DIVISION IN DOUGLAS ALGEBRAS

Daniel Luecking

1. Introduction. The purpose here is to get some understanding of how Douglas algebras fit into L^{∞} . I use the following notation and terminology: H^{∞} denotes the space of boundary functions for bounded holomorphic functions in the open unit disk D. Then $H^{\infty} \subseteq L^{\infty}(d\lambda)$ where λ is Lebesgue measure on ∂D . L^{∞} is given the essential supremum norm $\|\cdot\|_{\infty}$. The term Douglas algebra refers to a closed subalgebra of L^{∞} that contains H^{∞} . The smallest such algebra, next to H^{∞} itself, is $H^{\infty} + C$, where C denotes the continuous functions on ∂D . Let A stand for the generic Douglas algebra and consider the following question: Given $\varphi \in A$ and $f \in L^{\infty}$, how can we tell if $\varphi f \in A$? If φ and f both have constant modulus and $\overline{f} \in A$, this is the situation studied by Guillory and Sarason in [4] for $A = H^{\infty} + C$. Here I consider the more general Douglas algebra and the more general $f \in L^{\infty}$. The sufficient condition obtained depends only on the values of the Poisson extensions of φ and f to the open unit disk and seems to be new even in the case $A = H^{\infty} + C$.

The techniques used here are quite different from those used in [4] and developed out of a somewhat heretical attempt on my part (some would say misguided) to rid the [4] results of their dependence on the Carleson-Ziskind-Marshall construction of Carleson measures (see [1] and [7]). Whether or not the attempt was misguided, I believe the result is a new and useful technique that yields a somewhat stronger result in this case. The technique developed from a result in [6] originally obtained for application to Bergman spaces. The link needed to apply it to the present situation is a refinement of a result of Ken Hoffman [5] on factoring Blaschke products.

2. A special case. The main result of [4] is the following.

THEOREM A. If $\varphi, \psi \in H^{\infty} + C$ and $|\psi| = 1$ a.e. then a necessary and sufficient condition that $\bar{\psi}^n \varphi \in H^{\infty} + C$ for all n is that $\lim_{|z| \to 1} [\varphi(z)(1 - |\psi(z)|)] = 0$ where $\varphi(z), \psi(z)$ denote the harmonic extensions of φ, ψ to D.

The generalization of this to be proved here is the following.

THEOREM 1. Let A be a Douglas algebra and let $\varphi \in A$ and $f \in L^{\infty}$ with |f| = 1 a.e. Suppose for every $\epsilon > 0$ there is a Blaschke product b_{ϵ} which is invertible in A such that $|\varphi(z)|(1-|f(z)|) < \epsilon$ on the set $\{z \in D : |b_{\epsilon}(z)| > 1-\epsilon\}$. Then $f\varphi \in A$.

In the case $A = H^{\infty} + C$ the b_{ϵ} 's may be taken to be z^n and then the condition in Theorem 1 reduces to that in Theorem A.

A similar result, with A replaced by QC was proved by T. Wolff [10, embedded in Lemma II.2] using quite different methods.

In order to get an idea of the techniques needed for Theorem 1, I will sketch here an outline of a proof of Theorem A different from that used by Guillory and Sarason. I will make two simplifying assumptions; first, that $\varphi, \psi \in H^{\infty}$ and second, that

Received June 5, 1981. Revision received August 7, 1981. Michigan Math. J. 29 (1982).

 $\varphi = \varphi_1 \varphi_2$ where $\|\varphi_i\|_{\infty} \leq C \|\varphi\|_{\infty}$ and φ_i satisfies the same condition

$$\lim_{|z| \to 1} \varphi_i(z) (1 - |\psi(z)|) = 0, \qquad i = 1, 2.$$

The first assumption is unimportant, the second is crucial and it is its elimination that gives rise to Theorem 1. The symbol K in what follows denotes a constant which may differ from one occurrence to the next.

