SURFACES IN MINKOWSKI 3-SPACE
ON WHICH H AND K ARE LINEARLY RELATED

Tilla Klotz Milnor

1. Introduction. In this paper, we study surfaces in Minkowski 3-space M3 on
which mean curvature H and extrinsic curvature K satisfy a non-trivial linear
relation o+ BH +vK =0. Most results are based on formalisms developed in [3],
which extend to the case of indefinite metric complex analytic techniques one
might have expected to apply only in the Riemannian case.

On spacelike or timelike surfaces in M3 with o + 8H +yK=0and %% 4y, we
show the existence of a certain holomorphic quadratic differential associated
with the geometry of the immersion. This allows the introduction of special coor-
dinates, and identifies three different flat metrics, among them the exotic metric
I' = ol + BII + 111 studied by J. A. Wolf in [10]. That I' is flat on similar surfaces
in Euclidean 3-space E? was observed by Darboux in [2], a fact we learned re-
cently from Wolf. The use of flat metrics here yields some information in-the-
large about the surfaces in question.

There is a rich variety of surfaces in M3 on which H or K is constant (See [1],
[4], [6] and [9] for examples.) Moreover, H and K are linearly related on any sur-
face equidistant in M3 from a surface on which H or X is constant. We show be-
low that a spacelike or timelike surface in M3 on which a +8H +vK =0 with 32
4ary is equidistant from at least one surface with H or K constant. In addition, we
extend to M? the classical theorem of Bonnet (see [3]) which associates to a sur-
face of constant H#0 (resp. K >0), an equidistant surface of constant K > 0 (resp.
H #0). This extension is known to geometers, but seems not to be in the literature.

We assume C® smoothness wherever possible. The symbols «, 3,y and ¢
always denote constants.

2. Formal preliminaries. Suppose that S is an oriented surface, and that
A=Edx*>+2Fdxdy+Gdy?and B=L dx?+2M dxdy+ N dy? are real quadratic
forms with det A#0. Compute the curvatures H=H(A,B), K=K(A, B) and
H’'=H’(A, B) by setting

2H=tr, B, K=det B/det A, 2H'=NH?*-K
with iH’<0 in case H?>< K. Denote the intrinsic curvature of 4 by K(A4). Wher-
ever H'#0, define the skew forms A'=A'(A, B) and B’=B’(A, B) by
H'A'=B—HA, H'B'’=HB— KA.
Anywhere on S, the form W=W{(A, B) is given by
dy?—dxdy dx?

J[detAf w=| E F G
L M N
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For a detailed discussion of A’, B’ and W, see §2 in [6].

We denote by R, the Riemann surface determined on S by a definite real
quadratic form Z. Given any real quadratic form Y=adx?+2bdxdy+cdy?
on S, the quadratic differential Q=Q(Y, R;)=¢dz? is given by setting ¢=
(a—c—2ib), using only R, conformal parameters z=x+iy, in terms of which
Z=N\(dx?+dy?). In case ¢ is complex analytic for all conformal parameters on
R, Q is holomorphic.

We call 4, B a Codazzi pair and write Cod (A, B) if and only if B satisfies the
classical Codazzi-Mainardi equations

Ly—M,=LT}+M(TH-T})— NI}

(1) M. — —_ 1 112 —Fl _ 2
V= Ny=LT%+M(I'y—I'p) —NT'j3,

where the Christoffel symbols I'; are computed for 4.

Our first observation takes its place among the facts listed in §3 of [6]. The
pair A, B, in (2) is related to the pair A, B as the first two fundamental forms on
an equidistant surface are related to those on a given surface in £ or M3. If
H?<K for A, B then (3) shows that det A #0 for all ¢. Thus the fact below asso-
ciates to any Codazzi pair 4, B for which H?<K an infinite family of Codazzi
pairs A, B for which A%<XK.

