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A function f analytic in the unit disk D is said to belong to the Hardy space
HP?, 0< p<oo, if its integral means

1 27 . /p
Myt = {5 10 ey P ao)

remain bounded as r tends to 1. We let M (r, f) denote the maximum of | f(z)|
on the circle |z| =r < 1. Thus H is the class of bounded analytic functions in D.
A function fe H' is said to be in the space BMOA if its boundary function
F(t) = f(e") is of bounded mean oscillation:

1
— \ |[F(t)—F|dt<oo,
Wy 1, 1O Fil dt <
where |/| is the length of the interval I and

1
FI—W §1F(f) dt.

The Bloch space & consists of all analytic functions f for which

sup(1—|z|)|f"(z)] <oo.
zeD
The proper inclusions

H®CBMOAC 3C*= (| H?

p<oo
and BMOA C ® are well known. Moreover,

®¢ 3C.= U HP.

p>0
A useful criterion for an analytic function f to belong to BMOA is that

d(z) = (1—|z|)|f"(z)|* dxdy

be a Carleson measure on D. See [2] and [3] for further background.
We shall be concerned with random power series

[+ 0]
S(z)= E enanzns €, = £1,
n=0

where the ¢, are random signs and lim sup ~/ |a,| =1. More precisely, such func-
tions have the form
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f@)=1@ 0= 3 sz, 0=Isl,

where ¢, is the nth Rademacher function. (See [2], éppendlx A.) Each function
f is analytic in D. According to familiar results of Paley and Zygmund [8, 9]
and Littlewood [5], random power series are similar to lacunary series: they are
very well behaved if the coefficients are square-summable and very badly be-
haved if not. Specifically, the condition ¥ |a,|* < o implies fe 3C* almost surely
(a.s.); that is, fe JC* for almost every choice of signs, or for almost every
t€[0,1]. On the other hand, Y |a,|* = implies f¢ 3C, a.s. A simple example
[8] shows that even under the stronger condition

(1) Y |a,|*logn< oo,
n=1

J need not belong to H® for any choice of signs. However, if

() E |a,|*(log n)? < o

n=1
for some 3> 1, then f is almost surely continuous in D. (See [6] for the ultimate
refinement of this last condition.)

More recently, Anderson, Clunie, and Pommerenke [1] studied the Bloch
space and showed in particular that (1) implies fe @& a.s., and that the condi-
tion is best possible in the following sense. For each prescribed sequence {5,} of
positive numbers decreasing to 0, the coefficients @, >0 can be chosen so that
> a?8, log n< o but f¢& & a.s. The proof uses a beautiful theorem of Salem and
Zygmund (described below) on the behavior of the maxima of the partial sums of
random trigonometric series.

Because in some sense BMOA is the “natural limit” of H” as p — oo, it had
seemed a reasonable conjecture that ¥ |a,|? <o implies fe BMOA a.s. The
analogous statement for lacunary series is true and is easily proved using the
Carleson measure criterion. Since BMOA C B, however, the construction of
Anderson, Clunie, and Pommerenke shows that this result does not extend to
random series. In fact, no condition weaker than (1) can imply that fe BMOA
a.s. Without initial knowledge of [1], Sledd [13] used the Salem-Zygmund
theorem to show that (1) actually implies fe BMOA a.s.

These results reveal a surprisingly large gap between BMOA and 3C*. The pur-
pose of the present paper is to explore the difference of these two spaces by study-
ing the effect of the intermediate condition (2) with 0 <8< 1. Our main result is
as follows.

THEOREM. If X3 1|an|2(log n)f <o for O<B<1 then for almost every
choice of signs e,, the function f(z2) = 25— €,a,2" has the property

. et 1 -1
3) | a=r)(log [Mao(r, f)1 dr < oo,
0 1—r

Before giving the proof, we point out some corollaries. The first is Sledd’s
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theorem. The second generalizes the result of Anderson, Clunie, and Pomme-
renke that the same condition implies fe ® a.s.

COROLLARY 1. If 33—, |a,|*logn < e, then fe BMOA a.s.
Proof. The property (3) with 8 =1 clearly shows that
dp(z) = (1-|2z))|f"(2)|* dx dy

is a Carleson measure on D, which implies that fe BMOA. In fact, if S is a
“square” at the boundary with side-length %, it follows that u(S)=o0(4) uni-
formly as # tends to O.

This actually gives the stronger conclusion that fe€ VMOA a.s. In other words,
f has vanishing mean oscillation (see [12], [3]).

COROLLARY 2. If 35—, |a,|*(logn)? <o for0<p <1, then asr— 1,

) | \C-B2
Mot =01 (lg—l—_———-) )a.s.

Proof. Since M(r, f’) is nondecreasing and the integral (3) is convergent, we
have for r sufficiently large
1 V!
) dx<e.
b's

1—

2 1
[Ma(r, P (1-2) <1og

But this last integral is easily seen to be

1\t
O((l—r) (logIT> ), r—1,

which gives the desired result.

Choosing 8 =1, we obtain the result of Anderson, Clunie,and Pommerenke
that (1) implies fe ® a.s. In fact, f belongs almost surely to the space @3, for
which f’(re’®y=0((1—r)~") as r -1, uniformly in 6. The method of [1] may be
adapted to obtain Corollary 2 directly, but the proof of our theorem is easier.
The construction in [1] may also be modified to show that Corollary 2 is best
possible: the conclusion fails if the hypothesis (2) is weakened. The same is there-
fore true for the theorem.

