MEASURES ON THE TORUS WHICH ARE REAL PARTS OF HOLOMORPHIC FUNCTIONS

John N. McDonald

We will say that a measure μ on the torus T^2 is the real part of a holomorphic function if the p, qth Fourier coefficient

$$\hat{\mu}(p,q) = \int_{\mathbb{T}^2} x^p y^q d\mu(x,y)$$

vanishes whenever pq < 0. The set α of probability measures on \mathbf{T}^2 which are real parts of homomorphic functions is weak*—compact and convex. In [3] Rudin asked for a description of the extreme points of α . Rudin's question is interesting because it concerns a phenomenon which is unique to higher dimensions; the analogous problem for the circle is trivial. In this paper we will construct some examples of extreme elements of α .

First we establish some notation and terminology. A mapping $G: F_1 \rightarrow F_2$, where F_1 and F_2 are convex sets, will be called an *isomorphism* if it is one-to-one, onto, and preserves convex combinations. Note that isomorphisms map extreme points into extreme points. If E is a convex set and F is a convex subset of E, then F will be called a *face* of E, if $u, v \in F$, whenever $(c, u, v) \in (0, 1) \times E \times E$ and $cu + (1-c)v \in F$. Note that, if F is a face of E and v is an extreme point of E, then v is an extreme point of E. A good example of a weak* closed face of E is a closed subset of E. We will use E to denote the disk algebra. E can be viewed as the algebra of continuous complex valued functions on the unit circle E which have the property that Fourier coefficients of negative index vanish, or E can be viewed as the algebra of functions which are holomorphic on the open unit disk E and continuous on E can be viewed as the algebra of functions which are holomorphic on the open unit disk E and continuous on E can be viewed as the algebra of functions which are holomorphic on the open unit disk E and continuous on E can be viewed with the sup-norm E will use both viewpoints. We will assume that E is equipped with the sup-norm E is indicate the Poisson kernel E indicate the function defined by E when E indicate the function defined by E when E indicate the function defined by E when E indicate the function defined by E indicate the E indicate the function defined by E indicate the E indicate the function defined by E indicate the E indicate the function defined by E indicate the E indicate the function defined by E indicate the function E in the function E indicate the function E indicate the functio

EXAMPLE 1. Consider an integer $n \ge 2$. Define $\pi_{n,1}: \mathbf{T} \to \mathbf{T}^2$ by $\pi_{n,1}(x) = (x^{-1}, x^{n-1})$. Let $F_{n,1} = \pi_{n,1}(\mathbf{T})$. Suppose $\mu \in \mathfrak{C}(F_{n,1})$. Define the measure ν on \mathbf{T} by $\nu(A) = \mu(\pi_{n,1}(A))$. It is easy to show that

(2)
$$\hat{\mu}(-p,q) = \hat{\nu}(p + (n-1)q).$$

It follows from (1) and (2) that $\hat{v}(k) = 0$ whenever $|k| \ge n$. Thus, there is a non-negative trigonometric polynomial g of degree $\le n-1$ such that

(3)
$$\int_{\mathbf{T}^2} f(x,y) \, d\mu(x,y) = (2\pi)^{-1} \int_0^{2\pi} f(e^{-it}, e^{i(n-1)t}) g(e^{it}) \, dt.$$

Received January 29, 1981. Revision received March 17, 1982. Michigan Math. J. 29 (1982).

It is also easy to show that any measure on T^2 satisfying (3) belongs to $\mathfrak{A}(F_{n,1})$. Thus, equation (3) defines an isomorphism between $\mathfrak{A}(F_{n,1})$ and the set $Q_{n,1}$ of nonnegative trigonometric polynomials having degree $\leq n-1$ and constant term equal to 1. In [1] it is shown that the extreme elements of $Q_{n,1}$ are exactly the trigonometric polynomials of the form

(4)
$$g(e^{it}) = c \prod_{j=1}^{n-1} |e^{it} - \lambda_j|^2$$

where $|\lambda_j| = 1$ for j = 1, 2, ..., n-1 and $c^{-1} = (2\pi)^{-1} \int \prod_{i=0}^{2\pi} |e^{it} - \lambda_j|^2 dt$.

By the argument above we have established the following result: A measure μ is an extreme point of $\alpha(F_{n,1})$ if and only if it is of the form (3) where g is of the form (4).

