IDEALS OF INJECTIVE DIMENSION 1

Eben Matlis

Introduction. Throughout this paper R is an integral domain with quotient field
QO # R, and K = Q/R. The completion of R in the R-topology is denoted by H. Let /
be a non-zero ideal of R, S={1—a|a €I}, and E(R/I) the injective envelope of
R/I If §(R) denotes the Jacobson radical of R, then I C §(R) if and only if R = Rg.
It has been proved elsewhere that H/IH = R/1.

The main purpose of this paper is to examine the relationship between the injective
envelope of R/I and the torsion-free cover of R/I in order to shed light on the
condition: inj.dimg 7= 1. This suggests consideration of the successively weaker
conditions: (a) E(R/I)=Q/I, (b) inj.dimglI=1 (i.e. Q/I is injective); and
(c) E(R/I)CQ/I

Condition (a) naturally leads to the study of the condition: (d) Q/IC E(R/I);
(i.e., Q/Iis an essential extension of R/I) and the characterization of this condition
is the key to the whole question. It is proved that Q/IC E(R/I) if and only if
IC g(R) and the only ideals of R mapping onto R/I are the principal ideals of R.
Another important tool in the investigation is the notion of a complemented exten-
sion A of R. Of great importance here is the proposition that if A is a complemented
extension of R, and if 7 is the contraction of an ideal of A contained in §(A), then
A - Rs.

The main results of this paper are summarized in the following theorem.

MAIN THEOREM. (I) The following statements are equivalent:

(1) E(R/I)=Q/I

(2) Inj.dimgI=1and IC §(R).

(3) The canonical map: H— R/I is a torsion-free cover.
(I1) The following statements are equivalent:

(1) Inj.dimg I=1 (i.e. Q/1 is injective).

(2) Rs is a complemented extension of R; inj.dimg, Is = 1; and inj.dimpg; R§< 1,
where R{ = N Ry{N € maxspec R|I ¢ N} is the complement of Rs.

(3) The canonical map: H— R/rl is a torsion-free lifting for all non-zero r € R.
(IIT) The following statements are equivalent:

(1) E(R/I)COQ/L

(2) Rgs is a complemented extension of R and inj.dimg [g=1.

(3) The canonical map H— R/I is a torsion-free sztmg

In Section 1 complemented extensions of R are discussed. In Section 2 conditions
(a), (b), (c), and (d) are related to the notion of complemented extensions of R. In
Section 3 torsion-free covers and liftings are discussed and are related to conditions
(a), (b) and (c). Finally, in Section 4 the results of the first three sections are applied
to valuation rings, Noetherian domains, and A-local domains. There are examples
given illustrating the first three sections, and counter-examples to possible conjectures.
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1. Complemented extensions of R.

DEFINITION. Let A be an R submodule of Q such that R C A. We shall say that A
is a complemented extension of R if there exists an R-submodule A’ of Q such that
A+A’'=Qand ANA’=R. A’is called a complement of A. We shall prove that if
A’ exists, then it is unique. We shall call R and Q the trivial complemented extensions
of R. It is immediate that A4 is a complemented extension of R if and only if A/Risa
direct summand of K. Clearly we have K=A/R®A'/R, A/R=Q/A’, A’/R=Q/A,
and K= Q/A® Q/A’. In this section we shall attempt to characterize the comple-
mented extensions of R.

PROPOSITION 1.1. Let A be a complemented extension of R. Then the following
statements are true:

(1) A is a flat commutative ring extension of R.

(2) If I is a non-zero ideal of R, then IANIA’'=1, R/ I=A/IA®A'/IA’, and
O/ I=Q/IAD Q/IA".

(3) If J is a non-zero ideal of A, then A=J+R, J=(JNR)A, and A}J =
R/(JNR). Therefore, J is a prime (or maximal) ideal of A if and only if JOR is a
prime (or maximal) ideal of R.

Proof. (1) Let x be a non-zero element of A, and write x = a/b, where a,b € R.
Since A/R is a direct summand of K and K= bK, we have A/R=b(A/R) =
(bA+R)/R. Thus A=bA+ R and so xA=aA+ xR C A. This shows that A is
closed under multiplication, and thus A is a subring of Q.

Since ANA’=R and A+ A’ = Q, we have an exact sequence:

0>R>A@A - Q— 0.

Because R and Q are flat R-modules, it follows that A is also a flat R-module.

(2) Let I be a non-zero ideal of R. The preceding exact sequence induces a map:
R/I—> A/IA® A'/IA’ whose kernel is equal to (IANIA’)/1. Because Q is flat and
Q=1Q, this map is an isomorphism. Therefore, JANIA’'=1 Now Q=10 =
IA+ 1A, and thus Q/I=Q/IA®D Q/IA’.

(3) Let J be a non-zero ideal of A and I=JNR. Since IK =K, wehave A=IA+ R
and consequently A =J+ R. If x € J, then x= y+ r, where y € IA and r € R. There-
fore, re JNNR =1, and so J=IA. We also have A/J=(J+ R)/J=R/(JNR), and
this isomorphism is a ring isomorphism. Hence J is a prime (or maximal) ideal of A if
and only if JN R is a prime (or maximal) ideal of R. O

DEFINITION. An ideal of R is said to be irreducible if it is not the intersection of
two properly larger ideals of R.

PROPOSITION 1.2. If the Jacobson radical of R contains an irreducible non-zero
ideal I of R, then R has only the trivial complemented extensions (i.e., K is inde-
composable). In particular, this is the case if R is a quasi-local domain (i.e. has only
a single maximal ideal).

Proof. Let A be a complemented extension of R. Since [ is irreducible, R/Iis an
indecomposable R-module. Hence by Proposition 1.1(2) either A=14 or A’ =1A".
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But by Proposition 1.1(3), IA4 is contained in every non-zero maximal ideal of A and
IA’ is contained in every non-zero maximal ideal of A’. Therefore either A = Q or
A =Q. O

DEFINITION. Let spec R denote the set of prime ideals of R, and maxspec R
denote the set of maximal ideals of R. If B is a non-zero R-module, define I'(B) =
(P €E€specR|B/PB# 0} and 2(B) = {M € maxspec R| B/MB # 0}.

PROPOSITION 1.3. Let A be a complemented extension of R and let A’ be a com-
plement of A. Then the following statements are true:

(1) T(A)UT(A’) =specR and T(A)NT(A’) ={0].

Q) Ifo=Pel'(A) (orQA)), then PA € spec A (or maxspec A); PANR =P,
A/PA=R/P, Ap= Rp, and Ap = Q.

(3) There is a 1-1 order preserving correspondence between I'(A) and spec A
given by P— PA for P€T(A) and ® = ® N R for ® € spec A.

4 A=NRy, M€ Q(A).

(5) A’=NRy {N€maxspec R|A=NA}. Thus A’ is unique.

Proof. (1) Let P be a non-zero prime ideal of R. By Proposition 1.1(2) we have a
ring isomorphism: R/P— A/PA®A’/PA’. Because R/P is an integral domain, it
follows that either P€T'(A) or PET'(A’) but not both simultaneously.

(2) Let0=PeT(A) (or 2(A)). By (1) we have R/P= A/PA, and hence PA is a
prime (or maximal) ideal of 4. By Proposition 1.1(3) we have A/PA = R/(PANR),
and thus PAN R = P. It is clear that Ap is a complemented extension of Rp and that
Ap is an Rp-complement of Ap. Since Rp has only the trivial complemented exten-
sions by Proposition 1.2, we have Ap = Rp and Ap = Q.

(3) This follows from (2) and Proposition 1.1(3).

(4) A is the intersection of all of its localizations with respect to the maximal
ideals of R. Hence (4) follows from (1) and (2).

(5) This follows from (4) and (1). O

REMARKS. Let A be a complemented extension of R. It follows from Proposi-
tion 1.3(3) that Q(A) is empty if and only if A = Q. By convention if Q(A) is empty,
then the empty intersection N R,,, {M € Q(A)} is equal to Q, and hence A =N Ry,
in this case also.

On the other hand if M € Q(A) and N € Q(A’), then M N N contains no non-zero
prime ideal of R by Proposition 1.3(1), and hence Ry @r Ry = O.

