DIVISION IN DOUGLAS ALGEBRAS

Daniel Luecking

1. Introduction. The purpose here is to get some understanding of how Douglas
algebras fit into L=. I use the following notation and terminology: H® denotes the
space of boundary functions for bounded holomorphic functions in the open unit
disk D. Then H*® € L®(d\) where N is Lebesgue measure on dD. L* is given the
essential supremum norm |-||.. The term Douglas algebra refers to a closed sub-
algebra of L™ that contains H*. The smallest such algebra, next to H* itself, is
H® + C, where C denotes the continuous functions on dD. Let A stand for the
generic Douglas algebra and consider the following question: Given ¢ € A and
f€ L%, how can we tell if of € A? If p and fboth have constant modulus ande A,
this is the situation studied by Guillory and Sarason in [4] for A= H* + C. Here 1
consider the more general Douglas algebra and the more general f € L*. The suffi-
cient condition obtained depends only on the values of the Poisson extensions of ¢
and f to the open unit disk and seems to be new even in the case A = H* + C.

The techniques used here are quite different from those used in [4] and developed
out of a somewhat heretical attempt on my part (some would say misguided) to rid
the [4] results of their dependence on the Carleson-Ziskind-Marshall construction of
Carleson measures (see [1] and [7]). Whether or not the attempt was misguided, I
believe the result is a new and useful technique that yields a somewhat stronger result
in this case. The technique developed from a result in [6] originally obtained for
application to Bergman spaces. The link needed to apply it to the present situation is
a refinement of a result of Ken Hoffman [5] on factoring Blaschke products.

2. A special case. The main result of [4] is the following.

THEOREM A. If ¢,y € H” + C and Y| =1 a.e. then a necessary and sufficient
condition that y"¢ € H” + C for all n is that lim ; _,, [¢(2) (1 — [¥(2)|)1 =0 where
©(2), ¥(2) denote the harmonic extensions of ¢,y to D.

The generalization of this to be proved here is the following.

THEOREM 1. Let A be a Douglas algebra and let ¢ € A and f€ L™ with |f| =1 a.e.
Suppose for every e > 0 there is a Blaschke product b, which is invertible in A such
that |o(2)|(1— |f(2)]) <e on the set (z € D: |b.(z)| >1—¢). Then fp € A.

In the case A= H* + C the b,’s may be taken to be z” and then the condition in
Theorem 1 reduces to that in Theorem A.

A similar result, with A replaced by QC was proved by T. Wolff [10, embedded in
Lemma II.2] using quite different methods.

In order to get an idea of the techniques needed for Theorem 1, I will sketch here
an outline of a proof of Theorem A different from that used by Guillory and Sara-
son. I will make two simplifying assumptions; first, that ¢, € H* and second, that
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¢ = p1¢3 Where | ;|- € C|l¢|l« and ¢; satisfies the same condition

lim i1 - w2 =0, i=12

The first assumption is unimportant, the second is crucial and it is its elimination that
gives rise to Theorem 1. The symbol K in what follows denotes a constant which may
differ from one occurrence to the next.

Using the well-known duality between L*/H*® and Hl={f€ H': { fd\= 0} it
suffices in one direction to prove that limy_, sup,|§{¥”¢z¥hd\| = 0, the sup being
taken over all # € H' with L!-norm equal to 1. (Here use is made of the fact that
U, Z"H> is dense in H* + C.) If |p(2)|(1 — |¢¥(2)]) tends to 0 as |z| tends to 1 the
same is true with y replaced by ¢". Thus it will be enough to do the case n = 1. Now

- - 1
S\,bgaz"h d\=2 H grad ¢ - grad(¢z*h) log El dm
lz| <1
where m is 2-dimensional Lebesgue measure and grad = (d/dx, 3/dy). Computing the
gradients we need to estimate the size of