Using the well-known duality between L^{∞}/H^{∞} and $H_0^1 = \{ f \in H^1 : \} f d\lambda = 0 \}$ it suffices in one direction to prove that $\lim_{k\to\infty} \sup_h |\int \bar{\psi}^n \varphi z^k h \, d\lambda| = 0$, the sup being taken over all $h \in H^1$ with L^1 -norm equal to 1. (Here use is made of the fact that $\bigcup_n \bar{z}^n H^{\infty}$ is dense in $H^{\infty} + C$.) If $|\varphi(z)|(1 - |\psi(z)|)$ tends to 0 as |z| tends to 1 the same is true with ψ replaced by ψ^n . Thus it will be enough to do the case n = 1. Now

$$\int \bar{\psi} \varphi z^k h \, d\lambda = 2 \iint_{|z| < 1} \operatorname{grad} \bar{\psi} \cdot \operatorname{grad}(\varphi z^k h) \log \frac{1}{|z|} \, dm$$

where m is 2-dimensional Lebesgue measure and grad = $(\partial/\partial x, \partial/\partial y)$. Computing the gradients we need to estimate the size of

$$I = 4 \iint_{|z| < 1} \overline{\psi'(z)} (\varphi(z) z^k h(z))' \log \frac{1}{|z|} dm.$$

Now write $\varphi = \varphi_1 \varphi_2$ as assumed and $h = h_1 h_2$ where $h_i \in H^2 \|h_i\|_{L^2(\lambda)}^2 = \|h\|_{L^1(\lambda)}$, i = 1, 2. For convenience let k = 2n, an even integer. Then $I = I_1 + I_2$ where

$$I_1 = 4 \iint\limits_{|z| \le 1} \overline{\psi}'(\varphi_1 z^n h_1)' \varphi_2 z^n h_2 \log \frac{1}{|z|} dm$$

and I_2 is the same with 1 and 2 interchanged. By the Cauchy-Schwartz inequality

$$\left| \frac{I_1}{4} \right|^2 \le \iint_{|z| < 1} |\psi'|^2 |\varphi_2|^2 |z^{2n} h_2^2 |\log \frac{1}{|z|} dm$$

$$\cdot \iint_{|z| < 1} |(\varphi_1 z^n h_1)'|^2 \log \frac{1}{|z|} dm = I_3 \cdot I_4$$

so $I_4 = \|\varphi_1 z^n h_1\|_{L^2(\lambda)}^2 \le \|\varphi_1\|_{\infty}^2 \|h\|_{L^1(\lambda)}$ by the Littlewood-Paley identity. Given $\epsilon > 0$, $I_3 \le \iint_A + \iint_B + \iint_C$ where $A = \{z \in D : |z| < r\}$, $B = \{z \in D \setminus A : 1 - |\psi| < \epsilon\}$ and $C = \{z \in D \setminus A : |\varphi_2| < \epsilon\}$ for some choice of r < 1. Standard estimates show $\iint_A \le K r^{2n} \|h_2\|_{L^2(\lambda)}^2$ where K depends only on r and the norms $\|\varphi_2\|_{\infty}$, $\|\psi\|_{\infty}$. Also,

$$\iint_{C} \le \epsilon^{2} \iint |\psi'|^{2} |z^{2n} h_{2}^{2}| \log \frac{1}{|z|} dm \le \epsilon^{2} K \|\psi\|_{\infty} \|h_{2}\|_{L^{2}(\lambda)}^{2}$$

by a result originally due to Fefferman and Stein [3] in the upper half-plane. A proof in the case of the disk can be found in [9, Theorems on p. 39 and p. 5]. See also [2]. Finally, a result of Chang's [2, Lemma 5] gives $\iint_B \leq K\epsilon \|\psi\|_{\infty} \|\varphi_2\|_{\infty} \|h_2\|_{L^2(\lambda)}^2$.

Consequently $|I_1| < K(\epsilon + \epsilon^2 + r^{2n})^{1/2} ||h||_{L^1(\lambda)}$ and $|I_2|$ can be similarly estimated. Since $\epsilon > 0$ is arbitrary and n may be chosen so r^n is less than ϵ we see that $\operatorname{dist}(\bar{\psi}\varphi, H^{\infty} + C) = 0$ as desired.