It can easily be shown that Homz(A/R, A’/R) = 0, and this provides a different
proof from the one given that A’ is unique. Finally, it is clear from Proposition 1.3
that I'(A) — {0} = Supp(A’/R).

DEFINITION. If B is a commutative ring, we shall let §(B) denote the Jacobson
radical of B; i.e., §(B) is the intersection of all of the maximal ideals of B.

PROPOSITION 1.4. Let I be a non-zero ideal of R and S ={1—a|a € I}. Then the
Jollowing statements are true:

(1) IsC Y(Rg) and IsNR = 1.

(2) IS+R = RS and Rsfls = R/1
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(3) QURs)={M€E€maxspecR|MDI} and Rg=NRy, {MEQ(Rs)]}.
(4) If Rg is a complemented extension of R, then

Rs=NRy, (N €maxspecR|NDI}.

Proof. (1) Let b/s € I, where b € I and s € S. Then s =1—a where a € I; and so
1—b/s=(1/s)(1 — (a+ b) is a unit in Rg. It follows that I C §(Rs). If b/s=r € R,
then r=b+ar€l,and so IgNR=1.

(2) Let x=r/t, where r€ER and ¢t € S. Then t=1-c¢ where c€ 1, and x=
cx+r€lIlg+ R Thus I+ R=Rg, and so Rg/Ig=R/(IsNR) =R/I.

(3) Let M € maxspec R; it is clear that MRg # R if and only if M does not meet S
if and only if M D I; and thus Q(Rs) = { M € maxspec R| M D I}. Furthermore, if
MDI, then SCR—M, and so (Rg)y = Rys. Thus if B=NRy,, M€ Q(Rs), then
Rs C B. On the other hand let x € Band let J= {7 € R|tx € R}. If M € maxspec R
and MD I+ J, then M € Q(Rs) and so B C R,,. But this contradicts J C M, and so
I+ J= R. Hence J meets S, and so there exists s € S such that sx = r € R. Therefore
X € Rg, and so Rg=B.

(4) If Rg is a complemented extension of R, then by Proposition 1.3(5) we have
R{=NRy, {N € maxspec R| NRs = Rs}. But NRg = R if and only if N meets S if
and only if N I, and so we have the desired expression for Rg. O

PROPOSITION 1.5. Let A be a complemented extension of R and let I be a non-
zero ideal of R such that IANR=1. Then IA'=A’', Q/I=Q/IA®Q/A’, and
A'll=Q/IA.

Proof. We have Q =I1Q = IA+ IA’; hence, a fortiori, Q = IA+ A’. We also have
ANIA=(A'NAYNIA=RNIA=1.

Letx€A’;thenx=y+2z, wherey€IAand z € IA’. Hence y € A’'NIA =1, and
so x € IA’. Therefore, A’=1A’. Hence by Proposition 1.1(2) we have Q/I=
Q/IA®Q/IA’' = Q/IA® Q/A’. We also have

Q/IIA= (IA+ A" )/ IA=A'/(IANA')y=A"/L O

PROPOSITION 1.6. Let A be a complemented extension of R, I a non-zero ideal
ofR,and S={1—ala€I). Then A=Rsifand only if IANR =1and IA C §(A),
the Jacobson radical of A.

Proof. We have IRgN R = I and IRg C J(Rg) by Proposition 1.4(1). On the other
hand suppose that IJANR =1 and IA C §(A). By Proposition 1.4(3) Rg=MNR,,,
M € Q(Rs); and by Proposition 1.3(4) A=NR,,, M € 2(A). Thus it is sufficient to
show that Q(Rg) = Q(A).

If M€ QRg), then M DI by Proposition 1.4(3). Since JA'= A’ by Proposi-
tion 1.5, we have MA’ = A’. Therefore, M € Q2(A) by Proposition 1.3(1). Con-
versely, suppose that M € Q(A). Then MA is a maximal ideal of A by Proposition
1.3(2). Therefore, IA C g(A)Y CMA; and so I=IANRCMANR =M. Thus
M € Q(Rg) by Proposition 1.4(3). a

COROLLARY 1.7. Let A be a complemented extension of R such that §(A) # 0.
Let J be a non-zero ideal of A such that JC §(A), and let I=JNR and S =
{l—ala€l}. Then A= Rg.
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Proof. This is an immediate consequence of Propositions 1.1(3) and 1.6. O

COROLLARY 1.8. Suppose that §(R) # 0 and that A # Q is a complemented exten-
sion of R. Let I=9(A)NR and S={l1—ala€1}. Then A= Rg.

Proof. Since A has non-zero maximal ideals, it follows from Proposition 1.1(3)
that J(R) C §(A); and thus g(A) # 0. The conclusion now follows from Corol-
lary 1.7. O

DEFINITION. The R-topology of R is obtained by taking all of the non-zero ideals
of R as a base of open neighborhoods of 0 in R. The completion of R in the
R-topology is denoted by H = H(R). The next lemma lists the properties of H that
we shall need. Its component parts have been proved elsewhere.

LEMMA 1.9. (1) H is a faithfully flat commutative ring extension of R.
(2) There is a canonical ring isomorphism H = Homg (K, K).

(3) Homgx(H,H) =Homy(H, H).

(4) If Iis a non-zero ideal of R, then H/IH = R/ 1.

(5) If B is a subring of Q such that R C B, then

Hompg (Q/B, Q/B) = Homg(Q/B, Q/B) = H(B),
the completion of B in the B-topology.
Proof. See [7, Chapter 2] and [9, Proof of Theorem 2.9]. 0

PROPOSITION 1.10. (1) Let A be a non-trivial complemented extension of R and
let e be the element of H=Hompg (K, K) that is the identity on A’/R and 0 on A/R.
Then H(A) = He, H(A') = H(1 — e), and we have a ring direct sum decomposition
H=H(A)®H(A’). If I is a non-zero ideal of R, then He/IHe = H(A)/IH(A) =
A/IA=R/(IANR).

(2) Conversely, if H=U® U’ where U and U’ are proper R-submodules of H,
then there exists e € H such that e*=e, U= He, and U'=H(1—e). If A/R =
(1—-e)(K), then A is a non-trivial complemented extension of R, A'/R = e(K),
H(A)=Uand H(A') = U".

Proof. (1) It is easily seen that He is a ring isomorphic to Homyz(A’/R,A'/R).
Now A'/R=(A"+A)/A= Q/A, and hence Homgz(A'/R, A’/R) is ring isomorphic
to Homg (Q/A, Q/A). By Lemma 1.9(5), Homg(Q/A, Q/A) is ring isomorphic to
H(A). Thus He is ring (and R-module) isomorphic to H(A).

It follows that we have an induced isomorphism: He/IHe = H(A)/IH(A). Since
ACH(A),wehave IH(A) = (IA)H(A); and by Lemma 1.94) H(A)/(IAYH(A) =
A/IA. By Proposition 1.1(4), A/IA=R/(IANR).

(2) Since U'is a direct summand of H, there exists an R-homomorphism A\: H—> H
such that Ker A = U. By Lemma 1.9(3), A is an A-homomorphism, and thus U is an
ideal of H. Similarly U’ is an ideal of H. Thus there exists e € H, e # 0, 1 such that
e=e? U=Heand U =H(l—e). Let A/R=(1—¢)(K) and B/R =e(K). Then
A/R and B/R are proper R-submodules of K and K= A/R® B/R. Thus A is a non-
trivial complemented extension of R; and by the uniqueness of A’, we have A’ = B.
By (1), H(A)=Uand H(A’) = U". O
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PROPOSITION 1.11. Let A be a complemented extension of R and let C be an
A-module. Then inj.dim 4 C = inj. dimg C; and thus gl.dim A < gl. dim R.

Proof. 1t is sufficient to prove that C is A-injective if and only if C is R-injective.
Since A is flat over R by Proposition 1.1(1), if Cis A-injective then C is R-injective.
Conversely, assume that C is R-injective. Let T be the R-torsion submodule of C.
Then C=T®C/T. Now T is also the A-torsion submodule of C; and C/T is
torsion-free and divisible, hence injective, over A. Thus we may assume that C= T'is
a torsion A-module.

