HAUSDORFF DIMENSION AND INTERPOLATION
BY CERTAIN FUNCTION SPACES

Daniel M. Oberlin

1. Introduction. Write C for the space of continuous complex-valued functions f
on [0,2x] which satisfy f(0) =f(2x). For f€ C and an integer n, let f(n) be the
Fourier coefficient (27) ™! 3" f(t)e~ ™" dt. For 0<a <1, let C, be the space of all
f € C such that 22, | f(n)|?|n|!7* < . A compact set K S [0,27) will be called a
set of interpolation for C, if given any continuous function ¢ on KX there is some
f € C, which agrees with ¢ on K. The purpose of this paper is to prove the following
theorem.

THEOREM. Suppose the compact set K< [0,27) has Hausdorff dimension oy,
where 0 < oy <1. Then K is a set of interpolation for C, if ag <o <1 but not if
0<a<a.

The question of interpolation for C,  is more subtle, and we do not consider it. The
following result on p-Helson sets is an easy consequence of this theorem. The
p-Helson sets we consider here are those of [1], not [4]—they are the sets of interpo-
lation for continuous functions whose Fourier coefficients form /” sequences.

COROLLARY. If K and oy are as in the theorem, then K is p-Helson for
2/(2—ag)<p<2.

The proof of the theorem uses interpolation criteria phrased in terms of a certain
space of measures, which we now define. If A is a (complex Borel) measure
on [0,27) and if n is an integer, then A(n) is the Fourier-Stieltjes coefficient
{3 e~ d\(t). For 0 <a <1, the measure \ is said to belong to the space M, if
Y% |A(n)|2(Jn| +1)*~ ! is finite. Our theorem is an immediate consequence of the
two lemmas below and of the following fact: if the Hausdorff dimension of K
exceeds «, then K supports a probability measure in M, (see, e.g., [3, p. 40]). In what
follows, |A| denotes the total variation measure for A.

LEMMA 1. If N\ € M, then |\|(K) = 0 whenever the compact set K has Hausdorff
dimension less than o.

LEMMA 2. Suppose that K < [0,27) is compact.

(@ If |IN(K) =0 for every N\ € M, then K is a set of interpolation for C,.

(b) If K is a set of interpolation for C,, then K does not support a positive
measure in M,,.

The proofs of Lemmas 1 and 2 are in Sections 2 and 3. Section 4 contains another
remark about p-Helson sets.
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2. Proof of Lemma 1.

LEMMA 3. Fix « with 0 < o < 1. There is a positive constant ¢ = c(«) such that the
Jollowing holds: given 0 < a) < by <- - - < ag < by < 2w write x; for the characteristic
function of (a;, b;) and put f = El Xj- Then

oo . K
_};,‘o ()2 (|n| +1)! 72 < ch; (bj— a;)~

Proof. The Fourier coefficient sum to be estimated is

2 2

21”1 E(e—-mbj e ma) (|n|+1)l o

1 K
M lﬁ?‘bf“’f’ T

To bound (1), begin by defining for real ¢

5(1) = (=2 o<t<2n
1o t<0 or t>2.

A change of variable shows that the real part of ¢(n) is [A+ 0(1)]/(|n| + 1)1 /2,
where A is positive. Thus if g(¢) = Z{(é(1— b;) — ¢(1—a;)), then

1 27w ) o | K
@) TS lg(1) +g(t+2m)|2dt= ¥
w™ J0 —o00

—inbj —ma) |¢(n)|2

Therefore the left-hand side of (2) dominates a constant multiple of the second sum
in (1). Writing 8; = b;— a; and noting that (Lf 6;)? is dominated by (27)2~*Lf 57,
we see that it is enough to get an estimate of {§™|g(#)|?dt in terms of L 67. We will
actually estimate the sums

K
3 L[ let- ) - eti- a2
and
K o4r Jj—1
@ % [ tot= ) = 6= )| T 1oe= by — gte=ap) ) d.
j=24J0 I=1

For a< b <t and b— a= 6, calculus gives the inequality
(5) (t— b)(u—i)/Z_ (t— a)(a-—l)/Z < 8(1—a)/2(f— b)(3—a)/2.

Consider now

SZ”'¢(t—b,)—¢(t—aj)|2dt<j (21— aj)lzdt+g 7|6 (t—b;) |2 dt

b;
b!+ )j

T g(t—by) — S(1— aj)lzdr+§ ' 16(1—bj)|2 dt.
1r+a

Using the definition of ¢ to estimate the first, second, and fourth integrals on the

right-hand side and using (5) to estimate the third, we see that the left-hand side is

bounded by a constant times §;. Summing on j gives the desired estimate of (3).



HAUSDORFF DIMENSION AND INTERPOLATION 331

To estimate (4), observe that for ¢> a; and 1<I<j—1, ¢(t=b) > ¢(t—a) >
¢(t—b;_y). Thus > g; implies

i=1
1);1 |$(t— b)) — ot —a))| < (1= bj—1) < P(1—a)).

Therefore
T Jj=1
5; |o(t— b)) —¢>(t—aj)l(§l |o(t—by) —¢(t—a1)|> dt

© < |16—apPde+ SZ’”" (1~ b)) [2dt
4 J
T+ a; T+ b;
+ [ 00- b)) — pt—ap o=y de+ |7 o= P,
b;+6; 27+a;

where the inequality

ji—1
L lo1=b) —dlr—ap| <o(t—b) if 1>

led to the second, third, and fourth integrals on the right-hand side of (6). As before,
the first, second, and fourth integrals on the right-hand side of (6) are bounded by a
constant times 6. The third integral is bounded, according to (5), by

4
Ha-ayefe 27 a(t—byat
Again this is less than a constant times §;, and so the same is true of the left-hand
side of (6). Summing on j once more gives an estimate of (4) which completes the
proof of this lemma. O

If J is an interval, let |J| denote its length. To prove Lemma 1 we begin by noting
that if {J;} is a finite collection of disjoint subintervals of [0,27) and if A is a
measure in M, then there is a positive constant ¢ such that

(7 IXNI)| < e(X IJj|a)“2-

This is a consequence of Lemma 3 and the definition of M,,.

