ON QUASICONVEX FUNCTIONS
W. K. Hayman

Dedicated to Professor George Piranian on his seventieth birthday

1. Introduction. Let f(z) be a convex univalent function not assuming the
value d and let F'= f or
af(z)+b
fz)—d
be a Mobius transformation of f. We shall call such functions F(z) quasiconvex

and denote the class of all such functions by Q. The class Q was considered by
R. R. Hall [2] who proved the following.

THEOREM A. If Fe Q then for |z|=p

(1.1) F(z) = =3 e,z
]

mlal _ p
2 (1-p)’

and hence |c,| < Ag|c,|, where Ay is an absolute constant.

|F(Z)—C0| <

Further results were obtAained by Barnard and Schober [1], by variational tech-
niques. They denoted by K the subclass of Q for which cy=0and ¢;=1and by K
the class of normalized convex functions and proved the following.

THEOREM B. If0<r<]1, Fek, and
m(r, F)= inf |F(z)|, M(r,F)= sup |F(z)|,
jz|=r lzf=r

then the extreme values of m(r, F) and M(r, F) for givenr and F e K occur when
f(z) maps the unit disk A onto a vertical strip. In particular max|c,| =1.3270.

2. Statement of new results. Although Theorem B gives sharp results for the
class K, the individual bounds usually seem to be solutions of rather complicated
transcendental equations. This is certainly the case for |c,|. If we confine our-
selves to the subclass of Q consisting of functions omitting a fixed value (e.g.,
zero), the bounds become more manageable and only elementary considerations
such as subordination are necessary. The extremals turn out once again to be the
functions considered by Barnard and Schober [1]. We have the following results.

THEOREM 1. If Fe Q, and F(2) #0 in A, then we have the sharp inequality
8
2.1 " al=—col-
T

Further we have for |z| = p the sharp inequalities
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-2 2
2.2) ( - -1) < s( Z —1).
cos ' p cos ' p

It seems likely to be hard to obtain the right value for the coefficient bound A,
in Hall’s Theorem A. However it is not difficult to get sharp asymptotic bounds.
It turns out that if F'e Q then there is always a constant ¢ = c(F’), such that
(2.3) #(z) = (F(z)+c)?

is univalent in A. From this and classical results [3, Chapter V] we deduce the
following.

F(z)
Co

THEOREM 2. If Fe Q, there exists a = a(F) such that 0 < a < o and

2.4) lim(1-p)M(p,F)=«;
p—1
(2.5) lim |c,| = a.
n— oo

We can also obtain sharp bounds for « in terms of |¢|, or the nearest omitted
value. It is curious that the upper bounds cannot be attained. It does not look as
if the two bounds can be obtained from each other.

THEOREM 3. If Fe K, then

T T
2.6) M(p, F)< - _1( = —2)
cos  p\cos 'p
and hence we have
2
T
2.7 a(F)<T. (

If Fe Q, and F(z) #0 in A, then
72
(2.8) a(F)<7|co|.

The inequalities (2.7) and (2.8) are sharp, but (2.6) is not.

Theorem 3 shows that Hall’s constant A, cannot be less than 7w2/4. Also (2.6)
shows that the bound for M(p, F') obtained by Hall [2] is about twice the correct
bound.

3. Characterization of quasiconvex domains. Let A be the unit disk and let D
be the image of A by F(z) e Q. We shall call such a domain D quasiconvex. We
have the following simple characterization of quasiconvex domains.

THEOREM 4. A domain D is quasiconvex if and only if there is a finite or in-
finite point £y outside D, such that if ¢ is any other point outside D then there is a
circle or straight line C(&) through &£y and £ lying outside D.

Proof. If £,= 0, C(£) is a straight line and we obtain the usual characteriza-
tion of convex domains. This corresponds to the limiting case F= fin (1.1). If D
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satisfies the conditions of Theorem 4 and W = F(z) maps A onto D, write

= f(z).

AT
Then f(z) maps A onto a domain Dy in the w plane, such that if w’ is any point
outside D, there is a straight line c(w’) lying outside D,. Thus Dy is convex, fis a
convex function and f# 0. Thus F(z) = £,+1/fe€ Q. Conversely, if fis convex,
Dy is the image of A by f, and F(z) is given by (1.1), then the image of A by F(z)
is the image of Dy by

aw+b
3.1) W= —d "
If £ lies outside D then
s aEHD
£—-d’

where £’ lies outside Dy. Thus there is a line L(£”) lying outside Dy, since Dy is
convex. So the image of L(£') by (3.1) is a circle or line C(§), containing £ and
L(o0)=a=§&, and lying outside D. This completes the proof of Theorem4. [

We deduce the following.