Let L be a non-zero ideal of A and g: L — C an A-homomorphism. Then g
extends to an R-homomorphism f: A— C. It is sufficient to prove that f is an
A-homomorphism.

Because L is a torsion-free A-module and C is a torsion A-module, Ker g is a non-
zero ideal of A. Let x € A and J = Ker gN Ann4(f(x)); then J is a non-zero ideal of
A. Thus by Proposition 1.1(3) we have A = J+ R. Thus if a € A, then a = b+ r, where
b € Jand r € R. Hence af(x) = bf(x) + rf(x) = f(rx) because b € Ann 4 (f(x)). On
the other hand f(ax) =f(bx)+ f(rx) =f(rx) because bx € Kerg and f(bx) =
g(bx) = 0. Therefore, fis an A-homomorphism. 0

2. Ideals of injective dimension 1.

DEFINITION. If Bis an R-module, then E(B) denotes the injective envelope of B;
and, as before, J(R) denotes the Jacobson radical of R.

PROPOSITION 2.1. Let I be an ideal of R. Then the following statements are
equivalent:

(1) Q/I is an essential extension of R/I (i.e., Q/IC E(R/I)).

(2) If B is an R-submodule of Q such that (RN B) C 1, then BC I.

(3) If A is an R-submodule of Q that maps onto R/I, then A= R.

(4) IC Y(R); and if J is an ideal of R generated by two elements, then J maps
onto R/I if and only if J is, in fact, a principal ideal of R.

Proof. (1) implies (2). Suppose that B is an R-submodule of Q such that
(RNB)CI Then (B+I)NR=1, and hence B+ I=1 since Q/I is an essential
extension of R/[.

(2) implies (3). Let A be an R-submodule of Q and f: A — R/I a surjection. Then
there exists y € A such that A= Ry+ Kerf. Now A/Ker f= Ry/(RyNKer f) =
R/(RNy~'Kerf); and since A/Ker f maps onto R/I, we have (RNy~!Ker f) C L.
Hence by (2), y~'Ker fC I, and so Ker fC Iy. Therefore A= Ry = R.

(3) implies (4). Let S={1—a|a € I]. By Proposition 1.4(2) we have Rg/Is = R/I,
and so Ry maps onto R/I. Thus by (3), Rg= R. Hence R is divisible by the elements
of S, and therefore R = Rg. Thus I C §(R).

Before we proceed with the proof of (4) implies (1) we shall prove the following
technical lemma.

LEMMA. Let I be an ideal of R; a,b € R, b #0, andlet x = (a/b+1) € Q/1. Then
RxN(R/I) =0 if and only if (Rb:a) = (Ib:a) if and only if (Ra+ Rb)/(Ra+ Ib)
maps onto R/I if and only if (Ra+ Rb)/(Ra+1b) =R/
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Proof. Since Anngx=(Ib:a) and {r€ R|rx€ R/I}= (Rb:a), we see that
RxN (R/I) =0 if and only if (Rb:a) = (Ib:a). Let L = (Rb:a)ab™'; then L is an
ideal of R, and it is immediate that (Rb:a) = (Ib:a) if and only if L C I.

Now (Ra+Ib) NRb= (Rb:a)a+Ib=Lb+1b= (L+1)b. Hence

(Ra+ Rb)/(Ra+Ib) = Rb/[(Ra+1Ib) NRb] =Rb/(L+1)b=R/(L+1).

Hence L C I if and only if (Ra+ Rb)/(Ra+ Ib) maps onto R/I if and only if
(Ra+ Rb)/(Ra+1Ib) = R/I. O

We now turn to the proof of (4) implies (1); hence assume (4). Let x= (a/b+ 1) be
an element of Q/1, where a, b € R; and suppose that RxN (R/I) = 0. By the Lemma
(Ra+ Rb)/(Ra+ Ib) = R/I; and hence by assumption there exists ¢ € R such that
Ra+ Rb = Rc. Thus there exist r, £, u, v € R such that a = rc, b = tc, and ¢ = ua + vb.
Hence 1 = ur+ vt. Now (Rb:a) = (Rtc:rc) = (Rt:r); and (Ib:a) = (Itc:rc) = (It:r).
Therefore, by the Lemma, (Rf:r) = (It:r). Hence ¢ € (It:r) and so r € 1. But
IC Y(R), and so vf =1 —uris a unit in R. Thus ¢ is a unit in R and Rb = Rtc = Rc.
Therefore, a € Rb, x € R/I, and so x = 0. This shows that Q/I is an essential exten-
sion of R/1I. O

REMARKS. It follows easily from Proposition 2.1 that if Q/7 is an essential exten-
sion of R/I, and JC I, then Q/J is an essential extension of R/J.

COROLLARY 2.2. Let I be a non-zero ideal of R. Then the following statements are
equivalent:

(1) ER/I)=0Q/L

(2) Inj.dimgI=1and IC g(R).

Proof. (1) implies (2). We have I C §(R) by Proposition 2.1; and from the exact
sequence: 0 —> I—> Q— Q/I— 0, we have inj.dimg I=1.

(2) implies (1). The preceding exact sequence shows that Q/I is injective. It only
remains to show that Q/I is an essential extension of R/I. Since I C §(R), it is suffi-
cient by Proposition 2.1 to show that if J is an ideal of R and f: J— R/I is a surjec-
tion, then J is a principal ideal of R.

We have an exact sequence:

0> 71— R—>R/I—0.

Now Extk (J,I) = Extk(R/J,I), and the latter module is 0 because inj.dimg 7 = 1.
Thus we have an exact sequence:

0— Homg(J,I) = Homg(J, R) 5 Hompg (J, R/T) = 0.

Thus there exists an R-homomorphism g:J— R such that vg = f. Since f is onto,
w(Im g) = R/I. Because Ker r=1, we have R=Img+ 1. But IC g(R), and so
R =1Im g. Thus g maps J onto R. But g is multiplication by an element of Q, and thus
g is an injection. Therefore g is an isomorphism, and so J = R. Hernce by Proposi-
tion 2.1, E(R/I) = Q/L O
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PROPOSITION 2.3. Let R be a non-zero ideal of R. Then the following statements
are equivalent:

(1) E(R/I)CQ/L

(2) There exists a complemented extension A of R such that IANR =1 and
inj.dimy4 IA=1 (=inj.dimg IA4).

(3) Let S={1—ala€l}. Then Rs is a complemented extension of R and
inj. dimRS IS =1 (: inj. dlmR Is).

In this case Q/I¢ = E(R/I) = (NRy) /1, {N € maxspec R|I ¢ N}. Hence E(R/I)
is a unique submodule of Q/I.

Proof. (1) implies (2). Let E(R/I) = B/I where B is an R-submodule of Q such
that R C B C Q. Since B/[ is a direct summand of Q/1, there exists an R-submodule
C of Q such that B+ C=Qand BNC=1. Let A= R+ C; then A+ B = Q. Clearly
R C AN B; on the other hand let x € ANB. Then x=r+c¢ where r €R and ¢ € C.
Hence c=x—r € BN C=1. Therefore x € R, and so AN B = R. Therefore A is a
complemented extension of R and B=A".

Now IANR=I(R+C)NR={U+IC)NRCCNRCI; and thus IANR = 1. By
Proposition 1.5 we have Q/IA= A’/I= B/I= E(R/I). Therefore Q/IA is an injec-
tive R-module. Hence by Proposition 1.11, Q/IA is an injective A-module. There-
fore, inj.dim 4 /A = 1 = inj.dimg IA.

(1) implies (3). We shall use the notation and results of (1) implies (2). Since A’/1 =
E(R/I), A’/I is an essential extension of R/I. In the canonical isomorphism:
A’'/I— Q/IA of Proposition 1.5, R/I maps onto A/IA. Thus Q/IA is an essential
extension of A/IA, and hence is the injective envelope over A of A/IA. Therefore,
by Proposition 2.1, IA C g(A). It now follows from Proposition 1.6 that A = Ry
where S={1—a|a € I}. By Proposition 1.4,

A’'=R{=NRy, {N € maxspec R|I ¢ N}.

