ON A HARDY AND LITTLEWOOD
IMBEDDING THEOREM

Bjorn Jawerth and Alberto Torchinsky

Introduction. For f in the class H?(disc), 0 <p < o, Hardy and Littlewood [8,
Theorem 31] showed that
1/q

1 2 _ 1/rqq
(o [a=ere=ve ({7 10emran) " | a-p-tao] " <el e

where 0<p<r< o, p<qg<o. They used this inequality in their discussion of
fractional integrals and convolutions of power series. The case 0<p<l=r=gq
has also been used by Duren, Romberg and Shields [2] to identify the bounded
linear functionals on H?(disc). Recently Flett [5] observed that the inequality
gives easy proofs of a number of interesting results, and simplified its proof.

The purpose of this note is to present a simple proof of a general version of
this inequality and to discuss some of its applications in various settings. We
begin by introducing a maximal function. Let (X, u) and (7,») be measure
spaces with positive measures du and dv respectively. Assume that to each
(x,t)€EXXT we associate a p-measurable set B(x,7)<SX so that the family
B ={B(x,t)} verifies three conditions, namely

(i) xe€B(x,t) foreachreT;

(ii) if yeB(x,t), then x€B(y,t); and

(iii) 0Sp(B(x,1) 5.
For functions f defined on X' X T and x € X we set

Mg f(x)=sup sup |f(y,?)].

te€T yeB(x,t)

We begin by observing the following:
PROPOSITION. Suppose Mg fELP(X), 0<p<co. Then

1 , 1/p
w(B(x, 1)) L(x,nM‘Bf(y) d“) )

Proof. It is immediate. From (i) it follows that | f(x, )| < Mg f(x), and from
(ii) that |f(x,?)|<infyep(x, ) Mg f(y), which in view of (iii) gives the desired
conclusion at once. O

|f(x,f)|<min(Masf(x),<

We can now prove our first imbedding result.

THEOREM 1. Suppose that Mg f€ LP(X), 0<p <o, and that q and o verify
p<qg<o and —1+q/p<a<q/p. Furthermore, assume that the non-negative
Junction k(x,t) verifies
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k <s™¢ . 5>0,
SUET:;/.(B(x,t))—1>s| (x,8) dv<s™%yY(x), s>0

where Y €L"(X), 1/r=1+a—q/p. Then there is a constant c=c(«, p,q) such
that

1/q
1. Gk, dudy) - <cll¥lfix, 1Ma Sl
XxT

Proof. With no loss of generality we may assume that ||Mg f||.7(x)=1. The
proof relies now on the Proposition. Indeed, by Fubini’s theorem and the
assumption on k£ we have

q — ® g1
Sij(x,r)| k(x,t) dv qSO s S“:mx’”bs’ k(x,t) dvds
Mg f(x) a-

s ‘S k(x,t) dvds
0 (t:p(B(x, 1))~ VP>5)

<QS

Mg f(x)
si-lg—ergo— 9
0 q—ap

<qy( | V() M f)7°%.

If «=—1+gq/p, then g—ap=p, r=co and the assertion follows by integrating
the above inequality with respect to x. If on the other hand o> —1+4¢/p, then
after integrating we apply Holder’s inequality with indices » and its conjugate,
and again obtain the conclusion. This proves the theorem. a

In case the spaces Hg={f: |Ma f|Lp(x)<°o} can be interpolated by the real
method, and u(B(x,t))=v(t) and k(x,t)=k(¢) are independent of x, the con-
clusion of Theorem 1 can be considerably strengthened to give the inequality of
Hardy and Littlewood. More precisely, we have:

THEOREM 2. Suppose the spaces H% (X ) interpolate by the real method, that
Mg fELP(X), 0<p<oo, that 0<p<r<o, p<qg< >, and that

S k(t) dv<As~', s>0.
(t:v()~t>s)

Then there is a constant c=c(A, p,q,r) such that

(I/p—1/r) r UAN k(t) v
[ST (U(I) p (SX |f(x, t), du) ) U_(;; dV} $C|IM@f”LI’(X).

