STABLE BASE LOCI OF A
REPRESENTATIONS OF ALGEBRAIC GROUPS

Amassa Fauntleroy

Introduction. It is well known that the ring of invariant functions under the
action of a group G on an affine k-algebra R need not again be an affine
k-algebra. A counterexample to the original problem posed by Hilbert (the 14th
problem) was first given by Nagata [7] and was suggested by earlier work of
Zariski [12] and Rees [8]. This paper investigates the connections between the
ideas discussed in [7] and [12] from the point of view of quotient spaces.
Zariski’s reformulation of the original 14th problem showed that the matter rests
with the behavior of certain linear systems on ‘“almost canonical” projective vari-
eties associated to the pair R and G. We describe these linear systems here as the
base loci of the canonical rational maps determined by invariant functions of a
given degree (cf. Section 2). The stable behavior of these linear systems plays a
key role in the problem of finite generation (Proposition 2.2).

The rational maps determined by these linear systems are regular on certain
open sets and on suitable domains, called quotient domains, actually determine
an orbit map. The existence of a sufficiently large quotient domain also plays a
role in our main result (4.4) which asserts that stable base loci (cf. Section 2) and
sufficiently large quotient domains give finite generation. We give interpreta-
tions of these results in the case of Nagata’s counterexample in Examples 2.1 and
5.3.

We now fix our terminology. All schemes will be reduced algebraic k-schemes,
with k a fixed algebraically closed field. A variety is a separated integral scheme.
Almost all schemes appearing after Section 1 will be varieties. All algebraic
groups are assumed to be affine algebraic varieties. For any irreducible scheme X
we identify I'(X, Oy) with the subring of everywhere defined rational functions
in k(X)- the function field of X. Unless otherwise stated, ‘‘points’’ will mean
closed points.

1. Generalities on group actions and linear systems. This section gives a brief
summary of the results on actions of algebraic groups on varieties and the theory
of linear systems which will be used in the following sections. They are given here
essentially for convenience of reference.

1.1. Let G be an algebraic group acting rationally on a scheme X. A pair
(Y, q) consisting of a scheme Y and a morphism ¢ : X — Y is a geometric quotient
of X by G denoted X mod G if the following conditions hold:

(i) q is open and surjective
(i) g.(0Ox)°=0y
(iii) q is an orbit map; i.e., the fibers of closed points are orbits.
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The action of G on X is said to be locally trivial if each point x € X is contained
in a G-stable open subset U of X which is equivariantly isomorphic to G X S for
some scheme S.

THEOREM 1.1 (Generic Quotient Theorem [10]). Let G act on an algebraic
scheme X. Then there exists a G-stable open subset U of X such that Y=U mod G
exists and Y is a quasi-projective variety.

In general the determination of the open set described in 1.1 is a non-trivial
task. However, for reductive algebraic groups somewhat more can be said. Let G
be reductive and V a finite dimensional rational G-module. Let P(V') denote the
associated projective space consisting of lines through the origin in ¥ and let R
be the ring of polynomial functions on V (with respect to some basis). A point
vEP(V) is called semi-stable if there exists an invariant nonconstant homo-
geneous element f € R with f(v)#0. A point v € P(V) is stable if it is semi-stable
and the orbit G-v is closed.

THEOREM 1.2 (Mumford; [6: 1.10]). Let G and V be as above and let X be
the set of stable points of P(V). Then X is open and Y=X mod G exists.

The only other result of a general nature aside from Mumford’s theorem is a
result due to Seshadri which we now describe. If G is a connected algebraic
group acting on a scheme X, then the action is said to be proper if the map
GxX— XXX given by (g,x) = (g-x,x) is proper.

THEOREM 1.3 (Seshadri [11]). Let G be a connected algebraic group acting on
a variety X such that for each point x in X the isotropy subgroup of G at x is
finite. Then there exists a morphism p. Z = X such that

(i) Z is a normal variety, G operates on Z and p is a finite surjective G-
morphism.