(3) implies (2). Since IgN R = I, the assertion is trivial.
(2) implies (1). Since Q/IA is A-injective, it is R-injective by Proposition 1.11. And
since Q/IA=A'/IC Q/I, we have E(R/I) C Q/1I. a

PROPOSITION 2.4. Let I be a non-zero ideal of R. Then the following statements
are equivalent:

(1) Inj.dimgI=1.

(2) There exists a complemented extension A of R such that IANR=1,
inj.dimy4 IA =1, and inj.dim4- A’ < 1.

() Let S={1—ala€lI). Then Rg is a complemented extension of R,

inj.dimg Is=1, and inj.dimpg; R5< 1
(where R =N Ry, {N € maxspec R|{IZ N}).

Proof. (1) implies (3). Since Q/I is an injective R-module, we have E(R/I) C Q/I.
Thus by Proposition 2.3 we only have to prove that inj. dimg; Rg = 1. But by Propo-
sition 1.5, Q/Rjg is a direct summand of Q/I and hence is R-injective. Therefore, by
Proposition 1.11, Q/R; is Rg-injective.
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(3) implies (2). This assertion is trivial.
(2) implies (1). By Proposition 1.11, inj.dimgz 74 =1 and inj.dimgz A’ < 1. Since
Q/1=Q/IA® Q/A’ by Proposition 1.5, we see that Q/I is also R-injective. a

COROLLARY 2.5. Let I be a non-zero ideal of R such that IC §(R). If E(R/I) C
Q/1, then E(R/I) = Q/I and so inj.dimg I = 1.

Proof. Let S={1—a|a€ ). Then every element of S is a unit in R and thus
R = Rg. Corollary 2.5 is now an immediate consequence of Proposition 2.3 and
Corollary 2.2. O

3. Torsion-free liftings and covers.
DEFINITIONS. An R-module C is said to be a cotorsion R-module if
Homz (Q, C) = 0= Extk(Q, C).

It is immediate that if C is a cotorsion R-module and V is a torsion-free and divisibie
R-module, then Homg (V, C) = 0= Extk(V, C).

We place the R-topology on an R-module B by taking the submodules (B}, where /
ranges over the non-zero ideals of R, as a base of open neighborhoods of 0 in B. Then
B has a completion B in this topology and B is an H-module, where H is the comple-
tion of R in the R-topology.

The following lemma lists some of the properties of cotorsion and complete modules
that we shall need.

LEMMA 3.1. (1) A torsion-free R-module is complete in the R-topology if and only if
it Is a cotorsion R-module.

(2) If B is any R-module, then Homg (K, B) is a torsion-free, cotorsion R-module,
hence complete in the R-topology.

(3) If B is an R-module and Anng B # 0, then B is a cotorsion R-module.

(4) A cotorsion R-module C is an H-module and Homg (G, C) = Homy(G, C) for
any H-module G.

Proof. See [7, Chapters 1 and 2). O

DEFINITIONS. Let B be an R-module, D a torsion-free R-module, and 8: D — B an
R-homomorphism. We shall say that the pair (D, 0) is a torsion-free lifting of B if
given any torsion-free R-module X and R-homomorphism f: X — B, then there exists
an R-homomorphism A : X — D such that 6\ = f. This is obviously equivalent to the
assertion that the induced map 0, : Homg (X, D) = Homg (X, B) is surjective. Be-
cause there exists a free R-module mapping onto B, it is clear that a torsion-free lifting
is surjective.

A torsion-free lifting (D, 8) of B is called a torsion-free cover of B if Ker 6 contains
no non-zero pure R-submodule of D. We remark that the definition of purity used is
that C is pure in D if D/C is torsion-free. In [3] Enochs defined and proved the
existence and uniqueness of.the torsion-free cover for any R-module B. Subsequently,
Banaschewski [1] gave a concrete construction of the torsion-free cover and an
improved proof of its uniqueness. Because of the fundamental importance of
Banaschewski’s results to this paper, we shall state his theorem without proof.
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BANASCHEWSKI’'S THEOREM. Let B be an R-module and E = E(B) the injective
envelope of B. Let T={f€ Homz(Q,E)|f(1) € B}, and define ¢: T— B by
o(f)=f(1) forall f€ T. Then (T, ¢) is a torsion-free cover of B.

If (D, 0) is a torsion-free lifting of B, then D=T,® D,, where D, C Ker 8 and
there exists an isomorphism N: Ty — T such that if 0, is the restriction of 6 to T,
then (T,,0,) is a torsion-free cover of B and 0, = ¢\. Thus torsion-free covers are
unique up to isomorphism.

Proof. See [1, Proposition 1 and Corollary]. 0
We shall expand on Banaschewski’s Theorem in the next proposition.

PROPOSITION 3.2. Let B an R-module, let E = E(B) be an injective envelope of B,
and let (D, 0) be a torsion-free cover of B. Then:

(1) Ker80=Homg(K,E) is complete in the R-topology and inj.dimg(Kerf) < 1
(and is 0 only if Ker 8 = 0).

(2) If B is a cotorsion R-module, then there exists an exact sequence:

0— Homg(K,E) > Homg(K,E/B) > B—> 0

that is a torsion-free cover of B. Therefore, D = Homp (K, E/B) is complete in the
R-topology.

Proof. (1) Let (T, ¢) be the torsion-free cover of B given by Banaschewski’s
Theorem. Then without loss of generality we can assume that D= 7 and 6 = ¢. Let
w: Q — K be the canonical map. Then we have an exact sequence:

0— Homg(K, E) > Homg(Q,E) > E— 0

where a(g) = g(1) for g € Homg(Q, E). Then ¢ is the restriction of o to T and
Ker ¢ = Kera = Im 7* = Homg (K, E). Thus by Lemma 3.1(2), Ker ¢ is complete in
the R-topology. Since Homg(Q, E) is an injective R-module, the preceding exact
sequence shows that inj. dimg (Ker ¢) < 1 (and is 0 if and only if Ker ¢ = 0).

(2) Now assume that B is a cotorsion R-module. We define

A: T— Homg (K, E/B)

by NM(N(x+ R) = f(x) + B for all x€ Q and f€ T. Since f(R) C B, N(f) is a well-
defined element of Homg (K, E/B), it is obvious that A is an R-homomorphism. We
shall prove that A is an isomorphism.

If f€ Ker A, then f(Q) C B; but since Homg(Q, B) =0, we have f=0. Thus A
is an injection. Now let g € Homy(K,E/B). Then gw € Homgz(Q, E/B). Let
B: E—> E/B be the canonical map. Since Homz (Q, B) = 0 = Extk(Q, B), 8 induces
an isomorphism 8, : Homg(Q, E) = Homg (Q, E/B). Thus there exists

f€Homg(Q,E) suchthat gm=gf

We have B(f(1)) = g(w(1)) = g(0) =0. Hence f(1) € Ker@=B, and so f€ T. We
then have M) (x+R) =f(x) + B=B(f(x)) =g(n(x)) =g(x+ R) for all x € Q.
Therefore N(f) =g, and hence A is an isomorphism of 7 onto Homg (K, E/B).
Therefore, T is complete in the R-topology by Lemma 3.1(2).
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Define y = ¢A~!; then we have a commutative diagram with exact rows and verti-
cal isomorphisms:

0— Ker¢p — T 2 B—0
J IR I

0 — Homg(K,E) - Homg(K,E/B) - B — 0

Since the top row is a torsion-free cover, it follows readily that the bottom row
is also. O

REMARKS. Let B be an R-module such that Anng B # 0. Then B is a cotorsion
R-module by Lemma 3.1(3), and hence Proposition 3.2 applies in this case. In par-
ticular, if B is a finitely generated torsion R-module, then Proposition 3.2 applies
to B.

PROPOSITION 3.3. Given an exact sequence of R-modules:

0— C—)D—0>B——>0

where D is torsion-free, C is complete, and inj.dimg C=1, then (D, 8) is a torsion-
free lifting of B and Extk (X, C) = 0 for any torsion-free R-module X.