THEOREM 5. Let Dy (F(z) € Q) be the image of A by w=F(z), and suppose
that wy is a point outside Dyr. There exists a circle C, containing the point wy and
a line L touching C at w, # wy, such that

(31) DFCCEnHL’

where Cg is the exterior of C and H; is that half plane complementary to L,
which contains wy.

Proof. 1t follows from Theorem 4 that there exists a point w; and a line L
through w; and a circle or line C through wyand w, both lying outside D = D. If
L contains wy, let H be the half plane complementary to L containing Dr. We
then draw a circle C’ touching L at wy and lying otherwise in the other comple-
mentary half plane H’ of L. We also draw a line L’ in H’, parallel to L and
touching C’. With C’ and L’ instead of C and L we clearly have (3.1). If Cis a
straight line we argue similarly. Thus we may assume that C is a circle which con-
tains wy, but that line L does not. If C touches L, we have (3.1). Otherwise C
meets L in two points and so there exists a circle C’, containing wy but lying
otherwise inside C and touching L. Replacing C by C’ we again have (3.1), and
Theorem 5 is proved. O

By using Theorem 5 and subordination we can confine our study of Q largely
to the study of functions mapping A onto the type of domains occurring on the
right-hand side of (3.1). In the next section we accordingly study the hyperbolic
metric in these domains.
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4. Hyperbolic metric and hyperbolic distance. We recall [4, p. 48] the hyper-
bolic metric o(w) in a simply connected domain D. If w= f(z) maps A onto D,
then

|dz|
1—|z[*"

The hyperbolic distance between two points w;, w, in D is defined to be

4.1) op(w)|dw|=

4.2) d(w,, ws, D) =infSJa(w)|dw|,

where the infimum is taken over all curves J joining w; to w, in D. The infimum is
attained if J is the image of a segment of the real axis by a conformal map of A
onto D. We need the following.

LEMMA 1. If D is given by the right-hand side of (3.1), where C is the circle
|w—a|=r and wy=a—re'", then forwe D and |w—a|=R>r,

Tr
(r+R)?sinf{2xr/(r+R)} "

Equality holds if and only if w=a+ Re".

4.3) op(w) =

Proof. This lemma will be proved entirely elementarily by calculating the map-
ping function.

Since op(w) is conformally invariant we may rotate and translate D without
altering (4.3). So we assume without loss of generality that ;=0 and a = —r, so
that D = D, where, for 0 <r < oo,

4.4 D,={w||w+r|>r, Rew> —2r}.
We set
r
4.5 = .
(4.5) w+2r

Then D, corresponds in the W plane to the vertical strip
S={W|0<ReW<x/2}.

The function
I+iz =

T 1
W=tan " lz4+ — = —1
an-z 4 2 08 1—-iz 4

maps A onto S. Thus we have at least for real z and W

dz 14272 1
W = = = .
osW) =00 g =122 = Sin2w
Evidently o5(W+ic) =os(W), when cis real, so that for W=U+iV

1
sin(QU)

(4.6) as(W)=
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Suppose now that w= —r+ Re'® is a point in D,, so that R>r and W and w are
related by (4.5). Then, writing D = D,, we have

_ wr
" |r+Re"|*sin(2U)’

aw
oD(w)=as<W)‘ . ,

where
Tr ar(r+Rcos @) r  w(R*—r?)

U-—R i — = —_———.
“(r+Re®) ~ r*+2rRcos0+R’ 2 2|r+Re"|?
i0|2

Thus writing |r+ Re'’|”=x, we have

! =X sin{w(R%2—r?)/x} <

: 22 2
op(w)  wr sinfr(R"—r°)/(r+R)"},

(r+R)?
wr

since ¢ ~!sin ¢ decreases with increasing ¢. Equality holds if and only if # =0, and
this proves Lemma 1. O

Lemma 1 enables us to confine our estimates for the hyperbolic metric and
hyperbolic distance to those for the domains D, on the positive w axis. To prove
(2.1) we need the following.

LEMMA 2. If D, is defined by (4.4) and w is a point of D, such that
|w+r|=r+d,

then -

UD,(W) = 'é‘; .

Equality holds if and only if w=d and r = %d.

