ACTIONS OF SU(2) ON §7

Deane Montgomery

1. Introduction. It is well known that SU(2) can act freely on S’. This paper
is concerned with almost free actions. An action of‘a compact Lie group is called
almost free if every isotropy group is finite, which implies that every orbit has the
same dimension as the group. Although SO(3) cannot act freely on S’, Oliver [5]
has shown that SO(3) can act almost freely on S”. (This shows that a theorem in
[2] is false.) The group SO(3) is the quotient by the center C of SU(2), and C
consists of 2 elements, namely 1 if SU(2) is considered as the group of unit
quaternions. Thus Oliver’s work shows that there is a non-free but almost free
action of SU(2) on S7. However this action is not effective. The main result of
this note is as follows.

THEOREM 1. Let G=SU(2)=S3 act smoothly, effectively, and almost freely
on S'. If the fixed point set of the center C is an empty set, that is F(C) = &, then
the action is free.

This theorem may possibly be true in dimension 4k —1, k >2.

An example of an effective almost free action of SU(2) on S’ may be con-
structed at least topologically. In order to do this take the join of SU(2) acting
on itself and SU(2) acting on SU(2)/1 where I is the doubled icosahedral group.
As a space the join is S’ by the double suspension theorem (see e.g., Cannon,
Bull. Am. Math. Soc., 84, 1978, pp. 832-866), and F(C)=SU(2)/1. This may
be the only example with F(C)# &.

As will be seen the proof amounts essentially to showing that a certain kind of
action of N (N =normalizer of the circle group) on a mod p 3-sphere cannot be
extended to an action of SU(2) in the way which would be required.

2. General remarks. This section lists two facts about general actions of com-
pact Lie groups which will be useful in this paper. It is assumed that G is a
compact Lie group acting on a manifold M with base space M* and projection
T M—M*,

I. Let A.be a closed connected subset of M which is a cross-section of the
orbits it touches. Let all isotropy groups G,, x€ A, be conjugate. Then G(A) is
a topological product G(A)=AXG/G, for any fixed a€ A.

Proof. For any x€A there is a homeomorphism G(a)—> G(x) given by
gG,(a) 2 gG(x), g €. This determines the desired homeomorphism because
G,, XxE€ A, varies in a continuous way [4]. 0

II. If S*is a closed path in M* and if all orbits in S* are of the same isotropy
type, then there is a cross-section S of = ~'(S*) and © ~'S*=Xx G/G,, for any
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fixed a € S. The S exists for any fibering which is a local product and has arc con-
nected fibers.

For raising paths see [4].

3. The principal isotropy group. The only finite subgroups of SU(2) which do
not contain C are the finite cyclic subgroups of odd order. To see this use the fact
that SU(2)/C=S0O(3) and that the finite subgroups of SO(3) are known. By the
assumption of the theorem these are the only possible isotropy groups. If p is an
odd prime, the next lemma gives information on GF(Z,) that is the orbit under
G of the fixed point set F(Z,); see [2, 3].

LEMMA 1. Suppose F(Z,)#@. Then GF(Z,) is a fiber space with base P>
and fiber F(Z,). Hence GF(Z,) is a manifold whose dimension is dimension
F(Z,)+2, and which is non-orientable.

Let T be the circle subgroup which includes Z,. There is no loss of generality
in assuming 7 includes 1, +i. Let N be the normalizer of 7 so N=TU/T.
The set F(Z,) is invariant under N and g € N implies F(Z,) N gF(Z,) = @. This
shows that if g,h € G then gF(Z,) and hF(Z,) either coincide or have a null
intersection.

Let K be a small smooth 2-cell in G which is a slice of the gV at e. Now suppose
kix=kyy, ki, k, €K, x,y €EF(Z,). Then

k; Vkix=y and ki=k,n (n€N),

and K would not be a slice. This shows that GF(Z),) is a local product and thus a
fiber space with base G/N=P?2. It remains to prove that GF(Z,) is non-
orientable. It is known [1] that F(Z,) is orientable.

Let a*(2), 0<¢<1 with a*(0)=«*(1) = point of P? corresponding to N, and
let this path reverse the local orientation in P2. If = is the projection from G to
G/N let a(t) be a path above a*(¢), that is, wa(¢) =a*(¢). Such a path is known
to exist. The end «(1) is in N, that is, in TU,T.

As was mentioned, F(Z,) is an orientable manifold. If «(1)€T, then
a(l): F(Z,) > F(Z,) cannot reverse orientation. If a(1) €/ T, assume a(1)=.
The element j is of period 4. If it reverses orientation it must have a fixed point,
since F(Z,) is a 3-sphere modulo the rationals. If j has a fixed point so does
j?=—1, which is impossible by assumption. Hence «(1) does not reverse the
orientation of F(G). Thus «(f) does not reverse the fiber orientation. On the
other hand it does reverse the orientation of a transverse 2-cell, because a*(¢)
reverses the local orientation in GF(Z,). This proves that GF(Z,) is not
orientable. O

REMARK. The facts above also show that the inverse of a simple closed curve
in P? has the mod p homology of S' X F(Zp). This is because a circuit of the
curve preserves the orientation.

