SMOOTH S^1 ACTIONS ON HOMOTOPY CP^4 'S

David M. James

Introduction. If the circle group S^1 acts smoothly on a 2n-manifold P which is homotopy equivalent to the complex projective n-space $\mathbb{C}P^n$, then the tangent and Hopf bundle fibers over fixed points give a set of S^1 representations. For n=3 Petrie constructed smooth S^1 actions which do not have the fixed point representations of linear actions ([6, II§4] and also [4, II§8]; a *linear* action on $\mathbb{C}P^n$ is one given in homogeneous coordinates by $t[z_0: ...: z_n] = [t^{a_0}z_0: ...: t^{a_n}z_n]$ for some $a_0, ..., a_n \in \mathbb{Z}$). For n=4, Theorem 4.1 of this paper has the following corollary.

THEOREM 1. If P is a homotopy CP^4 which has a smooth S^1 action, then there is a linear S^1 action on CP^4 with the same fixed point tangent and Hopf bundle representations as those of the action on P.

In particular, as pointed out by J. Shaneson, Petrie's exotic actions on \mathbb{CP}^3 do not extend smoothly to \mathbb{CP}^4 .

Petrie conjectured that if P is a homotopy $\mathbb{C}P^n$ which admits a nontrivial S^1 action then $\hat{A}(P) = \hat{A}(\mathbb{C}P^n)$ in $H^*(P;Q)$ ([6, p. 105]). This has been verified for n=3 by Dejter [2] and for various fixed-point set conditions by Wang [8], Tsukada and Washiyama [7], and Masuda [5]. Hattori [3, Prop. 4.15] has shown it for quasilinear actions (Definition 1B of this paper), which together with Theorem 1 yields the following.

THEOREM 2. If P is a homotopy \mathbb{CP}^4 which has a nontrivial smooth S^1 action then $\hat{A}(P) = \hat{A}(\mathbb{CP}^4)$.

In this paper the definition of Petrie's ψ polynomials and some of his results on them are quoted (§1) and the possibilities for these polynomials for homotopy CP^4 's are restricted by using properties of stationary sets of subgroups of S^1 (§2 and §3), ultimately leaving quasilinearity as the only possibility (§4). Throughout, the real dimension of a manifold M is denoted by dim M, the set of points of M fixed by $G \subset S^1$ by F(M, G), and the order of the largest subgroup of S^1 which fixes all points of M by |Stab M|; $N \subset M$ indicates that N is a smoothly and equivariantly embedded submanifold of M, with normal bundle $\nu(N, M)$.

1. Let P be a homotopy CP^n with an effective smooth S^1 action. Choose a lifting of the action to the Hopf bundle η over P so that η is an S^1 equivariant vector bundle (see [6, II, Prop. 1.1]). Let P_0, \ldots, P_k be the components of $F(P, S^1)$. For each P_i , $0 \le i \le k$, there are elements $\eta \mid x = t^{a_i}$ and $\nu(P_i, P) \mid x = \sum_{j=1}^{n-m_i} t^{b_{ij}}$ of $R(S^1) = Z[t, t^{-1}]$, where $m_i = \frac{1}{2} \dim P_i$ and x is any point of P_i .

Received February 18, 1981. Revision received November 11, 1983. Michigan Math. J. 32 (1985).

DEFINITION 1A. (Notation as above.) For $x \in P_i$,

$$\psi(x,t) = \prod_{j \neq i} (1 - t^{a_i - a_j})^{m_j} \prod_{k=1}^{n - m_i} (1 - t^{b_{ik}})^{-1}.$$

Petrie defined these polynomials and established their major properties, some of which we quote as the following lemma (see [6, II§2]; also [2, p. 86]).

LEMMA 1.1. Let $x \in P_i \subset F(P, S^1)$.

- (i) $\psi(x, t) \in R(S^1)$.
- (ii) For $m \in \mathbb{Z}$ let n(m) and d(m) be the number of numerator exponents and denominator exponents, respectively, of $\psi(x,t)$ which are integral multiples of m. Then $n(m) \ge d(m)$ and if m is a prime power then n(m) = d(m).
- (iii) $|\psi(x,1)| = 1$ and consequently $\prod_{j \neq i} |a_i a_j| = \prod_{k=1}^{n-m_i} |b_{ik}|$.