Proof. Let X be a torsion-free R-module. Then it is sufficient to prove that
Extk(X,C) =0. Now from the exact sequence: 0 > X > QQr X = K@r X — 0,
we obtain the exact sequence:

Extk (Q®gX, C) = Exth (X, C) = Extk (K ®z X, C).

The first term of this sequence is 0 because C is a cotorsion R-module (Lemma 3.1(1))
and the last term is 0 because inj.dimg C = 1. Thus we have Extk (X, C) =0. O

We can now give a short direct proof of the theorem that appeared in [10,
Theorem 1].

COROLLARY 3.4. Let I be a non-zero ideal of R. Then R — R/I is a torsion-free
cover if and only if R is complete and inj.dimg I = 1.

Proof. We first observe that I is complete if and only if R is complete. We next
observe that R has no proper non-zero pure submodules. The conclusion now follows
from Propositions 3.2 and 3.3. O

REMARKS. Let R be a complete domain and 7/ a non-zero ideal of R. Then
Hompg(Q,1) = 0=Exth(Q,I). It follows that Q = Homg (Q, Q) = Homg (Q, O/I),
and thus Q/I is indecomposable. Therefore, E(R/I) = Q/I if and only if
inj.dimg I=1 if and only if E(R/I) C Q/I. Thus, if inj.dimg I=1, then I C §(R)
by Corollary 2.2.

LEMMA 3.5. Let C C B C D be torsion-free R-modules and suppose that the canon-
ical map w: D — D/C is a torsion-free lifting. Then the canonical map «,: B— B/C
is a torsion-free lifting.
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Proof. Let X be a torsion-free R-module and f: X — B/C an R-homomorphism.
Then there exists an R-homomorphism A: X — D such that #A=/f. It follows
immediately that Im A C B, and hence n; : B— B/C is a torsion-free lifting. O

REMARKS. We observe that it follows readily from the isomorphism H =
Hompg (K, K) that H is a torsion-free R-module.

LEMMA 3.6. Let I be a non-zero ideal of R and suppose that there exists a torsion-
Sree lifting (or cover) ¢:H— R/I. Then any surjection 0: H— R/I is also a
torsion-free lifting (or cover).

Proof. By Lemma 1.94), H/IH = R/I; and by Lemma 3.1(4) both ¢ and @ are
H-homomorphisms. Let J = Ker ¢; then J is an ideal of H. Since a torsion-free lifting
is necessarily surjective, we have H/J = H/IH, and so J = IH. Similarly Ker § = IH.
Because Ker ¢ = Ker 0, there exists an R-isomorphism »: R/I— R/I such that v¢ = 6.
The conclusion of the Lemma now follows readily from this. a

PROPOSITION 3.7. Let I be a non-zero ideal of R. Then we have an exact sequence:

(%) 0> IH—> HRr Q> Q/I— 0.

Hence inj.dimg I =inj. dimg IH. Furthermore, the following statements are equiv-
alent:

(1) inj.dimg I=1.

(2) Exth(X,IH) =0 for any torsion-free R-module X.

(3) The exact sequence ( %) is a torsion-free lifting.

(4) The canonical exact sequence:

0> (rD)H—=> H—>R/ri—>0
is a torsion-free lifting for any non-zero r € R.
Proof. Since H is a flat R-module by Lemma 1.9(1), we have an exact sequence:
0> HRQrI—> HRrQ—> HRRQ/I— 0.

Now H®grI=IH by [7, Theorem 13], and H®r Q/I= Q/I by [7, Theorem 11].
Thus we obtain exact sequence (*). Since H®rQ is a Q-module, and hence
R-injective, it follows from () that inj. dimz /= inj. dimg IH.

(1) implies (2). We have inj. dimg /H = 1 by the preceding paragraph. Furthermore,
IH is complete in the R-topology by [7, Theorem 13}. Therefore, by Proposition 3.3,
Extk (X, IH) = 0 for any torsion-free R-module X.

(2) if and only if (3). Let X be a torsion-free R-module. Because H®gQ is
R-injective, we derive from (%) an exact sequence: '

Hom g (X, HRr Q) - Homg (X, Q/1) — Extk (X, IH) — 0.

Thus () is a torsion-free lifting if and only if =, is surjective if and only if
Exth(X,IH) = 0.

(2) implies (4). Let X be a torsion-free R-module and 0 # r € R. Since (rl/)H =
IH, condition (2) guarantees that Hom (X, —) is exact on the exact sequence of (4).
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(4) implies (1). Let J be a non-zero ideal of R and 0 # r € J. By Lemma 1.9(4) we
have H/(rl)H = R/rI; and thus by assumption the canonical map a: H—> H/(rl)H
is a torsion-free lifting. Hence by Lemma 3.5 the canonical map 8: IH — IH/(rl)H
is a torsion-free lifting. Thus from the exact sequence:

0— IHS IHS 1H/ (e H - 0

we derive the exact sequence: 0 — Extk (J, IH) - Extk(J, IH). But Extk(J,IH) =
Ext%(R/J,IH) is annihilated by r € J. Therefore, Ext%(R/J, IH) = 0. Therefore,
inj. dimp IH = 1. Hence by the first paragraph of the Proposition, inj.dimy /=1. O

PROPOSITION 3.8. Let I be a non-zero ideal of R. Then the following statements
are equivalent:

(1) Inj.dimg I=1 and IC §(R).

2) E(R/I)=0Q/1.

(3) The exact sequence 0— IH—> H— R/I— 0 is a torsion-free cover.

Proof. (1) if and only if (2). This is Corollary 2.2.

(2) implies (3). Let B=R/I and E= Q/I=E(B); then E/B= (Q/I)/(R/I) =
QO/R =K. Hence Homy (K, E/B) = Homg(K, K) = H. Therefore, by Proposition
3.2(2), there exists a map: H — R/Ithat is a torsion-free cover. Hence by Lemma 3.6,
the canonical map: H — R/[ is a torsion-free cover.

(3) implies (2). Let B= R/I and £ = E(B), and assume that H — R/[ is a torsion-
free cover. Then by Proposition 3.2(1), inj.dimg /H =1; and hence by Proposi-
tion 3.7, Q/1is R-injective. Thus E = A/I where A is an R-submodule of Q such that
RCA; and E/B=(A/I)/(R/I) =A/R. Since A/I is a direct summand of Q/I,
there exists an R-submodule D of Q such that A+ D= Q and AND =1 If we let
A’'=D+R, then A+ A’=Q and AN A’ = R. Therefore A/R is a direct summand
of K. Suppose that A # Q. Let T= Homg (K, E/B) = Homg(K,A/R). Then Tis a
proper direct summand of Hompg (K, K) = H; and hence T is isomorphic to an ideal
direct summand of H by Lemma 3.1. Thus Anng 7# 0. But T= H by Proposi-
tion 3.2(2); and this isomorphism is an H-isomorphism by Lemma 3.1. Therefore
Anngy T= 0. This contradiction shows that E= Q/I. a

PROPOSITION 3.9. Let I be a non-zero ideal of R and S={1—a|a € I}. Then the
Jollowing statements are equivalent:

(1) E(R/I)CQ/L

(2) The exact sequence 0 — IH—> H— R/I— 0 is a torsion-free lifting over R.

(3) The canonical map: H(Rg) = Rg/Is is a torsion-free cover over Rg and
H(Rg) is a direct summand of H.

(4) The map 6: H(Rs) = R/I induced by the isomorphism R/I=Rgs/ls is a
torsion-free cover over R, and H(Ry) is a direct summand of H.

Proof. (1) implies (3). By Proposition 2.3, inj. dimpg Is =1 and Ry is a comple-
mented extension of R. Hence by Proposition 3.8 ¢: H(Rg) — Rg/Is is a torsion-
free cover over Rg; and by Proposition 1.10, H(Rg) is a direct summand of H.

(3) implies (4). Since R/I = Rg/Ig (by Proposition 1.4) we have an Rg-homomor-
phism 6: H(Rg) — R/1, which by (3) we can assume is a torsion-free cover over Rg.
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Let X be a torsion-free R-module and f: X — R/I an R-isomorphism. Then fextends
to an Rg-homomorphism fs: Xs — R/I, and hence there exists an Rg-homomorphism
A: X5 — H(Rg) such that 6\ = fs. If we let v be the restriction of A to X, then it is
clear that we have 8v = f. Thus @ is a torsion-free lifting over R.