(ii) G operates freely on Z, the geometric quotient W=7 mod G exists, and the
quotient map q: Z — W is a locally trivial principal fibre space with structure
group G.

(iii) If the action of G on X is proper then the action of G on Z is proper and W
is separated.

(iv) k(2Z) is a finite normal extension of k(X) and the canonical action of
Aut(k(Z)/k(X)) on Z commutes with the action of G.

REMARK 1.3. Note that in both Mumford’s theorem and Seshadri’s theorem
two requirements are crucial for the existence of geometric quotients. First, there
must exist (affine) open sets U stable under the action of G such that I'(U, 0y)°¢
is finitely generated. Second, the orbits of points in U must be closed. The
emphasis in this paper is on the first of these conditions.

REMARK 1.4. In the special case where dim G =1 some additional results are
known. For example, if G=G,, and X is affine then a quotient exists when the
orbits are closed (cf. [9]). For G=G, the general case is discussed in [1] and [2].

Note that the geometric structure of X mod G, when it exists, need not be
quasi-projective if X is so, nor even separated when X is a variety. Nevertheless,
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when X is affine or even quasi-affine there is a G-stable open subvariety U of X
such that Umod G exists and is quasi-affine. To see this, start with an open
G-stable subset X, such that ¥Y=X, mod G exists and is quasi-projective. Such
an X exists by 1.1. Let V' be a maximal quasi-affine open subset of Y and let
U=q (V) where g: X, — Y is the quotient morphism. Then U is the desired
open set. Since I'(V, Oy)=T"(U, OU)G, V is, in a weak sense, determined by the
ring of invariant functions on U.

1.2. Linear systems and base loci. Let V be a complete variety and D a
Cartier divisor on V with sheaf L =0y (D). Then the sections of L determine a
rational mapping of V into the projective space P=P(H%V,L)). Suppose
So,-..,5, form a basis of H®(V, L) over k. Then the map ¢ is given by ¢(v)=
[so(V),...,s.(v)]. The proof that this is well defined as long as some s;(v) #0 is
given in [4].

If veV then L, = Oy, and the images of the s; in Oy ,, generate an ideal of
Oy, . These local ideals determine a well defined sheaf of ideals 7(¢) of Oy called
the base locus ideal of the rational mapping ¢. If instead of the complete linear
system we choose any finite set of elements sy, ..., s, in H°(V, L), then we still
obtain a rational mapping into P” and the base locus of this mapping is deter-
mined as above.

THEOREM 1.5 [4: 7.17.3.]. Let V be a complete variety, D a Cartier divisor on
V and sy,...,s, elements of H°(V,Oyp(D)). Let ¢ be the rational mapping
determined by sy, . . ., s, and I(¢) the base locus ideal of ¢. If Z is the blow-up of
V along the sheaf of ideals I(¢), then the rational mapping ¢ extends to a mor-
phism from Z to P™.

The most important case of 1.5 for our purposes is when V=P" and sy, . .., s,
are forms of degree K in the homogeneous coordinate ring of P" identified with
elements of H°(P”, O(K)). In this case it is easy to see that Z is just the closure
in P"x P of the graph of the rational map ¢. If the sections s; are invariants
with respect to some linear action of G on P” then ¢ becomes a candidate for a
quotient map on some open subset of P”.

EXAMPLE. Let ¥V=P? with homogeneous coordinates u, v and w. Let G= G,
act on V by

tHu,v,w)=(u+itw,v+1tw, w).

Let ¢ be the rational mapping determined by ¥ — v, w. Then ¢ is regular at every
point except [1,1,0]. The closure Z of the graph of ¢ in P2x P! is given by
x;(u—v)=wx, where X, x; are homogeneous coordinates on P!. The extension
of ¢ is just the restriction of the projection from the second factor to Z. The
affine subvariety P2 = A? is G-stable and has a quotient isomorphic to Al. The
restriction of ¢ to P2 is given by [u/w, v/w, 1] = [u/w—uv/w, 1] and this is the
quotient map. Note that if w(p) =0 then p is a fixed point. For G, this means no
opei neighborhood U of v exists for which U mod G, exists. It is easy to see also
that k[P21¢=k[(u—v)/w].
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The above example, though certainly trivial, illustrates the connections between
base loci, rings of invariants and geometric quotients which are of primary con-
cern in this paper.