Proof. We may write w= —r+ Re'’, where R =r+d, and deduce from Lem-
ma 1 that

Tr
(r+R)?sin{2xr/(r+R))

with equality if and only if § =0. We now calculate the minimum value of the
right-hand side of (4.7) when R=r+d, and r varies. To do this we let

4.7) op(ry=

rirR =%+z‘, 2r=<%+t>(2r+d), r=—§-%§—§,
r 1/ N 21=21 /1420 1-47°
(r+R)* r<r+R> T d 1+2t( 4 ) - 8d
Thus
Tr w(1—4¢2) _ w(1—412) o

=

(r+R)%sin{27r/(r+R)} _ 8dsin{x/2+xt} 8dcoswt ~ 8d’

with equality only when # =0, as we see from the cosine product. In this case
R=3rand d=2r, and Lemma 2 is proved. Cl

We finish this section by proving a result involving hyperbolic distances in D,.
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LEMMA 3. Suppose that R\, R, are fixed 0 < R|< R, and that w,, w, are two
points of D, such that

'W1+FISI'+R1 and IWZ—'W1|ZR2—R].
Then
T (Ry/R)'*—1

I+tanhy e h= X
l1—tanh )’ T4 (Ry/R)VP+1

Equality holds if and only if wy,=R;, wa=R,, and 2r = (R, R,)"?.

d(W], ws, Dr) = log(

Proof. We suppose that J is a geodesic joining w;, w,, so that
4.8) d(wi, wy) = SJ ap(w)|dw).

We write |w—w;| =¢, and denote points of J on this circle by w,. Thus it fol-
lows from Lemma 1 that, since |w,+r|<r+R|+t¢,

wr
4.9) 7D w2 sin 2/ e+ 7])
wr

>
T (2r+R+1) sin{2xr/Q2r+ R +1)}

The first inequality follows from Lemma 1. For the second we use the fact that
0~ !'sin@ and so 6 2sin@ decreases with increasing @ for 0 < 6 < . Thus if
O<xi<xy<m,

—)—Cl? sin x; ;122— sin x5.
We set
=2 a2
2r+Ry+t r+|w,+r|
and recall that, since w, e D, |w,+r|>r.
Now (4.8) and (4.9) show that
Ry—R, wrdt

Ao, W D)= { opwldr] = [ Q2r+Ri+1)2sin2ar/(2r+ R+ 1))

R
= op(x) dx=d(R, Ry, D),
1
since the positive axis is a geodesic for the hyperbolic metric in D. Equality is
possible in the above inequalities only if
lw,+r|=r+R+t, 0<t<R,—R,,

i.e., wy=R; and w, = R,. Thus, with the hypotheses of Lemma 3, d(w,;, w,, D,)
can attain its minimum value only in this case. It remains to calculate the mini-
mum for varying r.
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To do this, we return to the transformation (4.5). Then w = R; correspond to
W =U; where

r
(4.10) U;= AR,
Also by conformal invariance we have
d(Ry, Ry, D;) =d(Uy, Uy, S) =SU‘ os(U) dU = SU‘ _4v_
U, U, sin(2U)
We note that by (4.10) we have
4.11) 0<Uy< U< % and f_z;]éz = i‘;jzjl .
We proceed to minimize the integral
_ SUI du
U, sin2U
when U,, U, are related by (4.11) and R, R, are fixed.
To do this we make a substitution

Thus

R
xl—x2=logif—=c,

say, where c is a positive constant. Also

NN b e*dx _wn
e sz (1+e*)sin{me’/(1+e*)} ~ 8 §x2¢(x) @
Here 2
1 1—t
o (x)

- cosh?(x/2) cos(w/2 tanh(x/2)) - cos((w/2)t)’

where ¢ =tanh(x/2). Evidently ¢(x) is an even symmetric function of x for
—oo < x < 400, Next

cos((w/2)t) = o\
o= - (55) |

and the right-hand side evidently decreases with increasing ¢ for 0 <¢ < 1. Thus
¢(x) increases with x when x is positive. From these facts it is clear that if x; — x,
is constant and equal to ¢, the integral

S: b(x) dx

has its minimum value when x, = ——%c and x; = %c. Translating back into the U
plane, this corresponds to
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4U, U, , -
=1, ie., U+Uz=—,
(7 —2U;) (x—2U5) Le, Uith2=7

and thus leads to r = %(RIRZ)'/ 2 as required. Also in this case

U, = u U = il
27 24 2(Ry /R’ '™ 24 2(R /Ry
We write
T T T (RZ/RI)'/Z-—I
U =———h, U=— h, h h=— ’
2= 1=y T Where A R IR

and, using (4.6), we have

w/4+h dUu
x/a—h sin(2U)

_5211 dt 1o l14+tanh
“Jo cost B\ 1—tanh /)’
This proves Lemma 3. L]

5. Proof of Theorem 1 and of (2.6). Suppose now that F(z)e Q, and that
F(z) # wy. Then D lies in a domain given by (3.1). After a rotation and transla-
tion in the w plane we may assume that Dy lies in one of the domains D,. Also
since the hyperbolic metric decreases with expanding domain and since functions
mapping A onto D, belong to Q, we may assume that Dr=D,. We now write
D= DF = D,-.