For the converse no special assumptions are needed; the reader is referred to [4]. The important feature of this proof is that throughout the argument, the fact that $\psi \in H^{\infty}$ is irrelevant. Thus, under the special assumption $\varphi = \varphi_1 \varphi_2$, it actually proves Theorem 1 in the case $A = H^{\infty} + C$. (Altering the proof to handle an arbitrary $f \in L^{\infty}$ in place of $\bar{\psi}$ amounts to replacing $\bar{\psi}'$ by $\partial f/\partial \bar{z}$.) In the next section the factorization assumption $\varphi = \varphi_1 \varphi_2$ is examined.

3. Factoring Blaschke products. In [4], Hoffman obtains the following result (Theorem 5.2):

THEOREM B. Let $\sigma > 0$. There exists constants a, b > 0 such that if C is a Blaschke product with zero sequence Γ satisfying $|\gamma| > \frac{1}{2}$ all $\gamma \in \Gamma$ and if $K_{\sigma} = \{z \in D: \left| \frac{z - \gamma}{1 - \bar{\gamma}z} \right| > \sigma$ all $\gamma \in \Gamma\}$, then there exist Blaschke products A and B with C = AB such that $a|B(z)|^{1/b} \leq |A(z)| \leq (1/a)|B(z)|^b$ for $z \in K_{\sigma}$.

Hoffman actually gets constants depending on r_0 as well as σ , when $|\gamma| > r_0 > 0$ all $\gamma \in \Gamma$. It is not necessary here to consider any r_0 other than $\frac{1}{2}$. It is easily seen that $|B(z)| \leq |(1/a)C(z)|^{1/(b+1)}$ if $z \in K_{\sigma}$ with a similar inequality for A(z). It is of course impossible to extend these inequalities over the whole disk (after all, C may have zeros that A and B do not both have) but if we imagine it could be done then we could obtain the $\varphi = \varphi_1 \varphi_2$ factorization of the previous section: Simply write $\varphi = C \cdot F$ where C is a Blaschke product and F has no zeros. Then let $\varphi_1 = AF^{1/2}$, $\varphi_2 = BF^{1/2}$. This argument can actually be saved because it is not really necessary that A and B be dominated everywhere by a power of C but merely on a large enough set to ensure the validity of inequalities analogous to those on integrals in Section II. If K_{σ} were large enough our troubles would be over and in fact this is the case precisely when $\inf \left| \frac{\gamma - \gamma'}{1 - \bar{\gamma} \gamma'} \right| > 0$, where the infimum is over the distinct pairs of zeros of C. The general case is handled by the following.

THEOREM 2. There exist positive constants δ , α and β such that if C is a Blaschke product and $\epsilon > 0$ there exist sets G_1 and G_2 and a factorization $C = C_1C_2$ satisfying, for i = 1, 2:

- (i) $m(G_i \cap \Delta) > \delta m(\Delta \cap D)$ for all disks Δ whose centers lie on ∂D , and
- (ii) $|C_i(z)| < \alpha \epsilon^{\beta}$ for all $z \in G_i \cap \{z : |C(z)| < \epsilon\}$.

Condition (ii) is the domination needed, and condition (i) gives the proper meaning for "a large enough set."

Before beginning the proof let us establish some notation: $\rho(z,\omega) = \left| \frac{z-\omega}{1-\bar{\omega}z} \right|$ is the pseudo-hyperbolic "distance" function on D. It satisfies $\rho(z,\omega) = \rho(M(z),M(\omega))$ for any Möbius transformation M from D onto D. Let $S = \{S\}$ be

the partition of D into what will be called "dyadic squares" i.e. all sets S of the form

$$S = S(j,k) = \{ z = re^{i\theta} : 2^{-j} < 1 - r \le 2^{-j+1}, \ k2^{-j-1}\pi \le \theta < (k+1)2^{-j-1}\pi \}$$

$$j = 1, 2, 3, \dots, \qquad k = 0, 1, \dots 2^{j+2}.$$

Some key properties of such a partition: Except for the eight squares containing 0 they are disjoint, their union is D, and there are constants K_1 and K_2 such that $0 < K_1 < \sup\{\rho(z, \omega) : z, \omega \in S\} < K_2 < 1$ with K_i independent of $S \in S$.