2. The base locus of a rational representation. Let H be a connected algebraic
group defined over k and p: H — GL(V) a finite dimensional rational represen-
tation of H. We denote by R the ring of k-valued polynomial functions on V'
(with respect to a fixed basis of V) and by A the subring of H-invariant func-
tions. The ring A is positively graded with Ag=k. The ideal A, -R of R is called
the base locus ideal of p and denoted I(p). It is a graded ideal in R. For each
positive integer / we denote by I(p, /) the ideal A;-R where A; denotes the /th
graded piece of A.

We say the base locus of p is stable if there exists an integer e >0 such that
I(p,le)/I(p,e)" has finite length as an R-module for all / sufficiently large.
Recall that this is equivalent to saying that I(p, le) and I(p, e)’ define the same
sheaf of ideals on the projective space P(V') of lines through the origin in V. We
denote by B(p) the subscheme of P(V) defined by X;2, I(p, /) and call B(p) the
base locus of the representation p.

REMARK. Recall that when H is reductive a point v €V is called unstable if
every homogeneous invariant function vanishes at v. The base locus B(p)
defined here is just the subscheme of unstable points of P(V).

For a fixed representation p let V'=V®k. Then G=GL (V) is canonically
embedded in GL(V’) and p’=p@®1 extends the action of H on V to an action on
V’. Let B be the ring of polynomial functions on V’. Then B=R[Xx,] where x; is
an H-invariant function and P(V’)—x5 '(0) is canonically isomorphic to V. For
each integer K put J(K)=1(p,K)B +x§B. We say that B(p) is o-stable if for all
K, K’ sufficiently large the blow-ups of P(V’) along J(K) and J(K ) are isomor-
phic via some H-equivariant isomorphism.

Now let X be a complete variety on which H acts rationally. Let L be a
very ample H-linearized invertible sheaf on X (cf. [6]); that is, there exists an
H-equivariant embedding 7: X — PY for some N such that H acts linearly on PV
and L=7*(0(1)). In fact, since L is very ample we may take PY=PH(X,L).
We define the base locus ideals I(L, e) to be the trace on X of I(p;, e) where
pr: H— GL(H(X, L)) gives the H-linearization of L. As above, define the base
locus B(X, L) to be the subscheme defined by the ideal ¥;_, I(L, ne). We say
B(X, L) is stable if there exists an integer e such that for all » sufficiently large
I(L,ne)=I(L,e)". We define o-stable in a manner analogous to the case of
rational representations.

Now let Y be an H-stable subvariety of a complete H-variety X. We say Y is
stably embedded in X if there exists an H-linearized very ample invertible sheaf
L on X such that B(X, L) is o-stable. If there exists such an X we say Y is stably
embeddable.

EXAMPLE: Let Y be an affine variety on which H operates. Then it is well
known that Y can be embedded in an affine space V= Spec k[u,, ..., u,] on which
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H acts linearly in such a way that Y is H-stable. Let u;=x;/xy, 1<i<n and
identify ¥ with the complement in P"=Proj k[xo,...,X,] of L:xy=0. Then
there exists a unique extension of the action of H on V to a linear action of H on
P” so that x is invariant. If X is the closure of Y in P” then LN X_ defines an
H-linearized very ample sheaf on X.

THEOREM 2.1. Let Y be an affine variety on which H operates. Let A denote
the coordinate ring of Y. If A™ is finitely generated over k, then Y is stably
embeddable. Moreover, such a stable embedding Y C X may be chosen so that
the elements of A™ are restrictions of sections in @, H*(X,L") with L a fixed
very ample G-linearized invertible sheaf.