Suppose then that F(z) =co+c;z+ --- maps A onto D and that F(z) # wy, where
|wo+r|=r. We write |co—wp| =Ry, so that |co+r| < |wo+r|+]|co—Wo| <r+R;.
Thus Lemma 2 and (4.1) show that

d(Ri, Ry, D) =d(U;, Uy, $) =

1 T
— Z .——.—,
|C1| 8R1

and this yields (2.1) when we set wo=0. Also, by Lemma 2, equality holds when
Dp=D, and r= %co.

Next we prove the right-hand inequality in (2.2). We suppose again that
F(z)e Q, F(z)# wpand F(0) =cy, and estimate

M(p) = sup |F(z)—col.

lz]=0p

. ™
op(cy) = 1.e., R1=IC(}—W0|_>__—|C||,
8

Again we may assume that F(z) maps A onto the domain D, given by (4.4).
We write

(5.1 wi=co, wa=F(pe”), where |wy—co|=M(p).
Then the conformal invariance of hyperbolic distance shows that

I+p
1—p

. 1
(5.2) d(wy, wa, D,;) =d(0, pe®, A) = 7 log
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Also if |co—wp| =R, and R, =M+ R;, we have
|wi+r|<|wo+r|+R=r+R, and |w,—w|=M=R,—R,.
Thus Lemma 3 and (5.1) show that

1 1+ I+tanh 1 1+4sin2h
d(wi, wp, Dy) = —-log £ >log —ilog(————)

1—p = %1 tanh 1—sin 2/
where
po T (Re/Ry) "1
4 (Ry/R)V?+1°
Thus ”
: . (7 (Ry/R)7/*—1 o
=sin2h= - = ,
p=sinzh S”‘{z (Ro/R)7Z+15 = O\ Ry/R)Z+1
so that
T 2
5.3 R,<R —-1),
(5.3) > l(cos"’p )
and
(5.4) M=R,—R < —— ( - -2).
cos "p\cos ' p

Thus using (5.1) we deduce that for |z| = p,
|F(pe'®)—wo| < |F(0)—wo|+|F(pe®)—F(0)| <R+ M =R,

2
cos” 'p

Setting now wo=0 and R, = |co| = |F(0)|, we obtain the right-hand inequality in
(2.2). Also, since F# 0 and Fe Q, 1/Fe Q, and by applying the above inequality
to 1/F(z) we obtain the left-hand inequality in (2.2). Equality holds for the right-
hand inequality of (2.2) only if F(z)/co maps A onto the domain D, given by
(4.4) with

2r=(Ry/R)V? = (x/cos ™ p—1).
For the left-hand inequality we must have
2r=(Ry/Ry)"?=(cos ™' p)/(m—cos ' p).
This completes the proof of Theorem 1. [l
We finish this section by proving (2.6). Here we need to use Barnard and

Schober’s Theorem B. They prove in effect that for fe K , the maximum value of
M (p, f) occurs when

_ F(z)—F(0)

f(z) e F,(O) ’

where F(z) maps A onto one of the domains D, given by (4.4), and £(0) > 0. For
these functions we deduce from (5.4) that
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|F(2)— F(0)| < F(0)— ( T —z).
cos 'p\cos™'p

On the other hand, since D, always contains the half plane Re w> 0, we deduce
from subordination that F’(0) >2F(0). Thus

1
|F(z) = F(0)] < = F'(0)———(————2),
2 COS™ p\Ccos 'p
and this proves (2.6). ]

6. Proof of Theorem 2 and completion of proof of Theorem 3. We suppose
now that F(z) is a general function in Q. Suppose that wy is a point outside the
image of Dr. Then Theorem 4 shows that there is a line L outside Dg. If w;is a
point on L, we deduce that ¢(z) = (F(z)—w;)? is univalent and ¢(z) # 0. Thus

Fi(z) =F(z)—wi=¢"*(2) =co—w + § cnz”
1

is circumferentially mean %-valent. Now we deduce from [3, Chapter 5, Theo-
rems 5.1 and 5.7] that ((1—p)/(1+p))M(p, F}) is a decreasing function of p, for
0 <p <1, and so tends to a finite limit %a, say as p — 1. Also,

2= M(p, Fy=+—2 M(p, F))+ O(1— p) > o
1+p I+p

and this is (2.4). The limiting relation (2.5) is also a consequence of the above
mentioned theorems. This proves Theorem 2.
We also note that from the above monotonicity we have

M(p, F)=M(p, F\)—|w|
6.1) 1 1+p o 1

We can now complete the proof of Theorem 3. We write
cos lp=8, p=C050=1—%02+0(94),
so that, as p — 1, we have

0=1{2(1—p)}2{14+0(1-p)}.