Proof. Let

1 1/r
T, f(1) =(W [ 1 t)l’du> .

By the Proposition we see that
£, D] < (Mg fllpoxy/ 0(0VPY =P Mg f(x) P77,

and consequently
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T, (1) <|Mag flLrixy/v(t)P.

This proves the Theorem when g=co. In case g < o, from the above inequality it
follows that

(£: T, f()>s3S{t:v(t) "> (/| Mg flrron)’ )
and

k(t)ydv<A(|M, P,

Jiver. sy sy KO 0 SA(Ma Fl2030/5)

This last inequality asserts that 7, maps H% (X) weakly into L?(k(t) dv) for 0<
p <r. By interpolation, 7, is also of strong type from H% (X) into LP(k(¢) dv)
for 0<p<r. Therefore

1 pir 1/p
W (ST ( () Sx G, t)i’d”) k(1) dV> <c|Meg flLrx).

This is the strongest inequality in the scale g 2 p. Indeed, since for g =2 p

) T, f(t) < (Mg f | rcx)/ v () PY =P, f(1)P/1,
the desired conclusion readily follows by combining (1) and (2). O

A particular instance of Theorem 2 is the Hardy and Littlewood inequality
stated in the Introduction. To see this let X={e™:0<x<27}, du=Lebesgue
measure on X, T={r:0<¢<1}, dv=(1—t)"'dt. Corresponding to B(x,t)=
{e: |x—0|<1—t} we obtain that Mg f(x)=supg<,< supeioeg(x,,)|f(tei9)| is
basically the non-tangential maximal function associated to f in H?”(disc).
An easy computation shows that v(¢)=k(t)=(1—1t) satisfy the hypothesis of
Theorem 2. Moreover, since [|[Mg f||1r(x) < c||fll #Pedgisc), as is well-known, and
(by a result of C. Fefferman, Riviere and Sagher [3]) the H”(disc) spaces inter-
polate by the real method, the conclusion of Theorem 2 obtains. This is precisely
the Hardy and Littlewood inequality.

Further applications, in the Euclidean setting, correspond to the choice X =
R", dp=1Lebesgue measure on R", T={t:0<t<ow}, dv=dt/t and B(x,t)=
{yER": |x—y|<t}. Then Theorem 1 applies to k(x,t)=¢"9""1 and v(t)=
cpt", a=—1+¢q/p. The corresponding statement includes Lemma 5 of Feffer-
man and Stein [4]. If instead we choose a parabolic metric p corresponding to a
matrix P with trace P=+v and put B(x,t)={y€R":p(x—y)<t}, v(t)=c,t",
k(t)y=¢"9P=D  o=_14q/p, then the result reduces to Theorem 2.6 of
Calderon and Torchinsky [1]. In both cases the function Mg f is the usual non-
tangential maximal function associated to f.

When f(y, t)=f*¢,/y) is the extension to R?*! of a tempered distribution f
by means of convolutions with the dilations ¢,(y)=¢""¢(y/t) (or ¢,(y)=
t~7¢(¢t~Fy) in the parabolic case) of a Schwartz function with | ¢ 0, then
HE% (R™) is the Hardy space of several real variables of Fefferman and Stein. In
this case the spaces interpolate, again by [3], and consequently Theorem 2 applies
with k(¢) =v(¢) to give the n-dimensional Hardy and Littlewood inequality
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- 1/r th l/g-
{SO (z"“’f’-“”(gw, If(x,t)lrdx) )7} <cl|Ma (/% ¢l o

for 0<p<r<o, p<gq.

We list now some applications of Theorem 1. The first corresponds to Hardy
spaces (of holomorphic functions) in smooth domains in C”. For simplicity we
restrict ourselves to the unit ball

B={z=(2,...,2,):ZE€EC and |z’ =2, 71+ -+ - +2,Z, <1},

but our arguments apply to the more general domains considered by Stein [11].
Let dB={p€C": |p|=1} and

B(po,r)={p€0B: [1—{p,p)|"*<r}, po€EAB.