COROLLARY 3. If 57—, |a,|* < o, then

1/2
Mo(r,f')=o0 ( ! (log————l > ) a.s.
1—r

This special case of Corollary 2 may also be deduced from the result of Paley
and Zygmund [8] that

1 \/2
@ Mot =of(los12;) ) as,

if 3 |a,|* <. Paley [7] produced a construction to show that (4) is the best
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possible estimate. In comparing (4) with Corollary 2, one is tempted to conjec-

ture that (2) implies
1 (1-8)/2
M (r, f) =o<<log 1—_—) ) a.s.

if 0 <B< 1. However, Paley’s construction can be adapted to show that the
stronger condition (2) allows an improvement of (4) at best by a factor of the
form [loglog(1/(1—r))]~“ for some o> 0.

The proof of our theorem makes use of three lemmas. Lemma 1 is the basic
result of Salem and Zygmund [11] already mentioned. Lemma 2 estimates an
integral which may be viewed as a generalization of the classical beta function.
(The proof is tedious and will be omitted.) Lemma 3 is Hilbert’s inequality (see
[4], p. 226). The overall approach is due to Pommerenke [10], who introduced it
to give a proof of Corollary 1.

LEMMA 1. Let s, (0,t)= X% =1 d)k(t)bke’ke, where ¢, are the Rademacher func-
tions and by € C. Let M, (t) =maxy|s,(0, t)| and B} = 3% _,|by|>. Then

M, (t)=0(B,\/logn) a.s.
LEMMA 2. For v =0,

Doy 3 1 \77 _ 1
gox (1—x) <10g —x dx=0 Mn4(10gn)7 , N— o,

LEMMA 3. For arbitrary \,€ C,

E 2 nm

n=1m=10+
Proof of Theorem. Write

<73 Pl

n=1

@) =f& ) =3 éult)anz",

n=1

and let
520,1)= 3, kage' ey (1),
Then =t
<1—r>n§ls,,<e,t)r"=zf'<z,t>, z=re',

For almost every 1 €[0,1], Lemma 1 gives

s.(0,1)=0O(B,/logn), where B2= E k |ak|2
uniformly in 6. Thus, almost surely,

) F@|=C=n 3 B,\logn r"=Cytr),
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where C denotes a constant (not necessarily the same at each occurrence) and
Y(r) is the sum of the given series.
In view of Lemma 2 we have, for y=0,

J, 1=n(1oe =5 ) 2 ar
0 <0g 1—r

- o 2
=§;(1-—r)3<log " ! r) 7[ S B,~/logn r”]
- n=1

E E B,~/logn Bm\/long r’“""(l—r)"‘(log1

n=1m=1

1 -
> dr
—r

<C§ § B Vlogan\/m § - }\
n=1m=1 (n+m) [10g(n+m)]7 = el el n+ "

where \,=B,(logn)'~"2,-32 Now choose 'y=1—6 and apply Lemma 3
to obtain

(6)

B8—1 P
S;(l—r)(log 1—1-—;) [¥(r)1?dr<C 3 BX(logn)®n=3

n=1

On the other hand,

by

S BXlogn)Pn3= 3 S Ka2(logn)Pn=d= 3 k|ay> 3 (logn)Pn=
n=1 n=1k=1 k=1 n=k

=C Y |a]*(log k)P < oo,
k=1

hypothesis. Thus a combination of (5) and (6) shows that (3) holds almost

surely, and the proof of the theorem is complete.

REFERENCES

. J. M. Anderson, J. Clunie, and Ch. Pommerenke, On Bloch functions and normal

Junctions, J. Reine Angew. Math. 270 (1974), 12-37.

P. L. Duren, Theory of H? spaces, Academic Press, New York, 1970.

J. B. Garnett, Bounded analytic functions, Academic Press, New York, 1981.

G. H. Hardy, J. E. Littlewood, and G. Pdlya, Inequalities, 2nd ed., Cambridge Univ.
Press, London, 1952.

J. E. Littlewood, Mathematical notes (13): On mean values of power series (II), J.
London Math. Soc. 5 (1930), 179-182.

. M. B. Marcus and G. Pisier, Necessary and sufficient conditions for the uniform con-

vergence of random trigonometric series, Mat. Inst. Aarhus Univ., Lecture Note
Series No. 50, 1978.

. R. E. A. C. Paley, On some problems connected with Weierstrass’s non-differentiable

Junction, Proc. London Math. Soc. 31 (1930), 301-328.

. R. E. A. C. Paley and A. Zygmund, On some series of functions (1), Proc. Cam-

bridge Philos. Soc. 26 (1930), 337-357.



86 PETER DUREN

» A note on analytic functions in the unit circle, Proc. Cambridge Philos. Soc.
28 (1932), 266-301.

10. Ch. Pommerenke, informal notes (ca 1978), unpublished.

11. R. Salem and A. Zygmund, Some properties of trigonometric series whose terms have
random signs, Acta Math. 91 (1954), 245-301.

12. D. Sarason, Function theory on the unit circle, Lecture Notes, Virginia Polytechnic
Inst. and State Univ., 1978.

13. W. T. Sledd, Random series which are BMO or Bloch, Michigan Math. J. 28 (1981),
259-266.

9.

Department of Mathematics
University of Michigan
Ann Arbor, Michigan 48109