If P is the standard $\mathbb{C}P^n$ and the action is linear then each $\psi(x,t)$ is a unit in $R(S^1)$, as is clear from homogeneous coordinates. However, the ψ polynomials of Petrie's exotic actions on $\mathbb{C}P^3$ are not units ([6, pp. 150-151]). This leads to the following definition (cf. [2, p. 87], [5, p. 131]).

DEFINITION 1B. An S^1 action on P is *quasilinear* if $\psi(x, t)$ is a unit in $R(S^1)$ for each $x \in F(P, S^1)$.

We will be using invariant submanifolds of P to relate the two sets of representations in the ψ polynomials. We quote a useful result of Petrie ([6, p. 135–137]).

LEMMA 1.2. Let $x, y \in F(P, S^1)$ have Hopf bundle fiber representations t^a, t^b respectively. If m is a prime power then x and y are in the same component of $F(P, Z_m)$ if and only if $a \equiv b \pmod{m}$.

The simplest nontrivial S^1 manifolds are 2-spheres. A nontrivial smooth S^1 action on S^2 clearly has exactly two fixed points and exactly one nonfixed orbit type, so that it is given by $t[z_0, z_1] = [z_0, t^m z_1]$, for a unique positive integer m, in some system of homogeneous coordinates on $S^2 = CP^1$.

DEFINITION 1C. For $m \in \mathbb{Z}$, $S^2(m)$ denotes an S^1 manifold which is equivariantly diffeomorphic to $\mathbb{C}P^1$ with the S^1 action $t[z_0, z_1] = [z_0, t^m z_1]$.

This notation includes the trivial action, as $S^2(0)$, and the semifree action, as $S^2(1)$ or $S^2(-1)$. Clearly $S^2(m)$ and $S^2(n)$ are equivariantly diffeomorphic if and only if |m| = |n|. As usual an $S^2(m)$ in another manifold will be assumed smoothly and equivariantly embedded.

LEMMA 1.3. Let x, y be two S^1 fixed points in an $S^2(m) \subset P$ which carries k times a generator of $H_2(P; Z)$. If the Hopf representations are $\eta \mid x = t^a$ and $\eta \mid y = t^b$, then a - b = km and for $m \neq 0$ each of $\psi(x, t), \psi(y, t)$ contains $(1 - t^{km})/(1 - t^m)$ times a unit of $R(S^1)$.

Proof. Chern class calculations imply that $\eta \mid S^2(m)$ has underlying vector bundle ξ^k , the k-fold tensor product of the Hopf bundle ξ over S^2 . Now ξ and hence ξ^k can be made into S^1 equivariant bundles over $S^2(m)$ by lifting the

homogeneous coordinate action, and then (switching x and y if necessary) $\xi^k \mid x = t^0 = 1$ and $\xi^k \mid y = t^{km}$. Since ξ^k and $\eta \mid S^2(m)$ have the same underlying bundle, by [6, I, Thm. 6.1] the first is the tensor product of the second by a unit in $R(S^1)$. The only unit which gives the right representation at x is t^{-a} , so $\xi^k = t^{-a} \otimes \eta \mid S^2(m)$, whence $\xi^k \mid y = t^{km} = t^{b-a}$. This proves the first statement, and the second follows straightforwardly using Definition 1A.

LEMMA 1.4. If x_1 and x_2 are points in different S^1 fixed point set components of a connected smooth S^1 manifold M with principal orbit type S^1/Z_m , and each of the tangent bundle representations $\tau M \mid x_i$, i = 1, 2, contains a t^m or t^{-m} component, then M contains an $S^2(m)$ which contains x_1 and x_2 .

Proof. The $S^2(m)$ can be constructed straightforwardly using, for example, [1, IV§3, VI§2].

2. Henceforth P is assumed to be a homotopy \mathbb{CP}^4 , so that there are at most five components P_0, \ldots, P_k of $F(P, S^1)$ and $\sum_{i=0}^k (\frac{1}{2} \dim P_i + 1) = 5$ ([1, VII, Thm. 5.1]).

Choose and label five distinct points $x_0, ..., x_4$ so that for $0 \le i \le k$ exactly $\frac{1}{2} \dim P_i + 1$ of them are in P_i . (These are to be chosen once for all, but the labels—i.e., the subscripts—will be permuted as convenient.)

Henceforth, for $0 \le i \le 5$, a_i is the exponent of the Hopf fiber representation $\eta \mid x_i$, and $\psi(x_i, t)$ will be abbreviated $\psi_i(t)$.