LEMMA 2. The principal isotropy group is e.
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The principal isotropy group must be odd cyclic since every isotropy group is
odd cyclic and it remains to prove that it is trivial. Suppose not and that the
principal isotropy group is a non-trivial odd cyclic group A. The set F(A) must
touch every orbit. Let T be the circle group containing A, and N the normalizer
of T, which is also the normalizer for any subgroup of 7. Then N leaves F(A)
invariant. Let @, € A generate A, of prime order p. Then F(A) CF(A;); F(A,) is
a sphere mod p which cannot be S7. By Lemma 1, GF(A,) is a non-orientable
manifold and it must be S’. This contradiction proves the Lemma. ]

4. First part of proof. It has been shown that the principal isotropy group is e.
Suppose now for some prime p that F(Z,) # @, so that F(Z,) is a mod p sphere
of dimension 1, 3, 5, 7. If it had dimension 7, G would not be effective and
if it had dimension 5, GF(Z,) would be all of S7 and the principal isotropy
group would contain Z,. If F(Z,) is 1-dimensional, GF(Z,) is an orbit G(x),
x€F(Z,). But G(x) contains N(x) and N(x) CF(Z,). On the other hand N(x)
contains 2 components. This shows that F(Z,) is 3-dimensional.

The proof of the theorem consists in showing that F(Z,) cannot be 3-dimen-
sional because if it is we are led to a contradiction. The contradiction is found by
computing the mod p cohomology of GF(Z,) in two ways which lead to conflict-
ing results.

For the first calculation notice that GF(Z,) is fibered by the sets gF(Z,),
g € G, and that the base space B* =P2 7: GF(Z,) > B*, gF(Z,) = pt. Let S* be
a simple closed curve in B* which cannot be shrunk to a point. Then in = ~'S*
there is a cross-section S.

This situation has been discussed in Lemma 1, and it was shown that travers-
ing the closed path S does not reverse the orientation of the fiber gF(Z,). Now
F(Z,) is a mod p 3-sphere and this argument shows that the mod p mapping
sheaf for 7: GF(Z,) » P*=B* is constant. The mod p homology of P?is trivial
and it follows that the mod p homology of GF(Z,) is the same as that of S3.

5. Conclusion of proof. To obtain the proof we consider GF(Z,) from
another point of view. Computing the homology of GF(Z,) from this point of
view leads to a contradictory result and this contradiction proves that F(Z,) =@
which proves the theorem.

As in the previous section, assume that F(Z,) # @ so that F(Z,) is a mod p
3-sphere. Again T is the circle group containing Z, and N the normalizer. Let A
be the principal isotropy group for the action of 7 on F(Z,). Then A is a cyclic
group of order p”m, r 21, and m not divisible by p. There may be exceptional
orbits for the action of 7 on F(Z,) and the union of these will be denoted by E.

We wish to find the mod p cohomology of GF(Z,). Let

GF(Z,)/G=B*=P*=F(Z,)/N.

Since F(Z,) is a 3-sphere mod p, F(Z,)/T is S* and B*=P?.
The base B*=GF(Z,)/G will be taken to be the union

B*=M*UD* M*ND*=S,
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where M* is a Mo6bius band and D* is a 2-disc. It may be assumed that M* con-
tains no points corresponding to exceptional orbits. Assume that bf, ..., bf are
points in the interior of D* corresponding to all the exceptional orbits. To
include the case where there are no exceptional orbits let b§ be an additional
point corresponding to a regular orbit. Let Dg, Dy, ..., D} be 2-discs in the in-
terior of D* with D} having center b}. Let 7 be the projection 7 : GF(Z,) > B*.
The orbits in = ~!'(M*) are all principal orbits. The following sketches a method
of constructing a cross-section of 7= ~'M*. We take M* to be the union

i
M*=U Ry,
i=1

where R} is a 2-cell and R¥*NRF, | is a 1-cell, i=1,...,t—1 with orientation as
usual and with R/ being attached to R{ with a reversal of orientation. Above
each R/ there is a cross-section R;. Of course R; and R, may not coincide along
the relevant edge. But we may slide R, using elements of G so that R, becomes
properly attached to R,. Proceed this way and finally attach R, to R,_;. We then
attach the second edge of R, to R, being careful to keep the other edge of R,
attached as it was. This completes the construction of a Mdbius band M which is
a cross-section of = ~'(M*). In all cases it is the fact that attachments are along
an arc that makes them possible.

We may continue to add 2-cells to M* and to attach corresponding cross-
sections to M provided each new 2-cell intersects the part already constructed in
an arc (or 2 disjoined arcs). In this way we may form an M* which is no longer a
Mobius band (if &> 0) but includes all of B* except for the interior of the D}.
The notation is now changed so that M* is a MGbius band with & holes so that

k
B*=M* J D}
i=0
and M is now a cross-section above this new M*.
To compute H*(GF(Z,) use will be made of a cohomology sequence with
compact supports and with coefficients mod p. Let xo, X, . . ., Xx be points of S’
with x¢ on a regular orbit and x, ..., x; on the exceptional orbits. Let

k
U=GF(Z,)—\J n~'D¢.
0
Notice that H*x ~'D¥ = H*G(x;), and that U is homeomorphic to M, x G/G,4
(M, =Int M). Since M;=P?>—[(k+1) discs],
HY(M;)=0, H'(M,)=kZ,, H?*(M;)=0mod p,

where kZ, means the direct sum of k copies of Z,. The cohomology sequence to
be used is as follows, where the first and third columns are computed from the
data above and the center column (the one being sought) is filled in the only
possible way.
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H°U - H°GF(Z,) » H° U G(x;) -
0 - Z, - (k+1)Z,
H'U - H'GF(Z,) - H' U} G(x;)
kZ, - 2, - (k+1)Z,
H*U - H*GF(Z,) » H*U} G(x;)
kz, -  Z, - (k+1)Z,
H3U - H>GF(Z,) > H> U} G(x;)
kz, >  Z, - (k+1)Z,
H*U - H*GF(Z,) - H* U G(x)

kz, — 0 - 0
H’U - H’GF(Z,) » H*U§ G(x;)
0 - 0 - 0.

Thus from this point of view H*GF(Z,) is different from that of the pre-
vious calculation and this contradiction proves the F(Z,)= @, which proves
the theorem. O
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