EXAMPLE 2. Suppose that n > 1, that $1 \le m \le n$ and that n and m are relatively prime. Define $\pi_{n,m}: \mathbf{T} \to \mathbf{T}^2$ by $\pi_{n,m}(x) = (x^{-m}, x^{n-m})$. It follows from the assumption that n and m are relatively prime that $\pi_{n,m}$ is one-to-one. Let $F_{n,m} = \pi_{n,m}(\mathbf{T})$. Consider $\mu \in \mathfrak{A}(F_{n,m})$. As in Example 2, we define a measure ν on \mathbf{T} via $\nu(A) = \mu(\pi_{n,m}(A))$. It is easy to show that $\hat{\mu}(-p,q) = \hat{\nu}(qn + (p-q)m)$. It follows that $\nu(N) = 0$ for all integers N of the form

(5)
$$N = \pm (qn + (p-q)m)$$
 $p, q > 0$.

It is an exercise in elementary number theory to show that the integers which cannot be written in the form (5) are exactly those which can be written in the form

$$(6) N = kn - jm$$

where $0 \le k \le m$, $1 \le j \le n-1$ and $k \le j$. It follows that $d\nu(e^{it}) = g(e^{it}) dt/2\pi$ where $g(e^{it})$ is a non-negative trigonometric polynomial of the form

(7)
$$g(e^{it}) = 1 + \sum_{s \in S} a_s e^{ist},$$

where S denotes the set of integers of the form (6).

We have shown that each $\mu \in \alpha(F_{n,m})$ has the form

(8)
$$\int f(x,y) d\mu(x,y) = (2\pi)^{-1} \int_0^{2\pi} f(e^{-imt}, e^{i(n-m)t}) g(e^{it}) dt$$

where g belongs to the set $Q_{n,m}$ of non-negative trigonometric polynomials of the form (7). On the other hand, it is easy to show that any measure on \mathbf{T}^2 of the form (8) with $g \in Q_{n,m}$ belongs to $\mathfrak{A}(F_{n,m})$. It follows that a measure of the form (8) is an extreme point of $\mathfrak{A}(F_{n,m})$ if and only if g is an extreme point of $Q_{n,m}$. A particular example of an extreme point of $Q_{n,m}$ is the function $g(e^{it}) = 1 - \cos(m(n-1)t)$.

EXAMPLE 3. Let g be an inner function, i.e., g is analytic on D and, at almost every point of T, g has a radial limit of absolute value 1. Suppose that there is a closed subset Q_g of T such that Q_g has (arc-length) measure equal to 0, and g has an analytic continuation across every open sub-arc of $T \setminus Q_g$. Assume also that g(0) is real. (See [0].) Motivated by Rudin's example [3], we consider the function defined

on $D \times D$ by G(z, w) = Re[(1 + zg(w))/(1 - zg(w))]. It is not hard to show that G has the representation $G(z, w) = \int_{\mathbb{T}^2} P_z(x) P_w(y) d\mu(x, y)$, where μ is the member of α defined by

$$\int_{\mathbb{T}^2} h(x, y) \, d\mu(x, y) = (2\pi)^{-1} \int_{\mathbb{T}} h(g(y), y) \, |dy|$$

Note that the measure μ is supported by the closure S of the spiral

$$S_0 = \{ \overline{(g(y)}, y) \mid y \in T \setminus Q_g \}.$$

Thus, μ belongs to $\alpha(S)$.

Consider a member ν of $\alpha(S)$. Clearly we can decompose ν as follows

$$\int_{\mathbb{T}^2} h(x,y) \, d\nu(x,y) = \int_{\mathbb{T}} h(g(y),y) \, d\nu_0(y) + \int_{\mathbb{T}^2} h(x,y) \, d\nu_1(x,y),$$

where ν_0 is a non-negative measure on **T** with $\nu_0(Q_g) = 0$ and ν_1 is a non-negative measure on \mathbf{T}^2 with support contained in $\mathbf{T} \times Q_g$. If we take $h(x, y) = x^{-n}y^m$, where n and m are positive integers, then

(9)
$$\int_{\mathbb{T}} (g(y))^n y^m d\nu_0(y) + \int_{\mathbb{T}^2} x^{-n} y^m d\nu_1(x, y) = 0.$$

It follows easily from (9) that

(10)
$$\int_{\mathbf{T}} (g(y))^n f(y) \, d\nu_0(y) + \int_{\mathbf{T}^2} x^{-n} f(y) \, d\nu_1(x, y) = 0$$

for every $f \in B$ such that f(0) = 0. Using a result due to Rudin (see [0, pp. 80-81]), we can find a function k in B having the properties: k(y) = 1 for $y \in Q_g$, |k(y)| < 1 for $y \in T \setminus Q_g$, and k(0) = 0. It follows from (10) that