FACT. If 1-2tH+Kt*#0 for a real constant t, and if
A=(1-Kt»)A+2t(Ht—1)B

(2) .
B=tKA+ (1-2tH)B
then Cod(A, B) is equivalent to Cod(A, E)
B for the constant —¢, it is enough to

Proof. Since A, B are achieved as {i
show that Cod (A, B) implies Cod (A, B
will be hatted. Here

). Curvatures computed for the pair A B

det A=det A(1—2Ht+t%K)?
K=K(1—2Ht+t2K)
H—tK=H(1-2Ht+1t*K)
H'=H'|1-2Ht + K|,

so that when 1 —2Hr+t>K#0, det A-det A>0 and H'H’ is real.

Wherever H?> K, use coordinates doubly orthogonal for A4, B and thus for
A, B. Then Cod(A B) is expressed by L,=E,H, N,=GH, and computation
yields £,=E, A, N,=G, H, giving Cod(A B) Wherever H2<K use Ry, con-
formal parameters Z=Xx+1iy so that

A=8dz*+§ dz?, B=Ldz*+ £ dz?

with similar expressions for A and B. Then Cod(A, B) is expressed by £7:= SZH
with 2d/0z =03/dx+id/dy, and computation yields £ 8 H, giving Cod(A4, B).

3
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Where H2=K, either BxA or else A and B share exactly one null direc-
tion. On any open, connected set where Boc A, Fact 1 from [6] gives B=cA, so
Cod(A,B) and Cod(A4’, B’) both hold trivially. On any open connected set
where A and B share exactly one null direction, use coordinates so that
E=G=L=0. Then Cod(A, B) is expressed by FM,=MF,, F(M, —N,)=MF,
and computation gives Cod(A4, B). A continuity argument completes the proof.

O

Suppose now that a+BH+vK=0 for A, B with o?+B%++2#0. If By=0,
either H or K is constant. These situations are explored in §4 of [6]. If Sa# 0 and
B%=4ay, H'>0 and at least one of the principal curvatures H+ H' is constant
on S.

In Lemmas 1, 2 and 3, we work with the forms X=8A+2yB and X'=
BA’+2vyB’, given any constants y#0 and (. Of course, X' is defined only where
H'’#0 for A, B.

LEMMA 1. If Cod(A,B) then oa+BH+vK=0 with B*#4ay and y#0 is

equivalent to
(1) Q(A,Ry) holomorphic in case X is definite, to

(i) Q(A’,Ry.) holomorphic in case X is indefinite with H*> K, and to

(ii) Q(H'X’, Rw) holomorphic in case X is indefinite with H><K.

Proof. For any constants y#0 and 3, we compute IEI=H(A,X), K=K(A4,X),
H'=H'(A,X), A=A(A,X), X'=X"(A,X) and W=W(A, X), obtaining
” H=B+2yH, K=B>+4y(BH+~K), H'=2|y|H’

A==x4", X=X W=2yW

where = is the sign of . Thus K is a constant # 0 if and only if there is a constant
a with a+BH++vK=0 and $2#4avy. Since 8 and v are constants, Cod(A, B)
and Cod(A, X) are equivalent. Thus Lemmas 5, 6 and 7 of [3] applied to the pair
A, X give the result. ]

Overlooked above is the case in which H?=K with X indefinite. Then
a+BH+vK=0 holds with 82#4ay if and only if both H and K are constants.
However, even if Cod(A, B) holds, it need not follow that Bx A, as the example

(5) A=2Fdxdy, B=2Fdxdy+dy?

indicates. Indeed, one can even find F so that the intrinsic curvature K(A) in (5)
takes on any constant value.

LEMMA 2. Suppose that Cod(A, B) and a+ BH+vK=0 on S with v#0 and
B2#4ay. Then
(i) where X is definite and H*# K there are local coordinates in terms of which

+2vH' A={B+2y(H+H")} dx*+ [B+2v(H—-H')} dy?
+2vH' X = (8%—4ay)(dx?+dy?),

i

)
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(ii) where X is indefinite and A definite, there are local coordinates in terms
of which

A=dx*+dy*+2cos wdxdy
X=2+/|B?—4ay| sinwdxdy,

(iii) where X and A are indefinite with H*>K there are local coordinates in
terms of which

(M

A== (dx*+dy?)+2 cosh wdxdy
X==+/|B*—4ay| sinhwdxdy,

(iv) and where X and A are indefinite with H*<K there are local coordinates
in terms of which

)

A== (dx®>—dy?)+2sinh wdxdy
X=2~|B?—4ay| coshwdxdy.