_ 1
1=4 [§ V@ (e@)2h() log Tr dm.
Izl <1
Now write ¢ = ¢, ¢, as assumed and h = h h, where b; € H> | h;||Z200 = | 2llL100 s
i=1,2. For convenience let kK = 2n, an even integer. Then I = I, + I, where
T n ’ n 1
I=4 SS ¥ (012"h1) ¢22"hy log Tz_ldm
|z| <1

and 7, is the same with 1 and 2 interchanged. By the Cauchy-Schwartz inequality

I 1
21 < il [¢’|2|¢2|2|z2"h22|10gmdm
lz] <1
1
' SS l(mz"hl)’lzlogmdm=13-14

lz| <1

so I = |l e1z"h 13200 < @1 ll% | 2]z by the Littlewood-Paley identity. Given
e>0, <[4+ g+ fc where A={z€D:|z|<r}, B={z€D\A:1—|y|<e}
and C=(z€D\A: |p,| <e} for some choice of r<1. Standard estimates show
§§4 < Kr**||hy)|22(n) where K depends only on r and the norms ||¢; ||w, |||« . Also,

1
[§ < e [§1wpiz2mditog — dm < Kl ¥ 1« 12l F2on
c |z]
by a result originally due to Fefferman and Stein [3] in the upper half-plane. A proof
in the case of the disk can be found in [9, Theorems on p. 39 and p. 5]. See also [2].
Finally, a result of Chang’s [2, Lemma 5] gives {fp < Ke||¢|w |92l 172112200 -
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Consequently |I;| < K(e+e?+r*) 2| k|1 and |L]| can be similarly estimated.
Since ¢ >0 is arbitrary and n may be chosen so r” is less than ¢ we see that
dist(Yo, H® + C) = 0 as desired.

For the converse no special assumptions are needed; the reader is referred to [4].

The important feature of this proof is that throughout the argument, the fact that
YV € H® is irrelevant. Thus, under the special assumption ¢ = ¢, ¢,, it actually proves
Theorem 1 in the case A = H* + C. (Altering the proof to handle an arbitrary f € L™
in place of ¥ amounts to replacing ¢’ by df/97.) In the next section the factorization
assumption ¢ = ¢, ¢, is examined.

3. Factoring Blaschke products. In [4], Hoffman obtains the following result
(Theorem 5.2):

THEOREM B. Let o > 0. There exists constants a, b > 0 such that if C is a Blaschke
product with zero sequence T satisfying |y| >3 all y€T and if K,={z€D:
L~y
1—5z
such that a|B(2)|V° < |A(z)| < (1/a)|B(2)|® for z € K,.

> ¢ all v €T'}, then there exist Blaschke products A and B with C= AB

Hoffman actually gets constants depending on ry as well as o, when |y| > ry > 0 all
v €T. It is not necessary here to consider any ry other than % It is easily seen that
|B(z)| < |[(1/a)C(z)|V®*D if z € K, with a similar inequality for A(z). It is of
course impossible to extend these inequalities over the whole disk (after all, C may
have zeros that A and B do not both have) but if we imagine it could be done then we
could obtain the ¢ = ¢, factorization of the previous section: Simply write
¢ = C-F where C is a Blaschke product and F has no zeros. Then let ¢, = AF'/?,
¢, = BF'2, This argument can actually be saved because it is not really necessary
that A and B be dominated everywhere by a power of C but merely on a large enough
set to ensure the validity of inequalities analogous to those on integrals in Section II.
If K, were large enough our troubles would be over and in fact this is the case pre-
Y=’
1=y’
of C. The general case is handled by the following.

cisely when inf > 0, where the infimum is over the distinct pairs of zeros

THEOREM 2. There exist positive constants 6, o and 3 such that if C is a Blaschke
product and e > 0 there exist sets Gy and G, and a factorization C = C, C, satisfying,
fori=1,2:

(i) m(G;NA) >dédm(AND) for all disks A whose centers lie on 8D, and

(i) |Ci(z)| < ae? for allz€ G;N{z:|C(2)| <e).