Proof. Let R=A%=k(4,,...,t,] and write A=R[uy,...,us] so that for 1 <i<s

S
h-u;= 3, aix(h)ug.
K=1

Put B=Kk[xp,...,Xm+s] and let H act on Bby h-x;=X;, 0<i<m and h-x,4 ;=
Lk ajg(h)Xmik, 1<j<s. Then By =k[y1,...,Ym+s], Where y;=xj/Xo maps
H-equivariantly onto A.

Let P"**=Proj B and let X denote the closure of Y=_Spec 4 in P"**. Let D
be the hyperplane section of X defined by xo=0 and L the corresponding very
ample sheaf on X. Then L is H-linearized and we claim B(X, L) is stable.

Let C=B/J be the homogeneous coordinate ring of X. Then 9(L, r) is the sheaf
defined by the image of I(p;, r) in C. Let f€I(p;, r). It follows from the defini-
tions given above that f/xg=g(»,...,Vn) modJ for some fE€k[xg,...,X;]. SO
S=x38(0,...,ym)+& with g’€J. Now xGg(¥1,...,Vm) =8+ & Xo+ - +8&Xp
with g;€k([x,...,x,]. Since f has degree r, we can assume deg g;=r—i and
g €(xy,...,x,) . It follows that f=/f,+g’ with £ € (xp,...,X) and g’€J. It
is now immediate that I(po;, r)=(xg,...,X;,) modJ for all r so that 9(p,,r)=
9(pr,1) and Y is stably embedded in X as claimed. O

EXAMPLE 2.1. Let X— P” be a stable embedding of the complete variety X
via some fixed H-linearized invertible sheaf L. It is not true in general that p; is
itself stable. To see this we may use the counterexample to the original 14th
problem of Hilbert given by Nagata in [7]. Let k= C and suppose a; €C, i=1,2,3
and 1</ <r are algebraically independent over Q. Let A be the subgroup of
GL(2,C)" given by elements of the form

1 )\,)
h= X
(O 1

Then H acts on P(C?") in the evident manner. Let k[x;, ¥y, . . -, X, ¥,] be the homo-
geneous coordinate ring with 4-x;=x;+ \; y;. The ring of invariant polynomial
functions is not finitely generated so B(P(C?"), O(1)) is not stable (cf. 5.2, 5.3).
Let X be the linear subspace defined by y;=-:- =y,_;=0. Then with respect to
the hyperplane section L: y,=0, Y=X), is stably embedded in X. In fact X=P’
and k[x,,...,X,, »,/] is its homogeneous coordinate ring. The ring of invariants is

1 A, ) ! .
X with )] a;;N\;=0, i=1,2,3.
0 1 j=1
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k[x1,...,%Xr—1,»,] and the invariant sections x;y,—x,y;, i=1,...,r—1 restricted
to Y generate k[Y]7.

PROPOSITION 2.2. Let X be a complete variety on which H acts rationally
and let L be an H-linearized very ample invertible sheaf. Suppose that B(X,L) is
o-stable. For each integer n let ¢, be the rational map determined by the sub-
space of H-invariant sections of H*(X,L"). Then there exist an integer e and a
monoidal transform 7. Z — X such that for all n>>0 the rational mapping ¢p.°7
on Z is regular.

Proof. The base locus ideal of ¢, is just the locus defined by the trace on X of
the sections in H°(X, L™)". But L is ample so this ideal is the trace on X of the
ideal I(p;,n). Since B(X, L) is monoidally stable the blow-ups Z,, > X of X
along 9(p;, ne) are all isomorphic for n sufficiently large. By [4: 7.17.3] ¢peo7 iS
regular on Z, .=Z for some fixed ng and the proposition is proved. O

For rational H-modules V we will need a slightly different version of this re-
sult. Let R denote the ring of invariant polynomial functions on ¥ and R(#) the
space of invariant forms of degree n. Let P(V’) be the canonical completion of V'
and X, the irrelevant coordinate so that V=P(V’)— (x,=0). Then R(#n) and x§
are canonically identified with sections in H°(P(V’), O(n)).

