br)witha>1, b>1, r= |Stab L| (so
that (a, b) =1) and S%*(ar)N S? (br) = {x,,x,} C F, then intersection class consid-
erations would imply that one, say S?(ar), carried a generator of a Z summand
of Hy(L; Z), and then (because of its Chern class) v = V(S (ar), L) would be the
Hopf bundle or its dual, so that by Lemma 1.3 the exponents of v | x;, » | x;—
clearly some combination of +br —would differ by ar, contradicting (a, b) =1.
It follows that principal orbit (i.e., Lemma 1.4) spheres, if any, can be arranged
consistently with Definition 2 also. To show, finally, that these 2-spheres carry
generators of H,(P;Z), let one carry k[P]Nc? where [P]le H,(P;Z) is the
fundamental class and ¢ generates H*(P; Z). Then L carries +k?*[P]Nc?, and
(p,k)=1 by [1, VII, Thm. 3.1]. Suppose |k|>1. Let g be the greatest power
dividing k|Stab L| of a prime dividing k. Since k|Stab L|, and hence g, divides
a;—a; for each x;, x; € F (Lemma 1.3 and the foregoing), by Lemma 1.2 F'is con-
tained in a component K of F(P, Z;). Then dim K = 4. Since Z, can fix at most
one of the S%(m)’s in L (q .} |Stab L|) and so moves at least two KN L contains
at least one isolated point. Hence dim K =4 and K also contains three 2-spheres,
each of which carries +A[P]N¢? for some A prime to g. Thus KN L = F, which
implies using intersection classes that 3 = |[K]-[L]|=Ah’k?. Hence |k|=1 after
all, and the proof is complete. ]

The following lemma prepares for Lemma 2.5, which, with Lemma 3.5, limits
the possibilities for nonquasilinear actions to what are in effect extensions of
Petrie’s actions on CP3.

LEMMA 2.4. If the action on P is not quasilinear and no F(P, Z,) contains a
six-dimensional component for any prime power p, then ;(t) is a unit for at
least four values of i.

Proof. We may assume that ;(#) is not a unit. Then it follows from Lemma
1.1 that the denominator of y,(¢) contains terms 1—¢"" with |m|>1, and from
the second hypothesis and Lemma 2.3 that each such ¢ determines an S?(sn) in
P containing x;. If all such 2-spheres carried generators of H,(P; Z) then ¢ (¢)
would be a unit by Lemma 1.3, so for some a > 1, x; is in an S%(a) carrying & > 1
times a generator of H,(P; Z). Let x, be in this S?(a) also, so that |a;,—a>| =ak
(Lemma 1.3), and then Lemma 1.2 implies that x; and x; are in an S2(b) with
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b|k and b>1. Hence for h=k/b each of y,(¢), y»(¢) contains a unit times
(1—¢"y/1(1—t*)(1—1¢®)], and Lemma 1.1 implies that each of these numer-
ators contains 1—# also. Assign subscripts 3,4 so that |@j—as| =|ay—as| =1. If
m=|a;—as| and n=|az;—a,| then clearly m=abh+1, n= x+1(mod m), and
neither @ nor b is congruent to 1 mod m. Now if ¢¥3(¢) were a unit, there would be
S =S2(m)C P containing x, and x3, and since SC F(P, Z,,) the S! representations
»(S,P) | x1=t+tP+¢°, v(S,P)|x3=1t+¢t"+1¢t9 (up to signs of exponents, some
c,d e Z) would pass to the same element of R(Z,,)=R(S")/(1—1¢t")—that is,
{a,b,c} and {+1,n,d}={=*1, =1, d} would be the same subset of Z,,,. As this is
not the case, ¥3(¢) and, by a similar argument, ¥4(¢) are not units. [

LEMMA 2.5. Under the hypotheses of Lemma 2.4, for an appropriate sub-
scripting Yo(t) is a unit and y;(t), 1<i <4, is a unit times

1=ty (A—1)/[A—t")(1—1t9)]
Jor coprimes a>1, b>1.

Proof. By [1, VII, Thm. 3.1] and the hypotheses, F(P, Z,) = SUL where Sis a
2-sphere and dim L =4 and hence (Lemma 2.3) L is standard. Let xg,x;,x3€ L,
so that x,,x4€ S and a,—a4 is even. By Lemma 2.4 we may assume that y(7)
and ¥5(¢) are not units. Lemma 2.1 gives a, b,r,N\e Z witha>1, b>1, (a,b) =1,
r=1, such that ¥;(¢) =¢tM1—¢°"Y1—¢")/[(1—t")(1—¢°")]. Then r =1 by the
hypotheses and Lemma 2.3, and L C F(P, Z,) implies that ¢ and b are odd. Hence
the numerator exponents ab,1 of ¢,(¢) may be taken to be |a;—a;|, |a;—ay|
respectively, and then ¥,(7) is a multiple of ¥,(#) by Lemma 1.2 and Lemma
1.3. Similarly there are odd coprimes ¢>1, d>1 and p€ Z such that y53(¢) =
t*(1—tNYA—1)/I(1—1)(1—t?)]. Now cd is equal to one of |a3—as|, |a3—az|,
and if it were the latter then ¥, (¢) would be a multiple of ¥;(¢)¥3(¢), implying
|ax—as| =1. As ay—a, is even, cd = |az —ay| instead, and ¢4(¢) is a multiple of
Y¥3(¢). Similar considerations vis-a-vis ¥, (¢), ¥4(¢) show that Yo (¢) is a unit, and
this and computations similar to those of [2, pp. 90-92] show that {a, b} = {c,d]}.