Condition (ii) is the domination needed, and condition (i) gives the proper meaning
for ‘‘a large enough set.”
I—w
11—z
is the pseudo-hyperbolic ‘‘distance’’ function on D. It satisfies p(z,w) =
p(M(2),M(w)) for any Mobius transformation M from D onto D. Let S = {S} be

Before beginning the proof let us establish some notation: p(z,w) =
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the partition of D into what will be called ‘‘dyadic squares’’ i.e. all sets S of the form
S=S(,k)={z=re®:27/<1—r< 2% k277" lx <0< (k+1)277" 7}
Jj=1,2,3,..., k=0,1,...2/%2

Some key properties of such a partition: Except for the eight squares containing 0
they are disjoint, their union is D, and there are constants K; and K, such that
0 <K, <sup{p(z,w):z,w €S} <K, <1 with K; independent of S € S.

Proof of Theorem 2. Suppose z, w; and w, are three points in D with p(z, w;) > a
i=1,2 and p(w;,w,) < b < 1. Then there is a constant ¢ depending only on @ and b
such that p(z, w,) < p(z,w,)¢. This is really quite obvious if z=0 and the Mobius
invariance of p easily reduces it to that case. This observation implies the following:
For S€ES, let zg be its center, i.e. zg=(1—3-27/"Yyexp(i(k+ )27/~ 1) if S=S(j, k).
Let A(S) ={z:p0(zs,z) <7n) where 7 is chosen so small that dist,(A(S),D—S) >

LK. Then if vy, ..., Yn> &1,-- - » 4y all belong to one dyadic square other than S we
have

n — n z— ¢

n\-——:- H =B zeAs)

i=1 1 =iz i=1| 1 =gz

where ¢ depends only on K, and K.

Thus if S contains no zeros of the Blaschke product C and if all other dyadic
squares contain an even number of zeros then G; N S could be defined to be A(S) and
any factorization of C which divided the zeros in a dyadic square equally would
satisfy (ii) within A(S), with @« =1, b = ¢/(1 + c¢). Moreover, even if S contains zeros

of Cbut II,ers < e on A(S), the same choice of G;NS, a and B will

lz—— .72 I > ¢ somewhere on

< €'? on at least § of the area of A(S), then G;N S can be
At
11—~z
satisfy (ii) in S with, again, any factorization of C that divides the zeros in any one
— 7
1
on at least 3 3 of the area of A(S) provided it is assumed that the number of zeros of C
in each dyadic square is even. (This assumption will be in force for all but the last two
paragraphs of this proof.) It may also be assumed that |C(z)| <e€ on at least % of the

arca of A(S). (Otherwise one could take G;NS to be A(S)N{z:|C(z)|>¢€}
and then (ii) is vacuously satisfied in S.) With these reductions we can assume
-

HTES 1—4%

factorization of a finite Blaschke product. (Note that at each stage of the reduction
m(G;NSs)> ‘%m(A(S)) > (K/4)m(S). If this property is established for every
S € 8 then (i) will also follow.)

Al 4
==
satisfy (ii). Finally, if S contains zeros of C and [I,¢s

A(S) but I, ¢s l:gz

taken to be (z € A(S):Il,¢s

< €2}, Then a=1, B=c/(2+2¢c) will

square equally. Thus, to define G;N S it may be assumed that [T, ¢5 > ¢!

< €!/? on at least half of A(S). The problem has been reduced to a
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We are now required to find a factorization of II,es f—_—% which divides the

zeros equally into two sets Ny and N, such that II;(z) =1l en, lz :'):'Yz and
I (2) = [yen, lz_‘gz satisfy m({z € A(S) : TI;(z) < Ke'*}) > Km(A(S)). Since

{z € A(S) : 11, (2)I1,(z) < €!’?} covers over half of A(S), there is some choice of N;
and N, such that

(1) m(z € A(S) :T1;(z) <e'¥) 2 ym(A(S))

(2) m(z € A(S):111(z) <e'*) 2m(z € A(S) : T, (z) <€'/*)

(3) Some exchange of a single point y; € N, for a single point v, € N, will reverse

the inequality in (2); i.e., if M;(z) = lz__’;’"z , i=1,2, then
i
2 m(IMy,M[ ' <%y < m(I, M My < €!/4)