PROPOSITION 2.3. Let p: H— GL(V) be a finite dimensional rational repre-
sentation of H and P(V"’) the canonical completion of V. Let ¢,, denote the rational
mapping of P(V') determined by the subspace R(n)+ Xk of HY(P(V'), O(n)).
If B(p) is o-stable there exist an integer e and a monoidal transformation,
7: Z—>P(V’), of P(V’) unique up to H-equivariant isomorphism such that the
rational mapping ¢,.°7 is regular on Z for all n.

Proof. Since p is o-stable there is an integer e> 0 such that blow-ups of P(V’)
along J(ne) are isomorphic for all #. But the sheaf of ideals determined by
J(ne) is precisely the base locus of the rational mapping ¢,.. It follows that if
7: Z - P(V’) is the blow-up of P(V"’) along J(e) then 7 satisfies the conditions
stated in the conclusion of the proposition. O

3. k-Noetherian quasi-affine varieties. Let X be a quasi-affine variety, i.e.
an open subvariety of some affine variety. We say X is k-Noetherian if A=
I'(X, Oy) is finitely generated over k. We assume throughout that X is normal.
If V is a normal affine variety containing X as an open subset we will call V' a
quasi-associated variety of X. Since the canonical map from k[ V] to A is injec-
tive, there is a one-to-one correspondence between quasi-associated varieties of
X and finitely generated integrally closed k-subalgebras R of A such that the
canonical map X — Spec R is an open immersion of schemes over k.

If V and W are quasi-associated varieties of X we say that W dominates V,
written W>V if k[V]Ck[W]. If V is a fixed quasi-associated variety of X then
a dominating chain or d-chain over V is a sequence
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._)Vn._)l/n_l—)...—)l/l—-)VO.:V

of morphisms between affine varieties such that
(i) each V, is quasi-associated to X,
- (ii)) V, dominates V,_;.

Let O be a discrete valuation ring of k(X). We say O is an associated divisor
of the pair (V, X) where V is a quasi-associated variety of X if there exists a
quasi-associated variety W dominating V such that the valuation determined by
O is of the first kind with respect to K[ W]. In this case we say O belongs to W.

Now fix a quasi-associated variety V of X. A dominating chain
{(Va:n=0,1,2,...} over V=V, will be called irredundant if the following con-
dition holds: Given any associated divisor O of X belonging to V,,, there exists
an integer m > n such that O does not belong to V,,,.

The following lemma may be found in [7: pp. 44, 50].

LEMMA 3.1. Let X be a normal quasi-affine variety and V a quasi-associated
variety of X. Let I be an ideal in R=k[V] defining V—X and let A=T(X, Oy).
Then A is integrally closed in its quotient field and IA has height at least two.

LEMMA 3.2. Let X and V be as above. Then there exists an irredundant d-
chain over V.

Proof. There clearly exist d-chains so it sufficies to exhibit an irredundant
d-chain over V. Assume, inductively, that we have constructed a sequence

Vn> Vn—l> M '>V1>V0=V

such that if j<n and O is an associated divisor of X belonging to V/, then there
exists an r with j <r < # such that O does not belong to V,. Now let O be an asso-
ciated divisor of V. Let B=k[V,] and pC B the height one prime defining the
center of O on V. Then O=B,, is an essential valuation ring of B but is not an
essential valuation ring of the Krull domain 4=T'(X, Ox). Hence there is an
element a €A — B which is not in O. Now there are only finitely many associated
divisors O; belonging to V,. Let m be the number of such divisors. Choose an
a; € A for each of them and let C be the integral closure of the ring Blay,...,a,,].
Then V, .= Spec C extends the chain. a

If W is an affine variety quasi-associated to X we denote by © (W, X) the set of
associated divisors of X belonging to W. The cardinality of © (W, X)) is finite and
will be denoted by 6(W). If ¢ is an irredundant d-chain over the quasi-associated
variety V denote by 6(V, &) the cardinality of the set U= O(V,, X). Let (V)
denote the infimum over all d-chains & over V of O(V, ¢).

THEOREM 3.4. A normal quasi-affine variety X is k-Noetherian if and only if
given any quasi-associated variety V of X, 6(V) is finite.