Let C be an R-submodule of Ker 8 such that Cis R-pure in H(Rg). Then Cs is an
Rs-submodule of Ker § and Cs is Rg-pure in H(Rgs). Since ¢ is a torsion-free cover
over Rg, it follows that Cs = 0. Hence C = 0, showing that 6§ is a torsion-free cover
over R.

(4) implies (2). By assumption there exists an R-submodule W of H such that H =
W® H(Rg). We extend 0: H(Rg) = R/I to all of H by defining it to be 0 on W.
The extension obviously is a torsion-free lifting: — R/I. Hence by Lemma 3.6 the
canonical map H — R/I is a torsion-free lifting over R.

(2) implies (1). Assume that the canonical map 7 : H— R/ is a torsion-free lifting

over R. By Banaschewski’s Theorem there is an R-module direct sum decomposition
H=U®U’, where U’ C Ker r = IH; and 7, : U— R/Iis a torsion-free cover over R
(where 7, is the restriction of « to U). By Proposition 1.10 U and U"’ are ideals of H
and there exists a complemented extension A of R such that H(A) = U and
HAY=U".
- Now IH=IU®IU’ and.U’ C IH, Hence we have U’ = IU’. By Lemma 1.9(4) we
have U’/IU’'=A’/IA’, and hence IA’=A’. Thus by Proposition 1.1(2) I=
IANIA'=IANA'=IANR.

We have Ker my= UNIH=1IU=1H(A). Hence

0—> IH(A) — H(A) 3 R/I—0

is a torsion-free cover over R. Thus by Proposition 3.2(1) inj.dimg(IH(A)) =1.
But IH(A) = (IAY)H(A), and so inj.dim4([A)H(A) =1 by Proposition 1.11.
Hence by Proposition 3.7 applied to A, inj.dim,(IA) =1. Since JANR =1, we
conclude from Proposition 2.3 that E(R/I) C Q/I. a

4. Applications to valuation rings, Noetherian domains, and #-local domains. If R
is a valuation ring, then the R-submodules of Q are linearly ordered, and hence Q/1
is an essential extension of R/I for any ideal I of R. Therefore, this condition is close
to being a valuation type of condition. This closeness is emphasized by the following
proposition.

PROPOSITION 4.1. (1) R has a maximal ideal M such that Q/M is an essential
extension of R/M if and only if R is a valuation ring.

(2) R has a non-zero prime ideal P such that Q/P is an essential extension of R/P
if and only if P = PRp and Rp is a valuation ring.

(3) If R is a Noetherian domain, then R has a non-zero ideal I such that Q/1I is an
essential extension of R/ if and only if R is a semi-local domain of Krull dimension 1.

Proof. (1) Suppose that M is a maximal ideal of R and that Q/M is an essential
extension of R/M. Then by Proposition 2.1, M C g(R); and hence M is the only
maximal ideal of R. Let J be any finitely generated ideal of R. By the Nakayama
Lemma, J/MJ # 0; and so there exists a surjection of J onto R/M. Therefore, by
Proposition 2.1, Jis a principal ideal of R. It follows easily that R is a valuation ring.
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(2) Let P be a non-zero prime ideal of R such that Q/P is an essential extension of
R/P. Since PRpN R =P, it follows from Proposition 2.1(2) that PRp = P. Hence
Q/P = Q/PRjp is an essential extension of Rp/PRp. Therefore, by (1), Rp is a valu-
ation ring.

Conversely, suppose that P is a non-zero prime ideal of R such that P = PRp and
that Rp is a valuation ring. Then Q/P is an essential extension of Rp/P over both Rp
and R. Clearly Rp/P is an essential extension of R/P over R. Therefore, Q/P is an
essential extension of R/P.

(3) Let R be a Noetherian domain and I a non-zero ideal of R such that Q/f
is an essential extension of R/I. Let P;,...,P; be the prime ideals of R belong-
ing to 1. Then by [5, Theorem 2.3 and Proposition 3.1}, E(R/I) = E{" @ - - - @ Ek,
where E; = E(R/P;) and E/ is the direct sum of n; < o copies of E;. Thus Q/IC
Eh®-- - D EJk.

Let b be a non-zero element of R and x= (1/b+ I) € Q/I. Since the annihilator of
a non-zero element of E; is P;-primary, we have bl = Annp x=J;N - - - N J;, where
either J; is P;-primary or J; = R. It follows that every rank 1 prime ideal of R is equal
to one of the P;’s, and hence R has only a finite number of rank 1 prime ideals. This,
of course, implies that R is a semi-local of Krull dimension 1.

Conversely, suppose that R is a semi-local Noetherian domain of Krull dimension 1.

Case 1: R is a local domain

Let M be the maximal ideal of R and 0 # a € M. By [9, Theorem 5.5], Q/Ra is an
Artinian R-module, and hence Q/Ra is an essential extension of its socle (the socle of
a module is the sum of all of its simple submodules). The socle of Q/Ra is equal
to B/Ra, where B={q€ Q|gM C Ra}. Let M~ '={q € Q|gM C R}; then B=
M~'aC R. Thus 0# B/RaC R/Ra, and hence, a fortiori, O/Ra is an essential
extension of R/Ra.

Case 2: General case

Let M,,..., M, be the maximal ideals of Rand J=J(R) =M N---NM,. Let a
be a non-zero element of J, and let g € Q— Ra. Let M,,..., M, be the maximal
ideals of R such that g ¢ aRyg,. By Case 1, Q/aRy is an essential extension of
Ry /aRyy,, and hence there exists #; € R such that ;g € Ry, — aRyy, . Working suc-
cessively on each i, we see that there exists / € R such that /g € M| Ry, = R and
tqg € N, aRys, = Ra. Thus Q/Ra is an essential extension of R/Ra. a

REMARKS. The proof of Proposition 4.1 shows that if R is a Noetherian semi-
local domain of Krull dimension 1, and if a is a non-zero element of J(R), then
Q/Ra is an essential extension of R/Ra.

DEFINITION. Let I and J be ideals of R. Then we define
(I:J]={qe€Qlq/CI].

PROPOSITION 4.2. Let I be an ideal of R such that inj.dimg I = 1. Then the fol-
lowing statements are true:

(1) If J is a non-zero flat ideal of R, then inj.dimg[I:J] =1.

(2) If Iis a flat ideal of R and B=Homg(1,I), then inj.dimg B=1.
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Proof. (1) Since Q/I is R-injective, we have an exact sequence:
0—> Homgz(R/J,Q/1) > Q/I— Homg(J,Q/I) — 0.

Because J is flat, Homg (J, Q/1) is R-injective. Thus inj. dimz (Homg (R/J, Q/1)) <
1. Now

Homg(R/J, Q/I) = (Annihilator of Jin Q/I) =[I:J]/L

Hence inj. dimg[/I:J] = 1.
(2) Since B = [I:I], the conclusion follows from (1). O

DEFINITION. A valuation ring R is said to be an almost maximal valuation ring if
inj.dimz R = 1. It is said to be a maximal valuation ring if in addition R is complete
in the R (or valuation) topology.

REMARKS. Enochs has proved [4, Corollary 1] that there exists a maximal ideal M
of R such that R — R/M is a torsion-free cover if and only if R is a maximal valua-
tion ring. The next proposition generalizes this theorem as well as others.

PROPOSITION 4.3. The following statements are equivalent:

(1) R is an almost maximal valuation ring.

(2) R is a valuation ring and inj. dimg I =1 for every non-zero ideal I of R.

(3) R has only one maximal ideal M and inj. dimg M = 1.

(4) There exists a maximal ideal M of R such that E(R/M) = Q/M.

(5) There exists a maximal ideal M of R such that H—> R/M is a torsion-free
cover.

Proof. (4) if and only if (5) is given by Proposition 3.8; (2) implies (3) is trivial; and
(3) implies (4) is given by Corollary 2.2.

(4) implies (1). By Proposition 4.1, R is a valuation ring with maximal ideal M.
Then M is flat and [M:M] = R. Hence inj.dimy R =1 by Proposition 4.2.