Proof of Theorem 2. Suppose z, ω_1 and ω_2 are three points in D with $\rho(z, \omega_1) > a$ i=1,2 and $\rho(\omega_1,\omega_2) < b < 1$. Then there is a constant c depending only on a and b such that $\rho(z,\omega_1) < \rho(z,\omega_2)^c$. This is really quite obvious if z=0 and the Möbius invariance of ρ easily reduces it to that case. This observation implies the following: For $S \in S$, let z_S be its center, i.e. $z_S = (1-3\cdot 2^{-j-1}) \exp(i(k+\frac{1}{2})2^{-j-1})$ if S = S(j,k). Let $\Delta(S) = \{z: \rho(z_S, z) < \eta\}$ where η is chosen so small that $\operatorname{dist}_{\rho}(\Delta(S), D-S) > \frac{1}{2}K_1$. Then if $\gamma_1, \ldots, \gamma_n, \mu_1, \ldots, \mu_n$ all belong to one dyadic square other than S we have

$$\prod_{i=1}^{n} \left| -\frac{z - \gamma_i}{1 - \bar{\gamma}_i z} \right| < \prod_{i=1}^{n} \left| \frac{z - \mu_i}{1 - \bar{\mu}_i z} \right|^c, \qquad z \in \Delta(S)$$

where c depends only on K_1 and K_2 .

 $S \in S$ then (i) will also follow.)

Thus if S contains no zeros of the Blaschke product C and if all other dyadic squares contain an even number of zeros then $G_i \cap S$ could be defined to be $\Delta(S)$ and any factorization of C which divided the zeros in a dyadic square equally would satisfy (ii) within $\Delta(S)$, with $\alpha=1$, b=c/(1+c). Moreover, even if S contains zeros of C but $\prod_{\gamma \in \Gamma \setminus S} \left| \frac{z-\gamma}{1-\bar{\gamma}z} \right| < \epsilon$ on $\Delta(S)$, the same choice of $G_i \cap S$, α and β will satisfy (ii). Finally, if S contains zeros of C and $\prod_{\gamma \notin S} \left| \frac{z-\gamma}{1-\bar{\gamma}z} \right| > \epsilon$ somewhere on $\Delta(S)$ but $\prod_{\gamma \notin S} \left| \frac{z-\gamma}{1-\bar{\gamma}z} \right| < \epsilon^{1/2}$ on at least $\frac{1}{4}$ of the area of $\Delta(S)$, then $G_i \cap S$ can be taken to be $\{z \in \Delta(S): \prod_{\gamma \notin S} \left| \frac{z-\gamma}{1-\bar{\gamma}z} \right| < \epsilon^{1/2} \}$. Then $\alpha=1$, $\beta=c/(2+2c)$ will satisfy (ii) in S with, again, any factorization of C that divides the zeros in any one square equally. Thus, to define $G_i \cap S$ it may be assumed that $\prod_{\gamma \notin S} \left| \frac{z-\gamma}{1-\bar{\gamma}z} \right| > \epsilon^{1/2}$ on at least $\frac{3}{4}$ of the area of $\Delta(S)$ provided it is assumed that the number of zeros of C in each dyadic square is even. (This assumption will be in force for all but the last two paragraphs of this proof.) It may also be assumed that $|C(z)| < \epsilon$ on at least $\frac{3}{4}$ of the area of $\Delta(S)$. (Otherwise one could take $G_i \cap S$ to be $\Delta(S) \cap \{z: |C(z)| > \epsilon\}$ and then (ii) is vacuously satisfied in S.) With these reductions we can assume $\prod_{\gamma \in S} \left| \frac{z-\gamma}{1-\bar{\gamma}z} \right| < \epsilon^{1/2}$ on at least half of $\Delta(S)$. The problem has been reduced to a factorization of a finite Blaschke product. (Note that at each stage of the reduction $m(G_1 \cap S) > \frac{1}{4} m(\Delta(S)) > (K/4) m(S)$. If this property is established for every