Proof. Suppose first that X is k-Noetherian. Let ¥V be a quasi-associated
variety of X and put W= Spec A. Then W >V is an irredundant d-chain over V
and (W, X) <oo so 0(V) is finite.
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Conversely, let ¢ be an irredundant d-chain over the quasi-associated variety
V of X with 6(V,d) finite. Then there exists an index » such that the d-chain

Vn>Vn_1>"'>V0=V

is irredundant and such that any associated divisor has a center on some V;,
1<i<n—1. It follows that the center of an associated divisor O on V,,, if it exists,
must have codimension at least two. Now V,, and X being normal we may con-
clude that I'(X, Ox)=k[V,] and hence X is k-Noetherian. O

Let R be a domain with quotient field F and I an ideal of R. A discrete valua-
tion ring O will be called positive on 7 if RC O and IO C m where m is the maxi-
mal ideal of O.

COROLLARY 3.5. Let X be a normal quasi-affine variety and V a quasi-
associated variety of X. Let I be an ideal defining the complement of X in V. If
the set of associated divisors of (V, X) which are positive on I is finite, then X is
k-Noetherian.

Proof. Let ¢ be an irredundant d-chain over V. Then for some n, V,, € ¢ does
not belong to any associated divisor of (V, X') which is positive on I. But every
associated divisor O of (V, X) is positive on 7 since its center is disjoint from X.
Thus §(V, @) is finite and the corollary follows from Theorem 3.4. O

4. Stability of base loci and rings of invariants. We turn now to the connection
between the stability of the base locus of a rational representation of the con-
nected linear group H and questions of finite generation of the ring of invariants.
To begin with there is the trivial case.

THEOREM 4.1. Let H be a connected linear group and V a finite dimensional
rational H-module. Assume that H has no characters and that the base locus
ideal I(p, V') is principal. Then B(p) is stable and k[ V17 is finitely generated.

Proof. Let I(p)=/f-k[V] with f homogeneous of degree e. Since H has no
characters each prime factor of f is invariant. It follows that f is itself a prime
element. If g €I(p, K) then g=fh and since g and f are invariant 4 is also invar-
iant. From this it follows that g=f' and k[V17=k[ f]. O

The general case unfortunately cannot be dealt with so easily. We assume
throughout this section that the connected group H has no rational characters.
The general case can always be reduced to this case in practice. Recall from Sec-
tion 1 that if X is any variety on which A acts nontrivially then there exists an H-
stable open subvariety QC X such that Q/H exists and is quasi-projective. If Q
is a maximal open subvariety with this property then we call Q a quotient domain
for the transformation pair (X, H).

LEMMA 4.2, Let X be a normal affine variety on which H acts rationally. Let
Q be a quotient domain for (X, H) and let Y=Q/H. Assume that X is factorial.
Then Y is quasi-affine.
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Proof. Let {Y,} be a finite affine open cover of Y and put Q,=gq ~1(Y,) where
g: Q—Y is the quotient map. Then, since X is factorial, I'(X,, Ox) is either
k[X] or k[X][1/f,] for some invariant function f, € k[ X] (cf. [5: Corollary 7]
and [9]). Since k[Y,1=T'(Q,, Ox)* there exists a finitely generated integrally
closed subring R of k[X]* such that the canonical map Y, — Spec R is an open
immersion for each «. It follows that the canonical map Y — Spec R is quasi-
finite and so by Zariski’s main theorem Y is quasi-affine. O

If X is a normal affine variety and QC X an open subvariety we say Q is divi-
sorially dense in X if every cycle on X of codimension one meets Q.

PROPOSITION 4.3. Let X be a factorial affine variety on which H operates
rationally. Let Q be a divisorially dense quotient domain for (X,H). Then
I'(Q/H, Og,y) is canonically isomorphic to the ring of H-invariant functions in
k[X].