The following definition is motivated by the fact that the standard \mathbb{CP}^2 contains three nicely embedded (in homogeneous coordinates) 2-spheres which determine the fixed point representations of a linear action.

DEFINITION 2. A component L of F(P,G), G a subgroup of S^1 , will be called standard if dim L=4, the rational Euler characteristic $\chi(L)=3$, and either $G=S^1$ or else L contains three distinct $S^2(m)$'s (for up to three values of m), each of which carries a generator of $H_2(P;Z)$ and contains exactly two of the $\{x_i\}$, and any two of which intersect in exactly one point.

LEMMA 2.1. If x_i is in a standard submanifold of P and $\psi_i(t)$ is not a unit, then there are positive integers a, b and r, with a > 1, b > 1 and (a, b) = 1, such that $\psi_i(t)$ is equal to $(1-t^{abr})(1-t^r)/[(1-t^{ar})(1-t^{br})]$ times a unit in $R(S^1)$.

Proof. This follows straightforwardly from Definition 1A, Definition 2, Lemma 1.3, and Lemma 1.1.

The next two lemmas show that certain submanifolds of P are standard.

LEMMA 2.2. If dim L = 4, $\chi(L) = 3$, $F(L, S^1)$ contains nonisolated points, and L is a component of $F(P, Z_n)$ for $Z_n \subset S^1$, then L is standard.

Proof. By [1, VII, Thm. 5.1] and the hypotheses, $F(L, S^1) \subset F(P, S^1)$ is either a homotopy CP^2 —in which case it is all of L, which is thereby standard—or an S^2 and a single point x. In this case L has only one non-fixed orbit type, so by Lemma 1.4 it contains two $S^2(r)$'s, r = |Stab L|, each of which contains x and

one of the two labeled points in the S^1 fixed $S^2 = S^2(0)$. These carry generators of $H_2(P; Z)$ by [1, VII, Thm. 5.1] for the $S^2(0)$ and by this and intersection class considerations for the $S^2(r)$'s.

LEMMA 2.3. If dim L = 4 and L is a component of $F(P, Z_p)$ for $Z_p \subset S^1$ and p a prime power, then L is standard.

Proof. [1, VII, Thm. 3.1] implies that $\chi(L) = 3$, so that the conclusion follows from Lemma 2.2 if $F = F(L, S^1)$ contains nonisolated points. Otherwise F consists of three isolated points, and the required three $S^2(m)$'s are obtained in the obvious way from the components of $\tau(L) \mid x_i$ for $x_i \in F$ —that is, if $\tau(L) \mid x_i =$ $t^a + t^b$ then x_i is in an $S^2(a)$ and an $S^2(b)$ in L. Two such 2-spheres with nonprincipal orbit types clearly intersect in (at least) one point of F, and cannot intersect in two: if L contained $S^2(ar)$, $S^2(br)$ with a > 1, b > 1, r = |Stab L| (so that (a, b) = 1 and $S^2(ar) \cap S^2(br) = \{x_i, x_i\} \subset F$, then intersection class considerations would imply that one, say $S^2(ar)$, carried a generator of a Z summand of $H_2(L; Z)$, and then (because of its Chern class) $\nu = \nu(S^2(ar), L)$ would be the Hopf bundle or its dual, so that by Lemma 1.3 the exponents of $\nu \mid x_i, \nu \mid x_i$ clearly some combination of $\pm br$ – would differ by ar, contradicting (a, b) = 1. It follows that principal orbit (i.e., Lemma 1.4) spheres, if any, can be arranged consistently with Definition 2 also. To show, finally, that these 2-spheres carry generators of $H_2(P; Z)$, let one carry $k[P] \cap c^3$ where $[P] \in H_4(P; Z)$ is the fundamental class and c generates $H^*(P; Z)$. Then L carries $\pm k^2[P] \cap c^2$, and (p, k) = 1 by [1, VII, Thm. 3.1]. Suppose |k| > 1. Let q be the greatest power dividing $k|\operatorname{Stab} L|$ of a prime dividing k. Since $k|\operatorname{Stab} L|$, and hence q, divides $a_i - a_j$ for each $x_i, x_i \in F$ (Lemma 1.3 and the foregoing), by Lemma 1.2 F is contained in a component K of $F(P, Z_q)$. Then dim $K \ge 4$. Since Z_q can fix at most one of the $S^2(m)$'s in L $(q \nmid | \text{Stab } L|)$ and so moves at least two, $K \cap L$ contains at least one isolated point. Hence dim K = 4 and K also contains three 2-spheres, each of which carries $\pm h[P] \cap c^3$ for some h prime to q. Thus $K \cap L = F$, which implies using intersection classes that $3 \ge |[K] \cdot [L]| = h^2 k^2$. Hence |k| = 1 after all, and the proof is complete. П

The following lemma prepares for Lemma 2.5, which, with Lemma 3.5, limits the possibilities for nonquasilinear actions to what are in effect extensions of Petrie's actions on $\mathbb{C}P^3$.