We are now required to find a factorization of $\prod_{\gamma \in S} \frac{z - \gamma}{1 - \bar{\gamma}z}$ which divides the zeros equally into two sets N_1 and N_2 such that $\Pi_1(z) \equiv \prod_{\gamma \in N_1} \left| \frac{z - \gamma}{1 - \bar{\gamma}z} \right|$ and $\Pi_2(z) \equiv \prod_{\gamma \in N_2} \left| \frac{z - \gamma}{1 - \bar{\gamma}z} \right|$ satisfy $m(\{z \in \Delta(S) : \Pi_i(z) < K\epsilon^{1/4}\}) > Km(\Delta(S))$. Since $\{z \in \Delta(S): \Pi_1(z)\Pi_2(z) < \epsilon^{1/2}\}\$ covers over half of $\Delta(S)$, there is some choice of N_1 and N_2 such that

- (1) $m(z \in \Delta(S) : \Pi_1(z) < \epsilon^{1/4}) \ge \frac{1}{4} m(\Delta(S))$ (2) $m(z \in \Delta(S) : \Pi_1(z) < \epsilon^{1/4}) \ge m(z \in \Delta(S) : \Pi_2(z) < \epsilon^{1/4})$
- (3) Some exchange of a single point $\gamma_1 \in N_1$ for a single point $\gamma_2 \in N_2$ will reverse

the inequality in (2); i.e., if
$$M_i(z) = \left| \frac{z - \gamma_i}{1 - \bar{\gamma}_i z} \right|$$
, $i = 1, 2$, then

(2')
$$m(\Pi_1 M_2 M_1^{-1} < \epsilon^{1/4}) \le m(\Pi_2 M_1 M_2^{-1} < \epsilon^{1/4})$$

(All sets here are subsets of $\Delta(S)$.)

Now

$$\{ \Pi_1 < \epsilon^{1/4} \} \subseteq \{ \Pi_1 M_1^{-1} < K \epsilon^{1/4} \} \cup \{ M_1 < 1/K \}$$

$$\subseteq \{ \Pi_1 M_1^{-1} M_2 < K \epsilon^{1/4} \} \cup \{ M_1 < 1/K \}$$

and $\{M_1 < 1/K\} = \{z : \rho(z, \gamma_1) < 1/K\}$. By taking K > 1 large enough we can make the area of $\{M_1 < 1/K\}$ less than $\frac{1}{8}m(\Delta(S))$ so that (1) implies

$$m(\{z \in \Delta(S) : \Pi_1(z)M_1^{-1}(z)M_2(z) < K\epsilon^{1/4}\}) > \frac{1}{8}m(\Delta(S))$$

and (2') implies the same inequality on $\Pi_2 M_1 M_2^{-1}$. If $G_1 \cap S$ is defined to be $\{z \in \Delta(S) : \Pi_1(z)M_1(z)^{-1}M_2(z) < K\epsilon^{1/4}\}\$ and $G_2 \cap S$ is defined to be $\{z \in \Delta(S) : A_1(z) \cap B_2(z) < K\epsilon^{1/4}\}$ $\Pi_2(z)M_1(z)M_2(z)^{-1} < K\epsilon^{1/4}$ and $\Pi_{\gamma \in S} \frac{z-\gamma}{1-\bar{\gamma}z}$ is factored corresponding to the sets $N_1 \cup \{\gamma_2\} \setminus \{\gamma_1\}$ and $N_2 \cup \{\gamma_1\} \setminus \{\gamma_2\}$, then (i) and (ii) are satisfied in S.