It is enough to prove Lemma 1 for real A € M, so fix such a A and also a compact
K which has Hausdorff dimension less than «a. Let € > 0 be arbitrary. Let & be a
+1-valued Borel function on [0, 27) such that d\ = hd|\|, and let g be a continuous
real-valued function on [0, 27) with [§7|h— g|d|\| <e. Let {J/}7 and {J/}} be the
collections of subintervals of [0, 27) on which g is positive and negative, and let N be
so large that

N
(8) |)\|([0,27i’)~LIJ(J1'U-71”))<E-

Put 6 = inf{|J/|, |J/"] : 1 < I< N}. Since the compact K has Hausdorff dimension less
than «, there is a covering of K by a finite collection {/;} of disjoint intervals such that
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9 |Ijj<é foreach j and Y |[j|*<e

Then [N (K) < Z|N|(Z)). For each jput I; = LN (UYJ)), I/ =N (UYJ/). Then
(10) INK) < MUY + MU L) +e

by (8). Now

INCUL) =MUIDI=2N(th= =110 U <2{  [h=zld]],
J

since g> 0 on U I{. With a similar inequality for U I and the fact that

27T

SO |h—g|d|\| <e,

(10) becomes
IN(K) < INU ) [+ INMU I+ 3e

Since (9) implies that |[;| <inf{|J/|,|J/|:1<I< N}, each I/ and each I/ is
a union of at most two intervals. Thus (7) and (9) combine to show that
INUI) |+ IMUI)| < 2%%ce'’?. With the preceding inequality this shows that
N (K) =0 as desired. , O

3. Proof of Lemma 2. Some of the arguments in this section are similar to the
analogous arguments in [1].
The space C, is a Banach space under the norm

o - 172
| £l =sup{|f(2)|:0< t<2ﬂ+<§o!f(”)lz(lnlﬂ)““) .

To prove Lemma 2 we need to consider the dual of C,. Let S, be the space of
complex sequences s = (s,) % satisfying ¥ %o |s,|?>(|n] +1)*~! < 0, and write |||,
for the square root of this sum. It is easy to-see that A is a bounded linear functional
on C, if and only if there exist a complex Borel measure A on [0, 27) and a sequence
s € S, such that Af= {3 fd\— L=, f(n)s, for f € C, . The dual space norm of such
aAisinf{||N—v|p+ | s—?|4: v €M}, where || u| s stands for the total variation
of the measure x on [0,27). The following lemma gives a condition equivalent to
K’s being a set of interpolation for C,.

LEMMA 4. The compact set K < [0, 27) is a set of interpolation for C, if and only
if there is a positive constant ¢ such that the inequality

(11) IMlar < cinf{IN=vilpr+ || 7]« : v € M)
holds for all measures \ on K.

Proof. The proof is standard. Consider the restriction map from C, into the con-
tinuous functions on K. A classical theorem implies that this map is onto precisely
when its adjoint has a closed range. The inequality (11) is necessary and sufficient for
this adjoint to have a closed range.
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Statement (a) of Lemma 2 is an immediate consequence of Lemma 4. To establish
(b), assume that K supports a positive measure A in M, and we will show that (11)
fails by producing measures N, on K with ||\, |ls = ||\ |[ar and || X, |l = O.

With the positive integer n fixed, partition [0, 27) into disjoint half-open intervals
I; (1<j<n) of equal length and let N be the restriction.of A to I;. For a choice
€= (¢€,...,€,) of signs £1, let N, be the measure LTe;N. Then ||Aj| s = || N]|ar-
The measure A, will be A§, for some € which we now prepare to choose.

Write ¢(¢) for the kernel [sin(#/2)|~%. Then ([3, pages 35 and 40]) there is a
sequence {v,;}Z, of positive numbers with

(12) vi=(A+o())(|I| +1)*7 L, A>0,

such that (37 3™ ¢ (¢ — u) du(t) du(u) = L%, |i(])|?y, for finite positive measures p
on [0’.2“)' It follows that the average over all possible choices of € of the numbers
Y% | N (1) |2y, is equal to

n
(13) ES s &(t— u) dN(t) dN(1).

/A
Let A\, be N for some e such that L% |A(/)|%y, is dominated by (13). Now
§37 137 ¢ (¢ — 1) d\ (1) dN(u) < o (which follows from (12) and the fact that A € M,)
implies that the numbers in (13) go to zero as n — co. Then (12) shows that the same
is true of the norms ||\, ||o. This completes the proof of Lemma 2. O

4. A remark about p-Helson sets. The following observation is relevant to the con-
siderations of Section 6 of [1].

PROPOSITION. Fix py with 1 < py < 2. There is a compact set K S [0, 27) which is
p-Helson if po <p <2, but not if 1 < p < py.

Proof. Let K be a Salem set of dimension ag = (2py— 2)/p, (see [2]). Then K has
Hausdorff dimension «4 and so is p-Helson for p, < p < 2 by the corollary in the
introduction. Now fix g with ¢ > gy = py/(py— 1) = 2/. Since K is a Salem set, for
any € > 0 K carries a nonzero measure A with |A(n)| = O([|n] + 1}¢~ 2’2y, For small
enough e the sequence X belongs to /9. It follows from the corollary in Section 3 of

[1] (analogue of our Lemma 2 (b)) that K is not p-Helson if 1 < p < p,. O
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