(1) implies (2). Let 7 be a non-zero ideal of R.

Case I: I is not isomorphic to M, the maximal ideal of R.

Let /-'=[R:I]; then [R:I"'] =1. For clearly IC [R:I"'] C R. Suppose there
exists @ € [R:I~'] —I. Then IC Ma and so a—' € I"1. On the other hand a/ ' C R,
and so I"'C Ra~!. Thus I"'=Ra~'and [R:I"'] = Ra. If there exists b € Ma—1I,
then by the preceding argument [R:/~!'] = Rb. Therefore a € Rb C Ma. This contra-
diction shows that /= Ma. But this contradicts the assumption that / is not isomor-
phic to M. Hence we have {R:1~'] = I. Since I~ ! is flat and inj. dimg R = 1, we have
inj. dimg 7 =1 by Proposition 4.2.

Case II: I is isomorphic to M.

Let J be a non-zero ideal of R. It is sufficient to prove that Extk (J, M) = 0; hence
we can assume that J is not a principal ideal of R. We have an exact sequence:

Hompg (J, R/M) — Exth(J, M) — Exth(J, R).
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The last term of this sequence is 0 because inj. dimg R = 1. Hence it is sufficient to
prove that Homp (J, R/M) = 0. Suppose there exists a surjection f: J— R/M. Then
there exists @ € J such that J= Ra+ Ker f. Since Ra ¢ Ker f, we have Ker fC Ra.
Thus J= Ra is a principal ideal of R. This contradiction proves that Homg(J, R/M) =
0, and hence inj.dimp M = 1. O

The next proposition generalizes [6, Theorem 5].

PROPOSITION 4.4. Let R be a Noetherian domain and suppose that R has an ideal
I such that inj.dimg I= 1. Then R has Krull dimension 1.

Proof. Let M be a maximal ideal of R. Then M contains an isomorphic copy of I,
and hence we can assume that /C M. Since R is Noetherian, inj.dimpg, Iy <
inj.dimp 7, and thus we can assume that R is local with maximal ideal M. But then
by Corollary 2.2 we have Q/I = E(R/I). Hence by Proposition 4.1(3), R has Krull
dimension 1. O

COROLLARY 4.5. Let R be a Noetherian domain and suppose that I is a non-zero
ideal of R such that E(R/I) C Q/I. Then every prime ideal of R containing I has
rank 1 and is a maximal ideal of R.

Proof. Let S={1—a|a € I}; then by Proposition 2.3, we have inj. dimg, Is=1.
Hence by Proposition 4.4, Rg has Krull dimension 1. Let P be a prime ideal of R
containing I. Then PRy is a maximal ideal of Rg. If M is a maximal ideal of R con-
taining P, then MRy is also a maximal ideal of Rg, and so MRg = PRg. Therefore
P = M is a maximal ideal of R. Since rank(PRg) =1 in Ry, it follows that rank P =1
in R. 0

REMARKS. Let R be a Noetherian local domain of Krull dimension 1. Let M be the
maximal ideal of R and I a non-zero ideal of R. [is said to be a canonical ideal of R
if [1:[1:J]] = J for every non-zero ideal J of R. It is well known (see [9, Chapter 15])
that a canonical ideal, if it exists, is unique up to isomorphism; and that 7 is a canoni-
cal ideal of R if and only if (/:M)/I= R/M if and only if inj. dimg I = 1. Hence by
Proposition 3.8, Iis a canonical ideal of R if and only if Q/I = E(R/I) if and only if
H— R/Iis a torsion-free cover.

Now while it is true by Proposition 4.1(3) that Q/I C E(R/I) for every principal
ideal 7 of R, it is not true in general that R has a canonical ideal; i.e., an ideal I such
that Q/I= E(R/I). Nevertheless, if the integral closure of R is a finitely generated
R-module, then R has a canonical ideal. Hence in particular, if R is complete, then R
has a canonical ideal.

R is said to be a (1-dimensional) Gorenstein ring if inj.dimgp R =1; i.e., if R has a
canonical ideal that is a principal ideal. Moreover R is a Gorenstein ring if and only if
M™'/R=R/M, where M~'= {q € Q| gM C R} (see [9, Theorem 13.1]).

PROPOSITION 4.6. Let R be a complete Noetherian local domain of Krull dimen-
sion 1. Let I be a canonical ideal of R and M the maximal ideal of R. Then the fol-
lowing statements are true:

(1) 0> 1I— (I:M) > R/M— 0 is a torsion-free cover.

(2) R is a Gorenstein ring if and only if I is a principal ideal of R if and only if
0>R—->M"'-> M-YYR— 0is a torsion-free cover.
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(3) R is a complete discrete valuation ring if and only if (I:M) is a principal ideal
of R if and only if 0—> M — R— R/M — 0 is a torsion-free cover.

Proof. (1) We have (I:M)/I = R/M as indicated in the remarks preceding this prop-
osition. Since inj.dimy I =1, and 7/ is complete in the R-topology, and (/: M) has no
non-zero pure submodules, it follows from Proposition 3.3 that (I:M) — (I:M)/Iis
a torsion-free cover.

(2) By the preceding remarks R is a Gorenstein ring if and only if I is a principal
ideal of R. Since R is complete and M~! has no non-zero pure submodules, the
canonical map M~!— M~!/R is a torsion-free cover if and only if inj.dimg R =1
by Propositions 3.2 and 3.3.

(3) If R is a complete discrete valuation ring, then every ideal of R is a principal
ideal of R. On the other hand assume that (/:M) = Ra, where a € (I:M). Then
there exists an ideal J of R such that /= Ja. Then R/M= (I:M)/I= Ra/Ja=R/J,
and hence J = M. Therefore inj. dimz M =1, and so R is a valuation ring by Propo-
sition 4.3. These remarks and Proposition 4.3 also show that R is a valuation ring if
and only if R — R/M is a torsion-free cover. O

REMARKS. (1) Proposition 4.6(1) shows that there is a local domain R with maxi-
mal ideal M and a torsion-free cover 7— R/M such that 7'is an ideal of R, but T is
not isomorphic to R.

(2) Let R be a complete Noetherian local domain of Krull dimension 1 with maxi-
mal ideal M, and let I be the canonical ideal of R. Since R is a Gorenstein ring if and
only if M~!/R = R/M, it might be conjectured from Proposition 4.6(2) that R is a
Gorenstein ring if and only if (I:M) = M~!, or equivalently if and only if there
exists a map M ~!— R/M that is a torsion-free cover. The falsity of this conjecture is
proved by the following counter-example. Let R be a complete Noetherian local
domain of Krull dimension 1 such that R is not Gorenstein, but such that M~!is a
complete discrete valuation ring (such an example is constructed in [8, (4) on p. 287]).
Now (I:M) is an ideal of M ™!, and hence in this case is a principal ideal of M ~!.
Therefore, M~ = (I:M) and so by Proposition 4.6(1) there exists a map M~ — R/M
that is a torsion-free cover.

DEFINITION. R is said to be an A-local if each non-zero element of R is contained
in only a finite number of maximal ideals of R, and each non-zero prime ideal of R is
contained in only one maximal ideal of R. An example of an A-local domain is a
Noetherian domain of Krull dimension 1.

PROPOSITION 4.7. Let R be an h-local domain, I a non-zero ideal of R, and S =
{l—al|a€l}. Then the following statements are true:

(1) Rg is a complemented ring extension of R.

(2) H(Rs) = H(Rpm,)) @ - @H(Ry,), where My, ..., M, are the maximal ideals
of R that contain 1.

(3) H(Ryg) is a direct summand of H.

Proof. (1) Let M,,...,M, be the maximal ideals of R that contain /. Then
Rs = N{=) Ry, by Proposition 1.4(4). Let A=N Ry, (N € maxspecR|I¢Z N}. Then
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RgN A is the intersection of all of the localizations of R with respect to the maximal
ideals of R, and hence RgMN A =R.