Proof. Since k[ X] is a unique factorization domain and A has no characters,
every invariant rational function on X is the quotient of global invariant func-
tions. Now Y is quasi-affine by 4.2 and any global function on Y is in a canonical
way a global function on Q. Hence I'(Y, Oy)CI'(Q, OQ)H. But Q is divisori-
ally dense so I'(Q, Op) = k[X]. Clearly k[ X1Hcr(y, Oy); hence k[X]Hz
I'(Q,00)7=T(Y,Oy). O

In Section 2, Theorem 2, it was shown that if H acts rationally on an affine
variety X, and k[X]" is finitely generated, then X is stably embeddable. The
following theorem is a partial converse.

THEOREM 4.4. Let X be a factorial affine variety on which H acts rationally.
Assume that the following conditions hold:
(i) (X, H) has a divisorially dense quotient domain.
(ii) X can be stably embedded in a projective variety V.

(ili) There exists an H-linearized very ample sheaf L on V such that the canon-
ical map from @, 50 H °v, L™ to k[X 1" induced by restriction is
surjective.

Then k[ X1 is a finitely generated k-algebra.

Proof. Let Q be a divisorially dense quotient domain for (X, H)and Y=Q/H.
By 4.2 Y is quasi-affine and by 4.3 T'(Y, Oy) =k[X ]*. It suffices then by Sec-
tion 3 to show Y is k-Noetherian. Let SoCI'(Y, Oy) be a finitely generated inte-
grally closed subring such that ¥ — ¥ =Spec S, is an open immersion. We will
show that the set of associated divisors of (Y, Y) is finite (cf. 3.4).

Let p € Q be a nonsingular point and let 7, be an irreducible closed subvariety
of V passing through p and transversal to the orbit of H through p. (Note: If
the orbit of p is dense there is nothing to prove k[X]¥=k.) Since X is stably
embedded in V, by 2.2 we can find a birational morphism 7: Z — V and an integer
e> 0 such that the rational maps ¢,,.o7 given by H%(V, L")* are all regular on Z.
Let 7 denote the strict transform of 73 on Z and denote by ¢, the restriction of
eneo7 to T. By (iii), choosing n sufficiently large, we may assume that the image
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of HO(V,L"®)" in T'(Y, Oy) generates a subring S, whose integral closure S,
contains Sy. Thus Y — Spec S, is an open immersion for all n sufficiently large.

Let D, be the geometric image of ¢,.o7in P(H°(V, L")"). Then by the choice
of 7, ¥,: T— D, is generically finite to one so dim T=dim D,,. Replacing T
(D,) by its normalization T (resp. D,) in k(T) (resp. k(Y)) we get a map
¥n: T— D, induced by ¢,. Now fix n (sufficiently large) and let 7, C S, be the
ideal defining the complement of Y in Spec S,. If O is an associated divisor of
(Y, S,) having a center C of codimension one on Spec S, then ¥, '(C) is a
finite union of prime cycles on T each of which is disjoint from QNT. It follows
that the only associated divisors of (Y, S,) are those which correspond (via
k(Y)— k(T)) to the finite set of prime cycles on T with support in 7—QNT.
This is a finite set of discrete valuation rings in k(YY) so by 3.5 Y is k-Noetherian
and the theorem is proved. O

COROLLARY 4.5. Let V be a rational H-module and suppose (V, H) contains
a divisorially dense quotient domain. Then if B(p,V) is o-stable, the ring of
invariant polynomial functions on V is finitely generated over k.

Proof. Let P(V"’) be the canonical completion of V and L the sheaf associated
to xo=0. Then @, ¢ HYP(V"), LM maps onto k[V 17 by definition. The
corollary now follows from the same arguments as above using 2.3 instead of
2.2. O

S. Final observations and examples. If H is an arbitrary connected group and
p:H— GL(V) is a representation of H then k[V1? will be finitely generated -
provided k[V]Y is finitely generated where U is the connected unipotent radical
of H. This follows from [7] and the fact that H/U is reductive, hence semi-
reductive (see [13]). Thus for all practical purposes unipotent actions hold the
key to finite generation for arbitrary groups. We assume in this section that H is
unipotent.