To summarize: In this last case factor $\prod_{\gamma \in S} \frac{z - \gamma}{1 - \bar{\gamma}z}$ as above. In all other cases factor it arbitrarily by dividing the zeros equally between factors. Define G_i , i = 1, 2, by defining them in each $S \in S$ as above. The resulting G_1, G_2 and $C = C_1 C_2$ will satisfy (i) and (ii) with appropriate α and β .

Now to remove the condition that each S contain an even number of zeros of C: Let C = AB where A has at most one zero in each $S \in S$ and B has an even number in each S. Factor $B = B_1 B_2$ as before with ϵ replaced by $\epsilon^{1/2}$ obtaining $G_i(B)$. Let σ be small enough that $m[\{z: \rho(z,a) < \sigma \text{ for some } a \text{ in the zero set of } A\} \cap \Delta(S)] < \sigma$ $(1/16)m(\Delta(S)).$

If K_{σ} is defined as in Theorem B relative to the zero set of A then $G_i \equiv K_{\sigma} \cap G_i(B)$ will satisfy (i) for some $\delta > 0$. Factor A according to Theorem B into A_1A_2 . Then $C_1 = A_1 B_1$, $C_2 = A_2 B_2$ is the required factorization of C.

The reason G_1 and G_2 are required to satisfy (i) is the following result which is the main theorem of [6, p. 2; see also p. 10].

THEOREM C. Let p > 0, $\alpha > -1$. The following conditions on a measurable set $G \subseteq D$ are equivalent.

(1) There is a constant K > 0 such that

$$\iint_{D} |g(z)|^{p} (1-|z|)^{\alpha} dm(z) \leq K \iint_{G} |g(z)|^{p} (1-|z|)^{\alpha} dm(z)$$

for all g analytic in D for which the left side is finite.

(2) There is a constant $\delta > 0$ such that $m(G \cap \Delta) > \delta m(D \cap \Delta)$ for all disks Δ whose centers lie on ∂D .

This will be used in the next section with $\alpha = 1$ (1 - |z|) is replaced by the equivalent weight $\log(1/|z|)$, p = 2, and g of the form $(\partial \bar{f}/\partial z)h$ where f is harmonic and $h \in H^2$.

4. Proof of Theorem 1. For the case $A = H^{\infty} + C$, alter the given proof as follows: First, let $\epsilon > 0$ be given, write $\varphi = CF$ where C is a Blaschke product and F has no zeros in D. Factor C as in Theorem 2 obtaining C_1, C_2 and sets $G_1^{\epsilon}, G_2^{\epsilon}$. Let $\varphi_i = C_i F^{1/2}$. Follow the proof as before until consideration of

$$I_3 = \iint\limits_{|z| < 1} \left| \frac{\partial f}{\partial \bar{z}} \right|^2 |\varphi_2|^2 |z^{2n} h_2^2| \log \frac{1}{|z|} dm$$

is reached. Here we employ Theorem C to obtain

$$I_3 \leqslant K \iint_{G_2^{\epsilon}} \left| \frac{\partial f}{\partial \bar{z}} \right|^2 |\varphi_2|^2 |z^{2n} h_2^2| \log \frac{1}{|z|} dm$$

and continue as before, replacing all integrals by integrals over subsets of G_2^{ϵ} . The result is $|I_1| < K\epsilon^p \|h\|_{L^1(\lambda)}$ for some power p > 0. And this case is finished. (The assumption $\varphi \in H^{\infty}$ still has to be removed but this will be done for general Douglas algebras.)