LEMMA 2.4. If the action on P is not quasilinear and no $F(P, \mathbb{Z}_p)$ contains a six-dimensional component for any prime power p, then $\psi_i(t)$ is a unit for at least four values of i.

Proof. We may assume that $\psi_1(t)$ is not a unit. Then it follows from Lemma 1.1 that the denominator of $\psi_1(t)$ contains terms $1-t^m$ with |m|>1, and from the second hypothesis and Lemma 2.3 that each such t^m determines an $S^2(m)$ in P containing x_1 . If all such 2-spheres carried generators of $H_2(P; Z)$ then $\psi_1(t)$ would be a unit by Lemma 1.3, so for some a>1, x_1 is in an $S^2(a)$ carrying k>1 times a generator of $H_2(P; Z)$. Let x_2 be in this $S^2(a)$ also, so that $|a_1-a_2|=ak$ (Lemma 1.3), and then Lemma 1.2 implies that x_1 and x_2 are in an $S^2(b)$ with

 $b \mid k$ and b > 1. Hence for h = k/b each of $\psi_1(t), \psi_2(t)$ contains a unit times $(1-t^{abh})/[(1-t^a)(1-t^b)]$, and Lemma 1.1 implies that each of these numerators contains 1-t also. Assign subscripts 3, 4 so that $|a_1-a_4|=|a_2-a_3|=1$. If $m=|a_1-a_3|$ and $n=|a_3-a_4|$ then clearly $m=abh\pm 1$, $n\equiv \pm 1 \pmod m$, and neither a nor b is congruent to 1 mod m. Now if $\psi_3(t)$ were a unit, there would be $S=S^2(m)\subset P$ containing x_1 and x_3 , and since $S\subset F(P,Z_m)$ the S^1 representations $v(S,P)\mid x_1=t^a+t^b+t^c$, $v(S,P)\mid x_3=t+t^n+t^d$ (up to signs of exponents, some $c,d\in Z$) would pass to the same element of $R(Z_m)=R(S^1)/(1-t^m)$ —that is, $\{a,b,c\}$ and $\{\pm 1,n,d\}=\{\pm 1,\pm 1,d\}$ would be the same subset of Z_m . As this is not the case, $\psi_3(t)$ and, by a similar argument, $\psi_4(t)$ are not units.

LEMMA 2.5. Under the hypotheses of Lemma 2.4, for an appropriate subscripting $\psi_0(t)$ is a unit and $\psi_i(t)$, $1 \le i \le 4$, is a unit times

$$(1-t^{ab})(1-t)/[(1-t^a)(1-t^b)]$$

for coprimes a > 1, b > 1.

Proof. By [1, VII, Thm. 3.1] and the hypotheses, $F(P, Z_2) = S \cup L$ where S is a 2-sphere and dim L = 4 and hence (Lemma 2.3) L is standard. Let $x_0, x_1, x_3 \in L$, so that $x_2, x_4 \in S$ and $a_2 - a_4$ is even. By Lemma 2.4 we may assume that $\psi_1(t)$ and $\psi_3(t)$ are not units. Lemma 2.1 gives $a, b, r, \lambda \in Z$ with a > 1, b > 1, (a, b) = 1, $r \ge 1$, such that $\psi_1(t) = t^{\lambda}(1-t^{abr})(1-t^r)/[(1-t^{ar})(1-t^{br})]$. Then r = 1 by the hypotheses and Lemma 2.3, and $L \subset F(P, Z_2)$ implies that a and b are odd. Hence the numerator exponents ab, 1 of $\psi_1(t)$ may be taken to be $|a_1-a_2|$, $|a_1-a_4|$ respectively, and then $\psi_2(t)$ is a multiple of $\psi_1(t)$ by Lemma 1.2 and Lemma 1.3. Similarly there are odd coprimes c > 1, d > 1 and $\mu \in Z$ such that $\psi_3(t) = t^{\mu}(1-t^{cd})(1-t)/[(1-t^c)(1-t^d)]$. Now cd is equal to one of $|a_3-a_4|$, $|a_3-a_2|$, and if it were the latter then $\psi_2(t)$ would be a multiple of $\psi_1(t)\psi_3(t)$, implying $|a_2-a_4|=1$. As a_2-a_4 is even, $cd=|a_3-a_4|$ instead, and $\psi_4(t)$ is a multiple of $\psi_3(t)$. Similar considerations vis-a-vis $\psi_2(t)$, $\psi_4(t)$ show that $\psi_0(t)$ is a unit, and this and computations similar to those of [2, pp. 90-92] show that $\{a, b\} = \{c, d\}$.