(11)
$$\int_{\mathbb{T}} (g(y))^n (k(y))' f(y) \, d\nu_0(y) + \int_{\mathbb{T}^2} x^{-n} (k(y))' f(y) \, d\nu_1(x, y) = 0$$

for every $f \in B$ and for r = 1, 2, ... Since ν_1 has support contained in $T \times Q_g$, it follows that (11) may be rewritten as

(12)
$$\int_{\mathbf{T}} (g(y))^n (k(y))' f(y) \, d\nu_0(y) + \int_{\mathbf{T}^2} x^{-n} f(y) \, d\nu_1(x,y) = 0.$$

Using the fact that $\lim_{r} (k(y))^{r} = 0$ $\nu_{0} - \text{a.e.}$, we have

(13)
$$\int_{\mathbb{T}^2} x^{-n} f(y) \, d\nu_1(x, y) = 0$$

for every $f \in B$ and for $n = 1, 2, \ldots$ Again using both Rudin's theorem and the fact that ν_1 is supported by $T \times Q_g$ we may assert that (13) holds for every continuous complex valued function f on T and for $n = \pm 1, \pm 2, \ldots$ Let ρ be the measure defined on T via $\int_T h(y) d\rho(y) = \int_{T^2} h(y) d\nu_1(x, y)$. Note that $\rho(T \setminus Q_g) = 0$. It

follows from (13) that $d\nu_1(xy) = d\rho(y) |dx|/2\pi$. Let $c = \nu_1(\mathbf{T}^2)$. Suppose ν is an extreme point of α and 0 < c < 1. Then we may write

$$\int_{\mathbf{T}^2} h(x,y) \, d\nu(x,y) = (1-c) \int_{\mathbf{T}} h(g(y),y) \, d\tilde{\nu}_0(y) + c \int_{\mathbf{T}^2} h(x,y) \, d\tilde{\rho}(y) |dx| / 2\pi,$$

where $d\tilde{\nu}_0 = (1-c)^{-1} d\nu_0$ and $d\tilde{\rho} = c^{-1} d\rho$. Since the measures $d\nu$ and $d\tilde{\rho} |dx|/2\pi$ belong to Ω , it follows that the measure induced on T^2 by the functional

$$h \to \int h(g(y), y) d\tilde{\nu}_0(y)$$

also belongs to α . Hence, we reach the absurd conclusion that

$$\int_{\mathbb{T}^2} h(x,y) \, d\nu(x,y) = \int h(\overline{g(y)},y) \, d\tilde{\nu}_0(y) = \int_{\mathbb{T}^2} h(x,y) \, d\tilde{\rho}(y) \, |dx|/2\pi.$$

The preceding argument shows that an extreme point ν of $\alpha(S)$ is either of the form $d\nu(x,y) = d\rho(y) |dx|/2\pi$, where ρ is any probability measure supported by Q_g , or ν is of the form

(14)
$$\int_{\mathbb{T}^2} h(x, y) \, d\nu(x, y) = \int_{\mathbb{T}} h(g(y), y) \, d\nu_0(y)$$

where ν_0 is a probability measure on T which satisfies $\nu_0(Q_g) = 0$. We will examine measures of the form (14) more closely. It follows from (9) that $\int_T g(y)y^m d\nu_0(y) = 0$ for $m = 1, 2, \ldots$ By the theorem of F. and M. Riesz we have $g(y) d\nu_0(y) = f(y) |dy|$ where f belongs to the Hardy space H^1 . (See [0].) Thus, if ν is a member of $\mathfrak A$ of the form (14) then ν is of the form

(15)
$$\int_{\mathbb{T}^2} h(x,y) \, d\nu(x,y) = \int_{\mathbb{T}} h(\overline{g(y)},y) \overline{g(y)} f(y) |dy|,$$

where $f \in H^1$, where $\bar{g}f \ge 0$ a.e., and where $\int_T \overline{g(y)} f(y) |dy| = 1$. It is a trivial matter to show that any measure of the form (15) belongs to α .

It is clear from the foregoing that the set of measures in α of the form (14) is isomorphic to the convex subset of H^1 given by

$$R_g = \left\{ \tilde{f} | \tilde{f} \in H^1, \tilde{f}\bar{g} \ge 0 \text{ a.e. on } \mathbf{T} \text{ and } \int_{\mathbf{T}} \tilde{f}(y) \overline{g(y)} | dy | = 1 \right\}.$$

Thus, the extreme points of α of the form (15) are exactly those for which f is an extreme point of R_g .