Before continuing the proof a reminder of some facts about Douglas algebras and their maximal ideal spaces seems appropriate. (The material in Sarason's lecture notes [9] would be sufficient background.) According to the Chang-Marshall theorem ([2] and [7]) any Douglas algebra A is generated as a closed algebra by H^{∞} and conjugates of Blaschke products, i.e. A is the smallest closed subalgebra of L^{∞} containing H^{∞} and $I(A) \equiv \{\bar{b}: b \text{ is a Blaschke product and } \bar{b} \in A\}$. The maximal ideal space of A, M(A), is the set $\{x \in M(H^{\infty}) : |b(x)| = 1 \text{ for all } \bar{b} \in I(A)\}$. The Corona Theorem of Carleson [1] states that the unit disk D is a dense subset of $M(H^{\infty})$. Every function in L^{∞} extends to a continuous function on $M(H^{\infty})$ whose restriction to D is the Poisson extension. Since products of elements of I(A) lie in I(A) we see that any open set in $M(H^{\infty})$ that contains M(A) must contain $\{x \in M(H^{\infty}) : |b(x)| > 1 - \epsilon\}$ for some $\bar{b} \in I(A)$ and some $\epsilon > 0$. In fact M(A) is in the closure in $M(H^{\infty})$ of the set $\{z \in D: |b(z)| > 1 - \epsilon\}$. The Chang-Marshall theorem implies that if $\varphi \in A$ then φ is a uniform limit of functions of the form $\bar{b}g$ with $\bar{b} \in I(A)$, $g \subset H^{\infty}$.

To finish the proof of Theorem 1 it suffices, for given $\epsilon > 0$, to pick b_0 and g as above with $\|\varphi - \bar{b}_0 g\|_{\infty} < \epsilon/8$ and show dist $(f\bar{b}_0 g, A) < K\epsilon^p$ under the assumptions of the Theorem.

Now, $\operatorname{dist}(f\bar{b}_0g,A) = \inf_{\bar{b} \in I(A)} \operatorname{dist}(bf\bar{b}_0g,H^{\infty})$ where again the Chang-Marshall Theorem is used. The infimum is dominated by an infimum over only those b's containing b_0 as a factor so it suffices to prove $\operatorname{dist}(fg,A) < K\epsilon^p$. To do this it must be verified that f and g satisfy the same hypotheses as f and φ , at least for the current choice of ϵ . By hypothesis there is a $\bar{b}_{\epsilon} \in I(A)$ such that $|\varphi(z)|(1-|f(z)|) < \epsilon^2/4$ on the set where $|b_{\epsilon}(z)| > 1 - \epsilon$. Since the Poisson extensions of φ , g and b_0 are continuous on $M(H^{\infty})$ there is a neighborhood U of M(A) such that in $U \cap D$ we have simultaneously $|b_{\epsilon}(z)| > 1 - \epsilon$, $|b_0(z)| > 1 - \epsilon$ and $||\varphi(z)| - |g(z)\overline{b_0(z)}|| < \epsilon/4$. Thus in $U \cap D$ $||\varphi(z)| - |g(z)|| < \epsilon/2$. Now $U \supseteq \{z \in D : |b_1(z)| > 1 - \epsilon\}$ for some $\bar{b}_1 \in I(A)$. On this latter set it is easily seen that $|g(z)|(1-|f(z)|) < \epsilon$. Now $\operatorname{dist}(fg,A) = \inf_{\bar{b} \in I(A)} \operatorname{dist}(bfg,H^{\infty}) = \inf_{\bar{b} \in I(A)} \sup_{h \in I($

$$\int bfgh \, d\lambda = 4 \iint_{|z| < 1} \frac{\partial f}{\partial \bar{z}} \cdot (bgh)' \log \frac{1}{|z|} \, dm$$

Now factor h into h_1h_2 with $h_i \in H^2 \|h_i\|_{L^2}^2 = \|h\|_{L^1}$ and g into g_1g_2 as was done for φ at the beginning of this section. Then

$$\iint\limits_{|z| < 1} \frac{\partial f}{\partial \bar{z}} (bgh)' \log \frac{1}{|z|} dm = I_1 + I_2$$

where

$$I_1 = \iint_{|z| < 1} \frac{\partial f}{\partial \bar{z}} \cdot (b_1^n g_1 h_1)' (b_1^n g_2 h_2) \log \frac{1}{|z|} dm$$

with a similar formula for I_2 .