(All sets here are subsets of A(S).)
Now
(II; < V%) S (I M ' < Ke"*J U (M, < 1/K]}

S {IL,M[ M, < Ke*JU {M, < 1/K)

and {M,<1/K)={z:p(z,7;) <1/K}. By taking K> 1 large enough we can make
the area of { M; <1/K} less than ém(A(S)) so that (1) implies

m({z € A(S) : I ()M H(z) M, (z) < Ke'*}) > Lm(A(S))

and (2’) implies the same inequality on ILM,M;!. If G;NS is defined to be
{z € A(S) : T, (z) M (z) "'M,(z) <Ke'*} and G,N S is defined to be {z € A(S):
I, (z) My (z) M, (z) "' < Ke'/*} and T, es %;—/z— is factored corresponding to the
sets NyU {y2]\{v1} and N, U {v,;}\{~v,], then (i) and (ii) are satisfied in S.

To summarize: In this last case factor [, es —lz__—');yz— as above. In all other cases
factor it arbitrarily by dividing the zeros equally between factors. Define G;, i=1, 2,
by defining them in each S € § as above. The resulting G|, G, and C= C,C, will
satisfy (i) and (ii) with appropriate « and S.

Now to remove the condition that each S contain an even number of zeros of C:
Let C = AB where A has at most one zero in each S € 8 and B has an even number in
each S. Factor B = B, B, as before with ¢ replaced by €'/2 obtaining G;(B). Let o be
small enough that m[{z: p(z,a) <o for some a in the zero set of AJNA(S)] <
(1/16)m(A(S)).

If K, is defined as in Theorem B relative to the zero set of A then G; = K, N G;(B)
will satisfy (i) for some § > 0. Factor A according to Theorem B into 4;A4,. Then
C,=A;B,, C,= A,B, is the required factorization of C. O

The reason G, and G, are required to satisfy (i) is the following result which is the
main theorem of [6, p. 2; see also p. 10].
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THEOREM C. Let p> 0, a> —1. The following conditions on a measurable set
G S D are equivalent.
(1) There is a constant K> 0 such that

] lz@1Pa-1zpedm@ <k | lg17(1-|z)=dm(2)
b G

for all g analytic in D for which the left side is finite.
(2) There is a constant 6> 0 such that m(GNA) >ém(DNA) for all disks A
whose centers lie on dD.

This will be used in the next section with a=1 (1— |z| is replaced by the equiva-
lent weight log(1/|z|)), p =2, and g of the form (df/dz)h where fis harmonic and
h € H>.

4. Proof of Theorem 1. For the case A = H* + C, alter the given proof as follows:
First, let ¢ > O be given, write ¢ = CF where C is a Blaschke product and F has no
zeros in D. Factor C as in Theorem 2 obtaining C;, C, and sets Gf, G5. Let ¢; =
C;F'2, Follow the proof as before until consideration of

n= [

el lea|?|z>"R3]| log - dm
Izl <1

is reached. Here we employ Theorem C to obtain

13<K
GG

a
fl lea|? Izz"hzllogl—'—dm

and continue as before, replacing all integrals by integrals over subsets of G5. The
result is |I}| < Ke?| h| L1\ for some power p> 0. And this case is finished. (The
assumption ¢ € H® still has to be removed but this will be done for general Douglas
algebras.)

Before continuing the proof a reminder of some facts about Douglas algebras and
their maximal ideal spaces seems appropriate. (The material in Sarason’s lecture
notes [9] would be sufficient background.) According to the Chang-Marshall
theorem ([2] and [7]) any Douglas algebra A is generated as a closed algebra by H*
and conjugates of Blaschke products, i.e. A4 is the smallest closed subalgebra of L*
containing H*® and I(A) ={b: b is a Blaschke product and b € Aj}. The maximal
ideal space of A, M(A), is the set {x € M(H®"): |b(x)| =1 for all b € I(A)}. The
Corona Theorem of Carleson [1] states that the unit disk D is a dense subset of
M(H®™). Every function in L* extends to a continuous function on M(H*) whose
restriction to D is the Poisson extension. Since products of elements of 7(A) lie in
I(A) we see that any open set in M(H*) that contains M(A) must contain
fxeM(H®):|b(x)| >1—¢} for some b € I(A) and some € > 0. In fact M(A) is in
the closure in M(H>) of the set {z € D:|b(z)| >1—¢}. The Chang-Marshall
theorem implies that if ¢ € A then ¢ is a uniform limit of functions of the form bg
with b €l(A), gCH™.
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To finish the proof of Theorem 1 it suffices, for given € > 0, to pick by and g as
above with ||¢ — byg||. < €/8 and show dist(fbyg, A) < Ke” under the assumptions
of the Theorem.