To complete our analysis of the face $\mathfrak{A}(S)$ we will give characterization of the extreme points of R_g . We claim that a member of R_g is extreme if and only if it is an outer function. (See [0] for a discussion of outer functions.) Since R_g is a subset of the unit ball of H^1 and since the outer functions of norm 1 are the extreme points of the unit ball of H^1 , it follows that any outer function in R_g is an extreme point of R_g . (See [0, p. 139].) Suppose that $f \in R_g$ is not outer. We will modify an argument due to deLeeuw and Rudin to show that f is not an extreme point of R_g . Since f is not

outer, there is non-constant inner function I and a function $F \in H^1$ such that f = IF. Furthermore, by multiplying I by an appropriate constant if necessary, we may assume that $\int_{\mathbb{T}} |f(y)| \operatorname{Re} I(y) |dy| = 0$.

Let $h = \frac{1}{2}(1 + I^2)F$. Since I is non-constant, the function is not 0. Also since |I(y)| = 1 a.e. on T, it follows that

$$h(y) = \frac{1}{2}(I(y) + \overline{I(y)})I(y)F(y) = f(y) \text{ Re } I(y)$$

a.e. on T. Thus, we have

$$\overline{g(y)}(f(y) \pm h(y)) = \overline{g(y)}f(y)(1 \pm \operatorname{Re} I(y)) \ge 0$$

a.e. on T. Furthermore, since $\overline{g(y)}f(y) = |f(y)|$, it follows that

$$\int_{\mathbf{T}} \overline{g(y)} (f(y) \pm h(y)) |dy| = \int_{\mathbf{T}} \overline{g(y)} f(y) |dy| \pm \int_{\mathbf{T}} |f(y)| \operatorname{Re} I(y) |dy| = 1.$$

Thus, we have $f \pm h \in R_g$. Hence f is not extreme.

To construct a pair of specific extreme points of R_g we observe first that it is easy to show that $(g \pm i)^2/2i$ is outer. Since $\bar{g}(g \pm i)^2/2i = 1 \pm (g - \bar{g})/2i$ on T and since $\int_{\mathbf{T}} g(y) |dy| = \int_{\mathbf{T}} g(y) |dy|$, it follows that $(g \pm i)^2/2i$ is an extreme point of R_g .

EXAMPLE 4. To find our final example we will first define an isomorphism J between \mathfrak{A} and a family K of linear operators on B. We then obtain our example by exhibiting extreme elements of K and applying J^{-1} .

With each $\mu \in \Omega$ we associate an operator S_{μ} on B via the formula $S_{\mu}f(w) = \int_{\mathbb{T}^2} f(\bar{x}) P_w(\bar{x}y) d\mu(x,y)$, where |w| < 1. For $k \ge 0$ and |w| < 1 we have

(16)
$$S_{\mu}Z^{k}(w) = \sum_{l=-\infty}^{\infty} Z^{l}(w)\hat{\mu}(l-k,-l).$$

Since $\hat{\mu}(l-k,-l)$ vanishes unless $0 \le l \le k$, it follows that S_{μ} maps polynomials of degree $\le n$ into polynomials of degree $\le n$. Note that (16) also implies that $S_{\mu}1 = 1$. If p is a polynomial, then

$$|S_{\mu}p(w)| \leq \int_{\mathbb{T}^2} |p(x)| P_{w}(\bar{x}y) d\mu(\bar{x},y) \leq ||p|| S_{\mu} 1 = ||p||.$$

Since the polynomials are dense in B, it follows that S_{μ} maps B into itself. Actually, we have proved more, namely, that S_{μ} belongs to the set K of operators on B which have norm 1, carry 1 into itself, and carry polynomials of degree $\leq n$ into polynomials of degree $\leq n$. Let J be a mapping from $\mathfrak A$ into K defined by $J(\mu) = S_{\mu}$. Clearly J preserves convex combinations. J is also one-to-one. For, if $J(\mu) = J(\nu)$, then it follows by (16) that

(17)
$$\hat{\mu}(k-l, -l) = \hat{\nu}(k-l, -l)$$

for $k \ge 0$ and for all I. It follows easily from (17) that $\hat{\mu}(q,r) = \hat{\nu}(q,r)$ for all pairs of integers q, r and, hence, that $\mu = \nu$. Next we will show that J maps α onto K. To accomplish our task we need the following:

PROPOSITION. Let $S \in K$. Then there exists a unique linear operator $S^{\#}$ which maps the space $C(\mathbf{T})$ of continuous complex valued functions into itself and also satisfies the following: $S^{\#}f = Sf$ for $f \in B$, $S^{\#}\bar{f} = \overline{S^{\#}f}$ for all $f \in C(\mathbf{T})$, and $S^{\#}f \geqslant 0$ whenever $f \geqslant 0$.