3. Throughout this section we assume that there is a prime p and a p-subgroup $G \subset S^1$ such that $F(P, G) = M \cup \{x_0\}$. Then dim M = 6 and M is a mod p cohomology $\mathbb{C}P^3$ ([1, VII, Thm. 3.1]).

Note that $\{x_1, x_2, x_3, x_4\} \subset M$. Define b_i for $1 \le i \le 4$ by $\nu(M, P) \mid x_i = t^{b_i}$. The next four lemmas cancel $(1 - t^{a_i - a_0})/(1 - t^{b_i})$ in $\psi_i(t)$.

LEMMA 3.1. For
$$1 \le i \le 4$$
, $a_i - a_0 \mid b_i$.

Proof. Any prime power which divides $a_i - a_0$ must divide b_i also by Lemma 1.2 and the fact that M has codimension 2 in P.

LEMMA 3.2. If x_0 is in no six-dimensional component of $F(P, Z_q)$ for any prime power q, then $|b_i| = |a_i - a_0|$ for $1 \le i \le 4$ and moreover $\psi_0(t)$ is a unit.

Proof. Either $|a_i-a_0| > 1$ or $|a_i-a_0| = 1$. For the first case, let m be a prime power which divides a_i-a_0 . Then x_0 and x_i are in one component L of $F(P, Z_m)$ by Lemma 1.2, and dim $L \le 4$ by hypothesis. Thus L contains (possibly by

Lemma 2.3) an $S^2(b_i)$ containing x_0 and x_i , and it follows from Lemma 1.3 and Lemma 3.1 that $|b_i| = |a_i - a_0|$. For the other case $|a_i - a_0| = 1$, suppose that b_i is a multiple of a prime n. By Lemma 1.1, $n | a_i - a_k$ for some $k \neq 0$, i. Then $x_k \in M$ and also, by Lemma 1.2, x_i and x_k are in a component N of $F(P, Z_n)$. Since $N \not\subset M$, $n | b_k$, and this, $x_0 \notin N$ and the first part of this proof imply that $|a_k - a_0| = 1$. But then $2 = |a_k - a_0| + |a_i - a_0| \ge |a_k - a_i| \ge np$ (the last inequality by Lemma 1.2; p is the prime determining M). Consequently no such n can divide b_i , and again $|b_i| = |a_i - a_0|$. Finally, by the first part of this proof $\psi_0(t)$ cancels to a unit times a quotient of (1-t)'s and so is a unit by Lemma 1.1. \square

LEMMA 3.3. If $F(P, S^1)$ is isolated then $|b_i| = |a_i - a_0|$ for $1 \le i \le 4$.

Proof. If $A = \{b_i : |b_i| > |a_i - a_0|\}$ is not empty, we may assume that $b_1 \in A$ and also that

$$|b_1| = \max\{|b_i| : b_i \in A\}.$$

For $b=|b_1|$ and n a prime power which divides b_1 and not a_1-a_0 let B, N be the components containing x_1 of $F(P, Z_b)$, $F(P, Z_n)$ respectively. B contains more than one S^1 fixed point ([1, IV, Cor. 2.3]) and $x_0 \notin B \subset N$ (Lemma 1.2), so we may assume $x_2 \in B$. Then $n \mid b_2$ and $n \nmid a_2-a_0$, so $b_2 \in A$. For i=1,2, let $k_i=|b_i/(a_i-a_0)|>1$. Now $|b_2| \leq |b_1|$ by (3.3) and $b=|b_1|$ divides b_2 since $B \subset F(P,Z_b)$, so $|b_2|=|b_1|$ and by Lemma 1.4 there is an $S^2(b) \subset B$ containing x_1 and x_2 . Now a_1-a_2 is nonzero by Lemma 1.2 and the hypothesis that $F(P,S^1)$ is isolated, and (b,p)=1 (p the prime determining M). These, Lemma 1.3, and Lemma 1.2 imply the second inequality in

$$b < pb \le |a_1 - a_2| \le |a_1 - a_0| + |a_0 - a_2| = |b_1|/k_1 + |b_2|/k_2 = b/k_1 + b/k_2 \le b.$$

This contradiction implies that S is empty, as was to be shown.