Now, dist(fbyg,A) = infjc 1(A) dist(bfbeg, H™) where again the Chang-Marshall
Theorem is used. The infimum is dominated by an infimum over only those b’s con-
taining b, as a factor so it suffices to prove dist(fg, A) < Ke”. To do this it must be
verified that f and g satisfy the same hypotheses as f and ¢, at least for the current
choice of e. By hypothesis there is a b, € I(A) such that |¢(z)[(1— [f(z)]) < €2/4 on
the set where |b,(z)| > 1—e. Since the Poisson extensions of ¢, g and b, are con-
tinuous on M(H*) there is a neighborhood U of M(A) such that in UN D we have
simultaneously |b,(z)| > 1 —¢, |bo(z)| > 1—e€and ||¢(z)| — |g(2)bo(2)]|| < €/4. Thus
in UND ||o(z)|—|g(z)|| <e/2. Now U2{z € D:|b(z)| >1—¢} for some b, €
I(A). On this latter set it is easily seen that |g(z)|(1 — |f(z)|) <e. Now dist(fg,A4) =
infzepq) dist(bfg, H”) = infje 04y Sup, || bfghdN| where the supremum is taken
over h € H' with ||A]|z1,) < 1 and the infimum may just as well be taken over all
b € I(A) of the special form b = b{".

| orgnan=4 {1 Z—;' (bgh)’ log —— dm

et |z]

Now factor 4 into hyh, with h; € H? ||h;||72 = ||h || and g into g, g, as was done
for ¢ at the beginning of this section. Then

9 1

SS Y (beh) log —— dm =1, +1,
4 |z|

jz] <1

where

af , 1
h= || S5 Glah) (bigah) log v dm
lz] <1

with a similar formula for 7,.
Now |I;|? < I3 I, where

1
L= (| |(bgh) [Plog — dm < K| h]|,

t |z|
zl <1
and
of |2 1
I, = X 15,127 8,12 | by |2 log — dm.
3 HSL]& 12" 3] o 7
z

The same arguments work here as did for H*+ C: |z| <1 is covered by the sets
{|b] <1—e€}, {|g2] <€'?} and (1 — |f| <e!/?}, from which estimates

|| < K((1—€)>"+eP+€e'2) | h| o

are obtained. This yields dist(fg, A) < Ke”, whence dist(fp,A) =0 since € > 0 is
arbitrary. This completes the proof of Theorem 1. ]
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5. Remarks. I believe the techniques used in [4] would yield Theorem A for gen-
eral Douglas algebras, but I do not see any way they can be modified to apply to the
general f € L. Guillory and Sarason obtain a much more precise result to the effect
that if o, y E H*+C, |p(e?)| = |¥(e?)| =1 a.e. (N), and |¢(x)| < |¥(x)| when
X € M(H® + C), then Yo € H® + C for some integer N> 1. I do not believe any
result like this is possible for the general L® function.

It surprised me somewhat to find that results like those in [6], originally obtained
to answer some natural questions in the context of Bergman spaces, would have appli-
cations to problems about Douglas algebras. But perhaps I should have been alerted
by the opposite phenomenon occurring in work of McDonald and Sundberg [8].

Finally, I would be interested to know if the G, and G, in Theorem 2 can be chosen
independent of € so that one could obtain the more aesthetic inequality |C;| < «|C}#
on G; in place of condition (ii) of that theorem. A closely related, if not inseparable,
question is whether the factorization can be made independent of e.
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