3. Throughout this section we assume that there is a prime p and a p-sub-
group G C S! such that F(P, G) = MU{xp}. Then dim M =6 and M is a mod p
cohomology CP? ([1, VII, Thm. 3.1]).

Note that {xy, x5, x3, x4} C M. Define b; for 1<i =<4 by v(M, P) |x,-=tbf. The
next four lemmas cancel (l—t“"""ﬂ)/(l—tbi) in ¥;(¢).

LEMMA 3.1. For 1=i=<4, ai—aq | b;.

Proof. Any prime power which divides a; —ao must divide b; also by Lemma
1.2 and the fact that M has codimension 2 in P.

LEMMA 3.2. If xo is in no six-dimensional component of F(P, Z,) for any
prime power q, then |b;| = |a;—ay| for 1 =i =<4 and moreover Y,(t) is a unit.

Proof. Either |a;—ay| >1or |a;—ao| =1. For the first case, let m be a prime
power which divides a; —ag. Then xg and x; are in one component L of F(P, Z,,,)
by Lemma 1.2, and dim L <4 by hypothesis. Thus L contains (possibly by
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Lemma 2.3) an S?(b;) containing xy and x;, and it follows from Lemma 1.3 and
Lemma 3.1 that |b;| =|a;—ag|. For the other case |a;—ay| =1, suppose that b;
is a multiple of a prime n. By Lemma 1.1, n|a;—a; for some k30,i. Then
Xr € M and also, by Lemma 1.2, x; and x; are in a component N of F(P, Z,).
Since N¢ M, n|bg, and this, xo¢ N and the first part of this proof imply that
|ax—ao| =1. But then 2 = |ay—ay|+ |a;—ap| = |ax —a;| = np (the last inequality
by Lemma 1.2; p is the prime determining AM). Consequently no such » can
divide b;, and again |b;| = |a;—ap|. Finally, by the first part of this proof Y, (f)
cancels to a unit times a quotient of (1—¢)’s and so is a unit by Lemma 1.1. O

LEMMA 3.3. If F(P, S") is isolated then |b;|=|a;—ay| for 1<i=<4.

Proof. If A={b;: |b;| > |a;—ap|} is not empty, we may assume that b, € A and
also that

(3.3) |b1|=max{|b,-]:b,-eA}.

For b= |b,| and »n a prime power which divides b, and not a, —ag let B, N be the
components containing x; of F(P, Z,), F(P, Z,) respectively. B contains more
than one S! fixed point ([1, IV, Cor. 2.3]) and xo¢ BC N (Lemma 1.2), so we
may assume x; € B. Then n| b, and nfa,—ay, so be A. For i=1,2, let k; =
|bi/(ai—ap)| >1. Now |by|=<|b;| by (3.3) and b=|b;| divides b, since BC
F(P, Zp), so |by| =|b| and by Lemma 1.4 there is an S%(b) C B containing x;
and x,. Now a; —a, is nonzero by Lemma 1.2 and the hypothesis that F(P, S') is
isolated, and (b, p) =1 (p the prime determining M). These, Lemma 1.3, and
Lemma 1.2 imply the second inequality in

b<pb= |a1—a2| = |al—a0|+ |a0—a2| = [bll/k]-f- |b2|/k2=b/k]+b/k2$b.
This contradiction implies that S is empty, as was to be shown. O

If neither of the hypotheses of the previous two lemmas apply, we have the
following conclusion.

LEMMA 3.4. If each point of F(P, S') is contained in a six-dimensional com-
ponent of F(P, Z,) for some prime power q, and F(P, SYY contains nonisolated
points, then the action on P is quasilinear.