If neither of the hypotheses of the previous two lemmas apply, we have the following conclusion.

LEMMA 3.4. If each point of $F(P, S^1)$ is contained in a six-dimensional component of $F(P, Z_q)$ for some prime power q, and $F(P, S^1)$ contains nonisolated points, then the action on P is quasilinear.

Proof. By hypothesis there are powers p, q of different primes such that $F(P, Z_p) = M \cup \{x_0\}$ and $F(P, Z_q) = N \cup \{x_1\}$ where $x_0 \in N$, $x_1 \in M$ and dim $M = \dim N = 6$. Then the rational Euler characteristic $\chi(M \cap N) = \chi(F(M \cap N, S^1)) = 3$ and by general position $\dim(M \cap N) = 4$. $F(P, S^1)$ contains a component S with dim $S \ge 2$ by hypothesis, and clearly $S \subseteq M \cap N$, so by [1, VII, Thm. 5.1] $F(M \cap N, S^1)$ is either a homotopy CP^2 or an isolated point and an S^2 . Hence (use [1, IV, Cor. 2.3] if necessary) one component L of $M \cap N$ contains $F(M \cap N, S^1)$ and, by Lemma 2.2, is standard. Thus for $1 \le i \le 4$, $1 \le i \le 4$, $1 \le i \le 4$, the conclusion of Lemma 2.1 is impossible, and $1 \le 4 \le 4$ unit. Next, if some prime power not dividing $|S \cap N|$ divides three members of $1 \le 4 \le 4 \le 4$, then using Lemma 1.2 it follows as above that $1 \le 4 \le 4 \le 4$.

unit. Otherwise, each prime which divides one or two members of A determines by Lemma 1.2 one or (by Lemma 2.3) two $S^2(m)$'s each of which contains x_0 and one point of M, and by an intersection class argument and Lemma 1.3 the relevant terms in $\psi_0(t)$ cancel. This leaves $\psi_0(t)$ a unit times, possibly, a quotient of (1-t)'s or $(1-t^q)$'s, so that by Lemma 1.1 it is in any case a unit. Similarly $\psi_1(t)$ is a unit.

We may now in effect restrict the nonquasilinear part of the action to M and use Dejter's calculations for \mathbb{CP}^3 . (We again use the notation of the first two paragraphs of this section.)

LEMMA 3.5. If the action on P is not quasilinear then $\psi_0(t)$ is a unit and $\psi_i(t)$, $1 \le i \le 4$, is a unit times $(1-t^{abr})(1-t^r)/[(1-t^{ar})(1-t^{br})]$ for integers a, b, r with a > 1, b > 1, (a, b) = 1 and r a nonzero multiple of p.

Proof. By hypothesis some $\psi_k(t)$ is not a unit and by Lemma 3.2 we may assume $k \neq 0$. Then for $1 \leq i \leq 4$ the terms in $\psi_i(t)$ with exponents $a_i - a_0$ and b_i cancel to a unit by Lemma 3.2, Lemma 3.3 and Lemma 3.4, and calculations identical to those at [2, pp. 90–92] show that these polynomials are as claimed, with r = |Stab M|. As for $\psi_0(t)$, if a prime power q divides $a_0 - a_i$ then by Lemma 1.2 x_0 and x_i are in a component L of $F(P, Z_q)$. By the above the exponents of the tangent bundle S^1 representation $\tau P \mid x_i$, which appear in the denominator of $\psi_i(t)$, are, up to signs, ar, br, $(ab \pm 1)r$ and $a_i - a_0$. Since (q, r) = 1 and q can divide at most one of a, b, $ab \pm 1$, dim $L \leq 4$ and (possibly by Lemma 2.3) L contains an $S^2(a_i - a_0)$ containing x_0 and $x_1 \in M$ and (by intersection class considerations) carrying a generator of $H_2(P; Z)$. Hence $\psi_0(t)$ cancels to a quotient of (1-t)'s by Lemma 1.3, and is a unit by Lemma 1.1.