Proof. It follows from the Hahn-Banach theorem that, for each $w \in T$, there exists a unique probability measure α_w on T such that $Sf(w) = \int_T f(x) d\alpha_w(x)$ for all $f \in B$. Clearly, the mapping $w \to \alpha_w$ is weak* continuous. Let $S^{\#}$ be defined by $S^{\#}g(w) = \int_T g(x) d\alpha_w(x)$. It is easy to show that $S^{\#}$ has the properties asserted in the statement of the proposition.

Now we define a function R on pairs of integers by

$$R(p,q) = (2\pi)^{-1} \int_0^{2\pi} e^{iqt} S^{\#} Z^{-(p+q)}(e^{it}) dt.$$

Using the proposition it is easy to show that R is positive definite. It follows from Bochner's theorem that there is a measure μ on T^2 such that $\hat{\mu} = R$. We claim that $\mu \in \Omega$. It suffices to show that $\hat{\mu}(p,q) = 0$ when p < 0 < q. Consider the case 0 < q < -p. Then $S^{\#}Z^{-(p+q)} = SZ^{-(p+q)} \in B$. Thus, $\hat{\mu}(p,q) = R(p,q) = 0$ in this case. In the case 0 < -p < q we have

$$\mu(p,q) = (2\pi)^{-1} \int_0^{2\pi} e^{iqt} SZ^{p+q}(e^{it}) dt.$$

Since SZ^{p+q} is a polynomial of degree $\leq p+q$, and since p+q < q, it follows that the qth Fourier coefficient of SZ^{p+q} must vanish. Thus, $\hat{\mu}(p,q) = 0$. Finally, we show that $S = S_{\mu}$. For $k \geq 0$ we have, using (16),

$$SZ^{k} = \sum_{l=0}^{k} R(l-k, -l)Z^{l}$$
$$= \sum_{l=-\infty}^{\infty} \hat{\mu}(l-k, -l)Z^{l} = S_{\mu}Z^{k}.$$

The preceding discussion proves the following:

THEOREM. $J: \Omega \to K$ is an isomorphism.

For $n=1,2,\ldots$, let \mathfrak{U}_n denote the set of polynomials of degree $\leq n$ which have sup norm ≤ 1 . Of course \mathfrak{U}_n is the convex hull of its extreme points. Let p be an extreme element of \mathfrak{U}_n . We will show that there exists an extreme element of K which maps Z^n to p. Let $K(Z^n,p)=\{S\in K\mid SZ^n=p\}$. We observe that $K(Z^n,p)$ is a face of K. Thus, if we can show that $K(Z^n,p)$ is non-empty, then it will follow from the Krein-Milman theorem that $K(Z^n,p)$ contains an extreme point of K. Define operators S_1 and S_2 on B by $S_1f(w)=n^{-1}\sum_{v^n=w}f(v)$ and $S_2f=f\circ p$. It follows from

$$S_1 Z^{nl+h} = \begin{cases} Z^l \text{ when } h = 0, \\ 0 & h = 1, 2, \dots n-1 \end{cases}$$

that the operator $S = S_2 \circ S_1$ belongs to $K(\mathbb{Z}^n, p)$. This completes Example 4.

REMARK. The interested reader may verify that, in the notation of Examples 1, 2, and 4, we have $J(\mathfrak{A}(F_{n,m})) = K(Z^n, Z^m)$, if m = 1 or if n and m are relatively prime.

REFERENCES

- 0. K. Hoffman, Banach spaces of analytic functions, Prentice-Hall, Englewood Cliffs, N.J., 1962
- 1. J. N. McDonald, Convex sets of operators on the disk algebra, Duke Math. J. 42 (1975), 787-796.
- 2. R. Rochberg, Linear maps of the disk algebra, Pacific J. Math. 44 (1973), 337-354.
- 3. W. Rudin, *Harmonic analysis in polydiscs*, Actes du Congres International des Mathematiciens (Nice, 1970), Tome 2, pp. 489-493, Gauthier-Villars, Paris, 1971.

Department of Mathematics Arizona State University Tempe, Arizona 85287