Moreover, wherever H'#0, the metrics H'X, H' X' and W are all flat.

®

Proof. Where a holomorphic quadratic differential Q = ¢ dz? is non-zero on a
Riemann surface R, there are local conformal parameters z=x+iy in terms of
which ¢ is any fixed complex constant #0. The coordinates in this lemma are
obtained by taking +¢ =2 or 2i for the holomorphic quadratic differential iden-
tified in Lemma 1. In terms of the coordinates provided, the forms H'X, H'X"’
and W all have constant coefficients. a

The following result remains valid if the form X is replaced everywhere by the
form X".

LEMMA 3. Suppose Cod(A, B) and that X is a complete Riemannian metric
with a+BH+vK=0 and B*<4ay. Then H, K and H' are constant, giving
K(A)=K(X)=0, if either K(X)=20 on S with H bounded or if K(X)<0onS.

Proof. By Lemma 2, H'X is a flat metric on S. Since K=K (A, X)=8%?—4ay<
0 is constant, H’> 0 is bounded away from zero, as is H’=H"/2|y|. Thus H'X is
a complete flat metric on S, making Ry parabolic. Using the coordinates pro-
vided by Lemma 2, one checks that log A’ is subharmonic where K(X) =0 and
superharmonic where K(X') <0. But a subharmonic (resp. superharmonic) func-
tion bounded from above (resp. below) must be constant. Once H’ is constant,
a+BH+yK=0 forces H and thereby K to be constant, and by (6), K(A)=
K(X)=0. O

A similar result can be stated in case 32> 4y in Lemma 3. But then H' is not
automatically bounded away from zero, and this must be assumed.

Lemmas 1, 2 and 3 have been stated for an arbitrary Codazzi pair 4, B on S.
They apply therefore if we take for A and B the first two fundamental forms I
and II of an immersion f: S — 93 with det 1#0, taking S into an arbitrary 3-
manifold 93 of constant curvature. (See [5] and [7] or [8].) In §3, we restrict our
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attention to the choice 93 =M?3, although similar discussions are possible (at
least locally) in any 91°.

3. Surfaces in M. Given the immersion f: S = M3, we speak of S as a surface
in M3, and assume that I=df-df is nondegenerate, so that classical geometry
can be done in the usual way. (See §6 in [6].) Then e=det [ #0, with S called
spacelike if ¢ >0, and timelike if ¢ <O0.

The unit normal » for S is the reflection in the horizontal of the vector product
(8f/0x) x (8f/dy) divided by \/ﬂ By II and III we denote the second and
third fundamental forms —df-dv and dv-dv. The curvatures H, K and H' and
the forms I’, II’ and W are computed for the pair I, II.

Suppose that a+BH+yK=0on S, with y#0 and 82 #4ay. Set X =01+ 2yII
and X’'=pI"+2vI1l". Then Lemma 1 states that Q(I, Ryx) is holomorphic where X
is definite, that Q(I’, Rx-) is holomorphic where X is indefinite with H 2> K, and
that Q(H’X", Ry) is holomorphic where X is indefinite with H?<K. Thus the
identity map from S with metric X to S with metric I is harmonic. This follows
from Theorems 3 through 6 and Lemmas 11 and 16 in [6]. Moreover, Lemma 2
provides special local coordinates wherever H’#0 on S, and since +H'X'=
al + BII ++II1, it gives the following result.

THEOREM 1. If a+BH+vK=0 on an S in M* with v#0 and 8*# 4oy, then
the metrics H'(al +2v11), ol +BI1+~1II and W are flat wherever H'#0.

The hyperbolic cylinders mentioned in Theorems 2 and 3 play the role in M*
which the right circular cylinder does in E?, since each has K=0 and H=c. We
use coordinates u, v, w in M?>.

THEOREM 2. Suppose B1+2vIl is a complete Riemannian metric on an S in
M3 with a4+ BH+vK=0, v#0 and 8> <4ay. Then S is (up to isometries of M>)
the timelike hyperbolic cylinder

uz—w2=1/4cz, u>0,
if K(B142yI1) =0 with H bounded, or if K(BI+2+II) <0.