4. The previous two sections imply that if the action on P is not quasilinear then there is an $S^2(m)$ which contains fixed points x_0, x_1 such that $\psi_0(t)$ is a unit and $\psi_1(t)$ is not. The $\nu(S^2(m), P)$ representations at these points turn out to be incompatible.

THEOREM 4.1. If P is a homotopy \mathbb{CP}^4 with a smooth S^1 action then the action is quasilinear.

Proof. Assume to the contrary that P has a smooth S^1 action which is not quasilinear. By [1, VII, Thm. 5.1], Lemma 2.5 and Lemma 3.5, there are $\{x_0, ..., x_4\} \subset F(P, S^1)$ such that $\psi_0(t)$ is a unit; $\psi_1(t) = \pm t^{\lambda}(1-t^{abr})(1-t^r)/[(1-t^{ar})(1-t^{br})]$ for integers a, b, r, λ with a > 1, b > 1, (a, b) = 1, $r \neq 0$; and $|a_1 - a_0| \ge |a_2 - a_0|$, $|a_1 - a_2| = abr$, $|a_1 - a_3| = r$, $|a_1 - a_4| = (ab \pm 1)r$. Now $m = |a_0 - a_1|$ is prime to r and at least two of $a, b, ab \pm 1$, so (m, a) = (m, b) = 1 by Lemma 1.2 and Lemma 2.3, and, since $2m \ge |a_0 - a_1| + |a_0 - a_2| \ge |a_1 - a_2| = abr$, m > abr/2. Moreover, since $1-t^m$ cancels in both $\psi_0(t)$ and $\psi_1(t)$, Lemma 1.4 yields an $S^2(m)$ which contains x_0 and x_1 and, by Lemma 1.3, carries a generator of $H_2(P; Z)$. The $v = v(S^2(m), P)$ representations at x_0 and x_1 (determined from $\tau P \mid x_i$ as reflected in the denominator of $\psi_i(t)$, i = 0, 1) are up to signs of exponents

$$\nu \mid x_0 = t^{a_0 - a_2} + t^{a_0 - a_3} + t^{a_0 - a_4}, \qquad \nu \mid x_1 = t^{ar} + t^{br} + t^{abr + er}$$

for |e|=1. From above, the exponents of $v \mid x_0$ are equal to $m \pm abr$, $m \pm r$, $m \pm (ab+e)r$ respectively. Since v is a Z_m equivariant bundle over the trivial Z_m space $S^2(m)$, $v \mid x_0$ and $v \mid x_1$ pass to the same element of $R(Z_m) = R(S^1)/(1-t^m)$ —that is, for some choice of signs

$$\{\pm abr, \pm r, \pm (ab+e)r\} = \{\pm ar, \pm br, \pm (ab+e)r\} \subset Z_m$$

Straightforward computations show that this is incompatible with (a, m) = (b, m) = 1 and m > abr/2.

REFERENCES

- 1. G. Bredon, *Introduction to compact transformation groups*, Academic Press, New York, 1972.
- 2. I. Dejter, Smooth S¹ manifolds in the homotopy type of CP³, Michigan Math. J. 23 (1976), 83-95.
- 3. A. Hattori, Spin^c-structures and S¹ actions, Invent. Math. 48 (1978), 7-31.
- 4. W. Iberkleid and T. Petrie, *Smooth S*¹ manifolds, Lecture Notes in Math., 557, Springer, Berlin, 1976.
- 5. M. Masuda, On smooth S¹ actions on cohomology complex projective spaces: The case where the fixed point set consists of four connected components, J. Fac. Sci. Univ. Tokyo Sect. IA. Math. 28 (1981), 127–167.
- 6. T. Petrie, Smooth S¹ actions on homotopy complex projective spaces and related topics, Bull. Amer. Math. Soc. 78 (1972), 105–153.
- 7. E. Tsukada and R. Washiyama, S^1 actions on cohomology complex projective spaces with three components of the fixed point sets, Hiroshima Math. J. 9 (1979), 41–46.
- 8. K. Wang, Differentiable circle group actions on homotopy complex projective spaces, Math. Ann. 214 (1975), 73–80.

Department of Mathematics Howard University Washington, D.C. 20059