Let M be a maximal ideal of R and let [M] =NRp, {P € maxspecR|P # M}.
Then by [7, Theorem 2.2] we have [M] ®r Ry = Q. Thus since [M;] C A, we have
Apy,=Qfori=1,...,n; and since [N] C Rg for N € max spec R such that I N, we
have (Rs)y= Q. Thus (Rg+ A)y = Q for all M € maxspecR. Hence Rg+ A= Q,
showing that Rg is a complemented extension of R and that Rs = A.

(2) Rg is an h-local ring with only a finite number of maximal ideals:

Mle,...,MnRS; and (RS)Mi=RM,~ for all i=l,...,ﬂ.

Therefore by [7, Theorem 2.2] H(Rg) = H(RMI) @--- @H(RM,,)-
(3) Since Ry is a complemented extension of R, we have that H(Rg) is a direct
summand of H by Proposition 1.10. O

PROPOSITION 4.8. Let R be an h-local domain, I a non-zero ideal of R and S =
{l—aja€l}. Let M,,..., M, be the maximal ideals of R that contain I. Then the
following statements are equivalent:

(1) E(R/I)CQ/I

(2) Inj. dimRS Ig=1.

(3) Inj. dimRM,. Iy, = 1 forali=1,...,n.

(4) The canonical map H(RMI) @®--- @H(RM,,) — R/1 is a torsion-free cover.

Proof. (2) if and only if (3). We have (Is)pm, = Ipg for i=1,..., n; and since Rg is
an h-local ring with maxspecRs= (MRs,...,M,Rs}, we have inj.dimp  Ig=
sup;(inj.dimg,, Ip) by [7, Theorem 24].

Since Rg is a complemented extension of R and since

H(Rs) = H(Rp) @ - - @ H(Ry,)

by Proposition 4.7, the equivalence of (1), (2) and (4) follows from Propositions 2.3
and 3.9. O

REMARKS. Let Z be the ring of integers and p a non-zero prime integer. Then
Proposition 4.8 shows that the torsion-free cover of Z/pZ is the ring of p-adic
integers.

Proposition 4.8 also proves that the equivalence over A-local domains of the state-
ments E(R/I) C Q/I and inj.dimg, Is=1 without the additional assumption re-
quired in Proposition 2.3 that Rg is a complemented extension of R. This is because
R is always a complemented extension of R when R is an A-local domain, as we have
seen in Proposition 4.7.

It might be conjectured that the assumption that Rg is a complemented extension
of R is redundant in general, and might be a consequence of inj. dimg Is=1. The
falsity of this conjecture is demonstrated in Proposition 4.9 where we produce an
ideal 1 such that inj. dimg, Is =1, but E(R/I) € Q/I and Ry is not a complemented
extension of R. A concrete example of a domain that satisfies the properties assumed
in Proposition 4.9 may be found in [7, (2), p. 154].
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PROPOSITION 4.9. Let R be an integral domain that satisfies the following three
properties:

(a) R has exactly two maximal ideals M and N.

(b) MON contains a non-zero ideal P of R.

(¢) Ryp; and Ry are maximal valuation rings.

Then the following statements are true:

(1) Let I=M and S={1—a|a €I} so that R¢ = Ry;. Then inj. dimgg Is = 1, but
E(R/I) € Q/I and Ry is not a complemented extension of R. Moreover, Rs is com-
plete and the canonical map Rs— R/I is a torsion-free cover.

(2) We have P = PRp, Rp is a maximal valuation ring, E(R/P) = Q/P, R is com-
plete, and R — R/ P is a torsion-free cover.

(B) 0> MRy, ®ONRN— Ryy®RN— R/(MNN) — 0 is a torsion-free cover.

(4) inj.dim R = 2.

Proof. (1) It is easy to see that Rg = R, and thus Rg is a maximal valuation ring
by assumption. Thus inj. dimg, Is =1 by Proposition 4.3. By Proposition 1.2 Rg is
not a complemented extension of R. Therefore, by Proposition 2.3, E(R/I) ¢ Q/1I.
Now Rg is complete in the Rg-topology since it is a maximal valuation ring. Hence it
is easily seen that Rg is also complete in the R-topology. Therefore /g is also complete
in the R-topology. Now inj. dimg Is = inj. dimg, Is =1 and Rg/Is = R/I. Hence by
Proposition 3.3, 0 > Ig— Rg— R/I— 0 is a torsion-free cover.

(2) Since R,, is a maximal valuation ring, it follows easily from Proposition
4.3 that every localization of R,, is also a maximal valuation ring. Now Rp=
(Ry)p, and thus Rp is a maximal valuation ring. The same argument as that
used in (1) shows that inj.dimgz PRp =1, PRp is complete in the R-topology, and
0— PRp— Rp— Rp/PRp— 0 is a torsion-free cover over R.

Since R, and Rp are valuation rings and R, C Rp, we have Py, = PRp. Similarly,
Py = PRp. Thus P= Py;N Py= PRp, and so inj.dimz P=1 and P is complete in
the R-topology. Therefore, R is also complete in the R-topology. By Proposition 3.4,
R— R/P is a torsion-free cover. Since PC J(R), we have E(R/P)= Q/P by
Corollary 2.2.

(3) By the Chinese Remainder Theorem we have R/(MNN)=R/M@®R/N =
Ry /MRy, ® Ry /NRy,. Thus we have an exact sequence

0— MRy ;@ NRy— Ry ®Ry— R/(MNN) — 0.

By (1) inj.dimz (MR, ® NRy) =1 and MR,;® NRy is complete in the R-topology.
Thus by Proposition 3.3, the preceding exact sequence is a torsion-free lifting of
R/(MNN) over R.

Suppose that this exact sequence is not a torsion-free cover of R/(MN N), and let
T— R/(MNN) be a torsion-free cover. By Banaschewski’s Theorem, 7 is a proper
direct summand of Ry;® Ry, and hence rank 7= 1. Now Q/MR,, is an injective
R-module and is an essential extension of Ry,/MR,,. Therefore

Similarly, E(R/N) = Q/NRN. Thus if E= E(R/(MNN)), then
E=FE(R/M)DE(R/N) = Q/MRy® Q/NRy.
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Thus Hompg (K, E) has rank >2. But Homy (K, E) C T by Proposition 3.2(1), and
hence Homg (K, E) has rank 1. This contradiction proves that

is a torsion-free cover over R.

(4) It is clear that Ry, + Ry C (Ry )N C Rp # Q. On the other hand, let s€E R— M
and € R—N. Then Rs+ Rt= R, and hence there exist #,v € R such that 1=
us+ vt. Therefore 1/(st) =u/t+v/s € Ry+ My. Thus Ry + Ry = (Ry)n. Since
(Rys) N is a maximal valuation ring, we have as before that inj.dimg(Ry)y=1.
From the exact sequence:

and the fact that the last two terms of this sequence have injective dimension 1, we
see that inj.dimz R < 2.

Suppose that inj.dimg R = 1. Choose a € N, a &€ M. Then inj.dimz Ra=1 and
Ra is complete in the R-topology by (3). Thus by Proposition 3.3,

0> Ra—>R—>R/Ra—>0

is a torsion-free cover. Hence by Proposition 3.8, Ra C g(R) = MM N. This contra-
diction shows that inj. dimz R = 2. 0O

REMARKS. If we drop the assumption in Proposition 4.9 that MM N contains a
non-zero prime ideal of R, then R is an A-local domain. Examples of this kind of ring
exist (see [7, Example p. 119]). In this case we have Ry, + Ry = Q and inj.dimzg R = 1.
The part of the argument in the preceding paragraph that fails is that R is now not
complete. In fact, we have H= R;;® Ry; and if 0 # b € R, then the exact sequence
02 Ry b@®RNb— Ry ®Ry— R/Rb— 0 is a torsion-free lifting; and by Proposi-
tion 3.8 it is a torsion-free cover if and only if b € MN N. By Proposition 4.8
inj.dimg(MNN) =1and Ry,®Ry—> R/(MNN) is a torsion-free cover.

It is of some interest that the kinds of rings described in Proposition 4.9 and in the
preceding remarks, together with maximal valuation rings, are the only integrally
closed domains that have the property that every torsion-free R-module of finite rank
is a direct sum of modules of rank 1 (see [7, Theorem 95]).
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