Here as usual {p,p9)=p1(00)1+ -+ +0,(Pg),. Let o denote the rotation in-
variant, positive measure on dB for which ¢(dB)=1. It is well-known that
o(B(pg,r)) =r?", 0<r<v2.

For a>1, consider the approach region

D, (p)={z€C": |1-(z,p)|<a(l—|2|*)}, p€IB,

and let M, F(p)=sup.ep,(p)|F(z)|. As above consider those F’s with M, F in
L?(0B,do), 0<p <. As in the proof of the Proposition it is readily seen that if
Z€B, |z|=r, and p=z/|z|€IB, then

|F(z)| < min(M,F(p), |M,F|r@8)/0(B(p, 8(2))""")

where 6(2:)=c(,[(1—|z|2)”2=ca(l——rz)‘/2 (we may take c,=+a—1). Thus we
obtain

1 l/q
(SGB So |F(,p)lq(1_rZ)n(q/p—l)—lrdrd(,) < Co|| Mo F | P38y

for 0<p<g<oco.

If Fis analytic in B, the estimate holds for the Hardy spaces H”(B). In analogy
to the case of the upper half-space discussed above, H”(B) gives rise to the con-
sideration of the Hardy spaces in hermitian hyperbolic space, once we recall the
geometrical interpretation (due to Pyatecki-Shapiro) and identify B with H,,
the Heisenberg group of order n. We will not pursue this matter here.

We pass to discuss an example in which the shape of the balls B(x, ¢) change
from those corresponding to |x| into those corresponding to p(x). In order to be
able to include this case suppose that (i) and (ii) in the Introduction are replaced
by: there is a measurable function @: 7— T such that

(i') x€B(x,0(¢)) for each ¢, and

(ii’) if yeB(x,t) then x€B(y,d(t)).

Then, as in the proof of the Proposition, we have

| f(x,0(2))| < min(Mg f(x), |Mg fllLrxy/p(B(x, 1))'"P),
and if k(x, t) satisfies the hypothesis of Theorem 1 we have that
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/g
(SSXX T |/, 8(0)| ke (x, £) dps d”) <cll¥lrix) |Ma fll o xy

The example we have in mind is this. Let X=R", du = Lebesgue measure, 7=
{t:0<t<1}, dv=dt/t. Assume 3: Rt — [0, 2] is a smooth, nondecreasing func-
tion which =11in [0, 1], and =2 in [2, ®). Put B(x,t)=[y€R": |x—y|< P}
and let @(¢)=¢"2, 0<¢<1. The reader can verify that (i’) and (ii") hold, and for
k(x,t)=¢"¥D@/P=D the conclusion of Theorem 1 reads

1 2m8(x) (arp—1) 4, Gt va
(SOSR" L7 D v de) <cl|Mg f| Lo ro)-

Notice that in this instance k is a function of x as well as of ¢.

It is also possible to iterate Theorem 1, and thus obtain results for families
® of the form ®;x --- X ®,,. For simplicity assume that ®& =G, X 3,, where
®; = {Bi(xi, t)} v, 1pex; x 1, §=1,2, satisfies (i)-(iii) above. Now for (x1,x,) €
XXX, let

Mg f(x;,x)=sup  sup |f(y1, 1,2 t2)|
fiETiyiEBi(Xi,!i)

We then have:
THEOREM 3. Suppose that Mg f€ LP(X,X X>), and that for qzp>0

S ki(xi, t;) dvi<es™9P=D 5>,
(1 i (Bi(x;, 1)) 1> s}

Jor i=1,2. Then there is a constant c such that

1/q
{HszTZ SSXlel | f (X1, 81, X2, 02)| 7k (X1, 1) ko (X2, £2) dpy dvy dpsy de}

<cl|Ma f | Lpx,x xy)-

Proof. We iterate Theorem 1. Indeed, with

M(B]f(xl&x29t2)=sup sup ‘f(yl)tl)x'),stZ)ls
tleTl _V]EBI(Xl,f])

from Theorem 1 it readily follows that

alp
“ | fCx1, 1, %2, 02)| 7Ky Oy, 1) dpy dvy < S Mg, f(x1,%2,12)” duy
X1 xXT, Xi

Eg(XZa tZ)Qa

say. To complete the proof it suffices to apply Theorem 1 to g(x,, f,) once we
observe that

l/p
sup sup g(yz,tz)SGX Maaf(Xan)”dm\) . 0
1

tzETz yzeBz(xz. fz)