Thus
™ T T
cosTp 0 - li—pyr it od=rl,
and X 2 .
T L3 V2
(cos“'p _l) T21—p)  (1=p)7 +0(1).

Thus for Fe K we deduce from (2.6) that as p —1 we have
2

M(p,F) <

T s
Hi—=p) A=y TOD:
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This inequality contradicts (6.1) for p sufficiently near to one if a = %wz, and this
gives (2.7).

Similarly we deduce from the right-hand inequality of (2.2) that if Fe Q and
F(z)#0, we have as p— 1

71"2 71"/2
2(1-p) (1-p)"?
This again contradicts (6.1) if o = w2|co|/2. This proves (2.8).

It remains to show that (2.7) and (2.8) are sharp. To see this we investigate

maps w=F(z) of A onto the domain D, given by (4.4) when r is large but fixed
and F is real on the real axis. We see as in Section 4 that such a map is given by

M(p,f)SICOI{ }+O(l).

that is,

In this map z =0 corresponds to w=2r. To make z =0 correspond to w=1, we
compose with a map of A onto itself, so that our final map is given by

Z—t T [ w—2r T 1-2r
6.2) : 11—tz tan{4 <w+2r)}’ where tan{4 1+2r}
We now set z=p and w=R, and let p, R tend to 1 and o through real values,

while r and ¢ are kept fixed. We have

_p—t _(I=p)(I+1) 1+t
1—tp  1—tp 1—1¢

(6.3) 1 (1-p),

while

tan x R=2r = 1=s wh s=t r
A\ R¥2r )" 145> VST RIS )
Hence

T [ wW—=2r 27r
(6.4) l—tan{4<w+2r>}~2s~——§—.

Now we deduce from (6.2) to (6.4) that

1—¢ 1 _c(r)
14t 1—p 1—p

Ll =27ar tan r_.r 2r-1
1+¢ T 4 4\ 2741

=27r tan(

R~2xr

say, where

c(r)=2=nr

T 72 a
-, S r— o0,
4r+2 2

Thus given e > 0, there exists F(z) € Q such that F(0)=1, F(z)#0, and
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2

(6.5) lim (1= p)M(p, F)> — —e.
o—1 2

This shows that the inequality (2.8) is sharp.
Next we note that for the map w=F(z) constructed above we have

1 )_ﬂ__qg d¢  1-1? A7 (w=2r wr
=4z T dz/dw = (1—zz)2/[sec {4 <w+2r>} (w+2r)2]'

Putting z=0 and w=1, by (6.2) we obtain, for large r,

2r—=1\) 2r+1? 4r(1—1)
’ =(1— 2 2 T _
F(0)={1~17)cos {4(2r+1>} xr —
as r —» oo, We note that
F(z)—F( .
Fo(2)=7—"F77" (2) ) K

Fo -
and we deduce from (6.5) that

_ 2
lim (1— p) M(p, Fp) = ——— lim (1= p) M(p, /) > - E(l—e)

pol F'(0) ,o1 2 \2
if r is sufficiently large. This shows that (2.7) is also sharp, and completes the
proof of Theorem 3. 0l

Comparing Theorem A and Theorem 3, we see that Hall’s argument yields
about twice the correct bound for the maximum modulus in K. I am grateful for
discussions with R. Hall and T. Sheil-Small while preparing this paper. I am
grateful to the referee for a number of corrections and suggestions.

REFERENCES

1. R. W. Barnard and G. Schober, Mdbius transformations of convex mappings, Com-
plex Variables 3 (1984), 55-69.
2. R. R. Hall, On a conjecture of Clunie and Sheil-Small, Bull. London Math. Soc. 12
(1980), 25-28.
. W. K. Hayman, Multivalent functions, Cambridge Univ. Press, Cambridge, 1958.
. R. Nevanlinna, Eindeutige analytische Funktionen, Springer, Berlin, 1936.

oW

Department of Mathematics
Imperial College
London SW72BZ, England