Proof. By hypothesis there are powers p,q of different primes such that
F(P,Z,)=MU{x,} and F(P, Z;) =NU{x;} where xoe N, x;e M and dim M =
dim N = 6. Then the rational Euler characteristic x(MNN) = x(F(MNN, S')) =3
and by general position dim(MNN)=4. F(P,S') contains a component S
with dim S =2 by hypothesis, and clearly S€MNN, so by [1, VII, Thm. 5.1]
F(MNN, S!) is either a homotopy CP? or an isolated point and an S2. Hence
(use [1, IV, Cor. 2.3] if necessary) one component L of MNN contains
F(MNN,S') and, by Lemma 2.2, is standard. Thusfor2<i<4, x;,e LCMNN,
prlai—aand q | a; — ag, the conclusion of Lemma 2.1 is impossible, and y;(#) isa
unit. Next, if some prime power not dividing |Stab N| divides three members of
A=lfap—a;:1=<j=4}, then using Lemma 1.2 it follows as above that Yo (7) isa
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unit. Otherwise, each prime which divides one or two members of A determines
by Lemma 1.2 one or (by Lemma 2.3) two S 2(m)’s each of which contains-x, and
one point of M, and by an intersection class argument and Lemma 1.3 the rele-
vant terms in Yo (#) cancel. This leaves Yo (#) a unit times, possibly, a quotient of
(1—1)sor (1—¢t9)’s, so that by Lemma 1.1 it is in any case a unit. Similarly ¢,(¢)
is a unit. i

We may now in effect restrict the nonquasilinear part of the action to M and
use Dejter’s calculations for CP3. (We again use the notation of the first two
paragraphs of this section.)

LEMMA 3.5. If the action on P is not quasilinear then Jyo(t) is a unit and J;(t),
1<i=<4, is a unit times (1—t*?"Y(1—1t")/[(1—t")(1—t?")] for integers a, b, r
witha>1, b>1, (a,b)=1 and r a nonzero multiple of p.

Proof. By hypothesis some y(¢) is not.a unit and by Lemma 3.2 we may
assume k0. Then for 1 <i =<4 the terms in ¢;(#) with exponents q; —ag and b;
cancel to a unit by Lemma 3.2, Lemma 3.3 and Lemma 3.4, and calculations
identical to those at [2, pp. 90-92] show that these polynomials are as claimed,
with r=|Stab M|. As for y,(t), if a prime power g divides ap—a; then by
Lemma 1.2 x¢ and Xx; are in a component L of F(P, Z;). By the above the expo-
nents of the tangent bundle S' representation 7P | x;, which appear in the denom-
inator of y;(¢), are, up to signs, ar, br, (ab+1)r and a; —aq. Since (g, r)=1and
g can divide at most one of a, b, ab+1, dim L <4 and (possibly by Lemma 2.3)
L contains an S?(a; —agp) containing x, and x; € M and (by intersection class con-
siderations) carrying a generator of H,(P; Z). Hence ¥ (¢) cancels to a quotient
of (1—¢)’s by Lemma 1.3, and is a unit by Lemma 1.1. O]

4. The previous two sections imply that if the action on P is not quasilinear
then there is an S%(/m) which contains fixed points xg, x; such that ¥o(¢) is a unit
and ¢;(¢) is not. The V(Sz(m),P) representations at these points turn out to be
incompatible.

THEOREM 4.1. If P is a homotopy CP* with a smooth S' action then the
action is quasilinear.

Proof. Assume to the contrary that P has a smooth S! action which is not quasi-
linear. By [1, VII, Thm. 5.1], Lemma 2.5 and Lemma 3.5, there are {xg, ..., X34} C
F(P, S") such that Yo (z) is a unit; Y, () = £ 1 —2yQ—¢")/[Q—t) (1 —17")]
for integers a, b, r,\ with a>1, b>1, (a,b)=1, r#0; and |a;—ao| = |a;—ay|,
|ay—ay| =abr, |ay—as|=r, |ay—as| = (ab+1)r. Now m = |ao—a,| is prime to r
and at least two of @, b, ab+1, so (imm,a) =(m,b)=1by Lemma 1.2 and Lemma
2.3, and, since 2m = |ap—ay|+ |ap—az| = |ay—az| = abr, m > abr/2. Moreover,
since 1—¢"™ cancels in both Yo(¢#) and ¢(#), Lemma 1.4 yields an S2%(m) which
contains xg and x; and, by Lemma 1.3, carries a generator of H,(P;Z). The
v = v(S?(m), P) representations at xo and x; (determined from 7P | x; as reflected
in the denominator of y;(¢), i =0, 1) are up to signs of exponents
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v I Xo= tao“az+t“0_a3_|_t”0—”4, " |xl Ztar+tbr+ta!)r+er .

for |e|=1. From above, the exponents of »|Xx( are equal to m+abr, m=r,
m =+ (ab+e)r respectively. Since v is a Z,,, equivariant bundle over the trivial Z,,
space S2(m), v | xoand » | x; pass to the same element of R(Z,,) = R(S')/(1—¢t")—
that is, for some choice of signs

{xabr, £r, x(ab+e)r}={xar, +br, +(ab+e)r}C Z,,.

Straightforward computations show that this is incompatible with (a, m)=
(b, m)=1and m>abr/2.
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