Proof. Taking A=I and B=II, Lemma 3 shows that K(I)=0 with H, K and
H'’ constant if K(BI+2vII) =0 on S with H bounded, or if K(8I+2vII) <0 on
S. Because K(I, BI+~II) =82 —4ay<0 with det(BI++II) >0, S is timelike and
H'’#0. Using the coordinates provided by Lemma 2, we see that I and II are the
fundamental forms of the hyperbolic cylinder specified with H=c. The funda-

mental theorem for surfaces thus gives the result. (See [7] or [8].) O
)

Similar reasoning gives the following.

THEOREM 3. Suppose B1'+2v11’ is a complete Riemannian metric on an S in
M3 with a+BH+~vK=0, v#0 and 8> <4ary. Then S is (up to Isometrtes of M3)
the spacelike hyperbolic cylinder

w2—u?=1/4c% w>0,
if K(BI'+2~11") 20 with H bounded, or if K(BI'+2yI11') <0.
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Theorems 1, 2 and 3 are similar to results obtained in [6] for surfaces with con-
stant H, or constant K#0. The discussion of equidistant surfaces which follows
provides one explanation of that similarity.

For any real constant ¢, let f= f (t) =f+tv give the surface S at distance ¢ from
S. Because é=det I=(1—2Ht+Kt?)?¢ for I =df-df, the surface S is spacelike
(resp. timelike) if S is spacelike (resp. timelike). Moreover, S is sure to be regu-
larly immersed wherever 1—2Ht+ Kt?#0 on S, with »=75 and

I=(1-Kt?>)I+2¢(Ht—1)1I
I=¢K1+ (1-2H)II
(10) H—tK=(1-2tH+t*K)H
K=(1-2tH+t*K)K
H'=|1-2tH+t’K|H".

Note that 20 for all real ¢ in case H*<K on S. Since S is the surface at distance
—¢ from S, hatted and unhatted objects in (10) can be consistently reversed if ¢ is
replaced by —¢. We consider S to be equidistant from itself, for £ =0.

If a+BH+vK=0o0nS, thenon S, &+ BH+7K =0 with &=q, = (2ta+8),
y=at?>+Bt++v and B*—4&5=B%—4ay. Thus, if H and K are linearly related on
S, they remain so on any equidistant surface S. Modulo restrictions which make
é#0, Theorem 4 states that, among the surfaces equidistant from an S ini E* or
M3 on which o +H+yK =0 with B2# 4oy, there is at least one with constant H
or K.

THEOREM 4. Suppose a+BH+ vK=0 with By#0 and B*#4ay on S in E3 or
M3. If a=0, the surface S at distance t = —«/f has H=0, with é#0 where H#
B/v. If a #0, the surface S at distance t = —3/2« has constant K , With é#0 where
K#0. If B2—4ay>0, the surface S at either distance t = (—f £ /32 —4day)/ 2w
has constant H, with ¢ #0 where

20HAN/B?—4ay #K(BVB?—4day F1).

The following theorem gives more precise information if either H#0 or K >0
is constant on S. In E3, the identical result is due to Bonnet. (See [1].)

THEOREM 5. Suppose S is a surface in M>. If H=c#0, the surface S at
distance t=1/2¢ has K=4c? with é#0 where K#0, while the surface S at dis-
tance t=1/c has H= —c with ¢ #0 where K # c*. Similarly, if K=4c>#0, the sur-
face S at distance t =+ 1/2c¢ has H=Fc, with é£0 where +H#2c.

Some cases deserve spec:1a1 attention. Suppose S is a surface in E* or M. If
H=0 on S, then H=—tK on S, with é#0 where K#1/t%. Here H or K is
constant if and only if A, K and K are all constant. If K=0 on S, then K=0 on
S, with é#0 where H#1/2¢. Here H is constant if and only if H is constant. If
K =c<0, there are no other equidistant surfaces with & or K constant unless A
is constant. Finally, if « + BH+vK=0 on S with 32— 4a7y #0, then the same sort
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of linear equation relates A and K on any S, so that A’ >0, and at least one prin-
cipal curvature H+ H' is always constant.

|\ I
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