Let us call the integer e occurring in the definition of stability the index of
stability. At first glance one might guess that e is the least common multiple of
the degrees of a set of generators of I(p). This is in fact false as the following
example shows.

EXAMPLE 5.1. Let G, act on the polynomial ring R =k[x, y,u,v] by
X = X+1ty, u— u+tv with y, v invariant. Then R%=k[y, v, vxx—uy] so I(p) is
generated by y and v. But vx—uy is not in (, v)? so the index of stability here is
not 1 but 2.

In a more positive direction we have the following result.

THEOREM 5.2. Let p: H— GL(V) be a finite dimensional rational representa-
tion of the connected unipotent group H. Suppose that there exists a divisorially
dense H-stable open set Q of V such that the stability group in H of each point of
Q is finite. Then if B(p) is a-stable k[ V17 is finitely generated.
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Proof. Let p: Zy — Q be a Seshadri cover of Q (see Theorem 1.3). Let Z be the
normalization of P(V’) in k(Z,) and ¢: Z — P(V") the canonical map. Then H
acts on Z and » is H-equivariant [8].

Let S be the blow-up of P(V’) along I(e) where e is the index of stability.
Let P be a suitable component of ZXp(,+)S so that the following diagram
commutes:

P - S

o] )
P

zZ - P(V’).\
Here all morphisms are surjective and H-equivariant. Moreover, o is birational
(because S— P(V’) is birational). Let ¢x be the rational map determined by
forms of degree K and yx = ¢xe°p. Since the base locus is o-stable it follows that
Vkeoo is regular on P for all K.

Now p ~!(Q) is locally trivial so there is an irreducible subvariety Ty of Z and
an H-stable open set UC p~1(Q) with U=H X (T,NU). Let T denote the strict
transform of 7 in P. Then for all K the mapping Yx =v¥k.c0/T is generically
finite to one from T to the geometric image Dx of Yx.c0. The rest of the argu-
ment parallels the proof of 4.4. O

This theorem allows us to answer another obvious question: If ¥} and V, are
rational H-modules and B(p;), B(p,) are stable, then is B(p;+p,) stable? The
answer is negative as the following shows.

EXAMPLE 5.3. Consider again Nagata’s counterexample to the original 14th
problem with k= C. The group H is defined to be a linear subvariety of G/} defined
by the vanishing of 3 linear forms. If 1= (), ..., \,) €G], then h € H if and only
if L;(N,...,N\)=0,i=1,2,3 where each /; is a linear form whose coefficients are
suitably generic (cf. Example 2.1). The action of H on the polynomial ring
KX, V15 s Xyl isviax; = x4+ Njyi, ¥i 2> yi, 1<i<r. Let a, 8 and vy be distinct
integers chosen from {1, 2,...,r) and let yog, = (I1i=| ¥i}/Va s ). I claim that if
v€ A% and Yagy(v) #0 then the stability group of v in H is trivial. If y;(v)#0,
i#a,B,y and h€ H fixes v, then, since x;(v)=x;(v)+\; ¥;(v) we must have
A;=0. Thus the only possible nonzero coordinates of 4 € Sty (v) are A,, Ag and
A,. Now [;(Ay, Ng, N,) =0, i=1,2,3. Since these forms are generic, the system of
3 equations in the three unknowns A,, Ag, A, has rank 3 and hence only the
trivial solution. Thus A, =Ag=A, =0 and Sty (v)=0.

Now let O=U (A*)y,;., the union being taken over all « <8<y say. Then
the stability group of each point in Q is trivial. Moreover since r 216, the forms
Yagy have no common factor so Q is divisorially dense. Thus by 5.2 if B(p) were
o-stable we would have k[x, ¥y, ..., X,, »,] finitely generated, a contradiction.

On the other hand V = Speck[x,y,..., X,y ]=VX -+ XV, with V;=
Spec k[x;,y;]1. Each V; is an AH-module with stable base locus generated by y;.
Thus B(p;) is stable for i=1,...,r, but B(p;+ -« +p,) is not stable. O
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