Let us consider the particular instance of the bi-half space. Let X;=R", du, =
Lebesgue measure, X, =R"2, du, =Lebesgue measure, T;=[0, ), dv,=dt,/t,,
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T7,=10, o), dV2=df2/t2. Put
B(x1,t1,X2, 1) ={yER"XR™: |x;—y||<ty, [X2—12|<t2]},

and p; (B;(x;, t;))=cn;t", i=1,2. Then Theorem 3 holds for k;(x, t;) k3 (x,, t2) =
glap=Nymata/p=1 - Applications of this result depend on the maximal function
characterization of the Hardy spaces in the poly half-space due to Gundy and
Stein [7] and Merryfield [10]. Let ¢ be a Schwartz function in R"1*"2 with [ ¢ #0.
For x=(x|,x;) ER""xR" and r=(¢;,,) ERTXR™* put

¢ (x) =t "t "2 (x1/t1, X2/12).
We say that a tempered distribution f is in H” if Mg (f*¢,)€LP(R" X R™),
0<p <o, and set

I £ 1| 2R x R72) = || M@ (f * &) LP(R71 x R72).-
We then have:

LEMMA 1. Suppose that q=1in Theorem 3. Then if k;(x;, t;)=k;(¢;), i=1,2,
satisfies the hypothesis of the theorem, for £=(%,,£&)ER"XR™ and ¢ a
Schwartz function we have

R dt, dt A
(S | (81§61, 1262)| ki (1) k2 (2£2) —t—]‘t2—2>|f($1, &) <c|| flluprmx rm2).
1

Proof. Since

(e Eel<| 1760 0, x| dxy ds,

R x R"2
the result follows at once from Theorem 3. O

COROLLARY. Let f€ H?, 0<p<1. Then
]f(&,Ez)l<C|$1|n'“/p"”|fz|n2“/p_””f||H”-

Proof. Choose ¢(x;,x2) =7(|x1])n(|X2|), where 7 is a Schwartz function in R
with 7(p) =1for 3 <|p|<2. Apply Lemma 1 to k; (#,) k (£;) = t{1/P~Dg2llip=h),
O

Results of this nature, as well as duality, are discussed in the context of the
polydisc by Frazier [6]. As for the duals we have the following representation.
For a multi-index o= (o, ay) let

AL (R™x R") = {tempered distributions f: | f*¢,(x)| <ct[152},

where o (x;,x)=n;(X])n2(x;) with %; Schwartz functions with supp 7;C
(i<|p|<4}and 4;(p)=1 for 3 <|p|<2, i=1,2. In the spirit of Duren, Romberg
and Shields [2], and Frazier [6] and Madych [9], we have:
DUALITY. Let 0<p<land o;=n;(1/p—1), i=1,2. Then
(HP)*=A, (R"'xR™),

We would like to thank K. Merryfield for clarifying comments concerning this
result, and to note another characterization of (H”)* due to him (personal
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communication). For simplicity we state his result when ny=n,=1. Assume
1/p #integer and let 1/p —2<N<1/p—1. Then the linear functionals in H” can
be represented by functions g(x;, x,) such that (i)

a \¥ d \
(—)g(o,xz)=(—)g(xl,0)=o, 0<k<N

ox 1 x5

a \V/ a \N
h(xl,x2)=(a—xl) (3—x2) g(x1,x2),

and H(xy, X3, by, hy) =h(xy+hy, X2+ hy) —h(X1+ by, X)) —h(x), X2+ hy), then
sup |H(X1,x2,h|,h2)|gclhlhzl(llp—l)—N.
X122
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