Now $|I_1|^2 \le I_3 \cdot I_4$ where

$$I_4 = \iint\limits_{|z| \le 1} |(b_1^n g_1 h_1)'|^2 \log \frac{1}{|z|} dm \le K ||h||_{L^1}$$

and

$$I_3 = \iint\limits_{|z| < 1} \left| \frac{\partial f}{\partial \bar{z}} \right|^2 |b_1|^{2n} |g_2|^2 |h_2|^2 \log \frac{1}{|z|} dm.$$

The same arguments work here as did for $H^{\infty} + C$: |z| < 1 is covered by the sets $\{|b_1| < 1 - \epsilon\}, \{|g_2| < \epsilon^{1/2}\}$ and $\{1 - |f| < \epsilon^{1/2}\}$, from which estimates

$$|I_1| \leq K((1-\epsilon)^{2n} + \epsilon^p + \epsilon^{1/2}) \|h\|_{L^1}$$

are obtained. This yields $\operatorname{dist}(fg,A) < K\epsilon^p$, whence $\operatorname{dist}(f\varphi,A) = 0$ since $\epsilon > 0$ is arbitrary. This completes the proof of Theorem 1.

5. Remarks. I believe the techniques used in [4] would yield Theorem A for general Douglas algebras, but I do not see any way they can be modified to apply to the general $f \in L^{\infty}$. Guillory and Sarason obtain a much more precise result to the effect that if $\varphi, \psi \in H^{\infty} + C$, $|\varphi(e^{i\theta})| = |\psi(e^{i\theta})| = 1$ a.e. (λ), and $|\varphi(x)| \leq |\psi(x)|$ when $x \in M(H^{\infty} + C)$, then $\bar{\psi}\varphi^N \in H^{\infty} + C$ for some integer N > 1. I do not believe any result like this is possible for the general L^{∞} function.

It surprised me somewhat to find that results like those in [6], originally obtained to answer some natural questions in the context of Bergman spaces, would have applications to problems about Douglas algebras. But perhaps I should have been alerted by the opposite phenomenon occurring in work of McDonald and Sundberg [8].

Finally, I would be interested to know if the G_1 and G_2 in Theorem 2 can be chosen independent of ϵ so that one could obtain the more aesthetic inequality $|C_i| \leq \alpha |C|^{\beta}$ on G_i in place of condition (ii) of that theorem. A closely related, if not inseparable, question is whether the factorization can be made independent of ϵ .

REFERENCES

- 1. L. Carleson, *Interpolations by bounded analytic functions and the corona problem*. Ann. of Math. (2) 76 (1962), 547–559.
- 2. S.-Y. A. Chang, A characterization of Douglas subalgebras. Acta Math. 137 (1976), 81-89.
- 3. C. Fefferman and E. M. Stein, H^p spaces of several variables. Acta Math. 129 (1972), 137-193.
- 4. C. Guillory and D. Sarason, *Division in* $H^{\infty} + C$. Michigan Math. J. 28 (1981), no. 2, 173-181.
- 5. K. Hoffman, *Bounded analytic functions and Gleason parts*. Ann. of Math. (2) 86 (1967), 74–111.
- 6. D. Luecking, Inequalities in Bergman spaces. Illinois J. Math. 25 (1981), no. 1, 1-11.
- 7. D. Marshall, Subalgebras of L^{∞} containing H^{∞} . Acta Math. 137 (1976), no. 2, 91–98.
- 8. G. McDonald and C. Sundberg, *Toeplitz operators on the disc.* Indiana Univ. Math. J. 28 (1979), no. 4, 595-611.
- 9. D. Sarason, Function theory on the unit circle. Dept. of Math., Virginia Polytechnic Inst. and State Univ., Blacksburg, Va., 1978.
- 10. T. Wolff, Some theorems on vanishing mean oscillation, Thesis, Univ. of California, Berkeley, 1979.

Department of Mathematics University of Arkansas Fayetteville, Arkansas 72701