MEASURES ON THE TORUS WHICH ARE
REAL PARTS OF HOLOMORPHIC FUNCTIONS

John N. McDonald

We will say that a measure p on the torus T2 is the real part of a holomorphic func-
tion if the p, gth Fourier coefficient

(1 mMp,q) = STZx"y"du(x,y)

vanishes whenever pg < 0. The set @ of probability measures on T? which are real
parts of homomorphic functions is weak*—compact and convex. In [3] Rudin asked
for a description of the extreme points of &@. Rudin’s question is interesting because it
concerns a phenomenon which is unique to higher dimensions; the analogous prob-
lem for the circle is trivial. In this paper we will construct some examples of extreme
elements of Q.

First we establish some notation and terminology. A mapping G : F,—F,, where
F; and F, are convex sets, will be called an isomorphism if it is one-to-one, onto,
and preserves convex combinations. Note that isomorphisms map extreme points
into extreme points. If £ is a convex set and F is a convex subset of E, then
F will be called a face of E, if u,v € F, whenever (c,u,v) € (0,1) X EXE and
cu+ (1 —c)v € F. Note that, if Fis a face of E and v is an extreme point of F, then v
is an extreme point of E. A good example of a weak* closed face of @ is @(C) =
{p € Q| p(T?*\C) =0}, where C s a closed subset of T2. We will use B to denote the
disk algebra. B can be viewed as the algebra of continuous complex valued functions
on the unit circle T which have the property that Fourier coefficients of negative
index vanish, or B can be viewed as the algebra of functions which are holomorphic
on the open unit disk D and continuous on DU T. In this paper we will use both
viewpoints. We will assume that B is equipped with the sup-norm ||---|. We will
indicate the Poisson kernel Re(e’ + w)/ (e —w) by P, (e'). Finally, we let Z¥ indi-
cate the function defined by Z¥(w) = w¥ when k=0, 1,2,... and by Z¥(w) = (w) ¥
when k= —1,—2,.... We recall that P,,(e"!) = L5 _ Z¥K(w)e ¥,

EXAMPLE 1. Consider an integer n 2. Define w, : T—=>T? by =, (x) =
(x~,x""'). Let F, y = 7,,;(T). Suppose u € @(F, ;). Define the measure » on T by
v(A) = p(7,,;(A)). It is easy to show that

() p(=p,q) =p(p+(n—1)q).

It follows from (1) and (2) that #(k) =0 whenever |k| > n. Thus, there is a non-
negative trigonometric polynomial g of degree <#n—1 such that

3) STZf(X,)’) dﬂ(x,y) = (271')_1 Szwf(e_"f,ei(n—l)[)g(eit) "
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It is also easy to show that any measure on T? satisfying (3) belongs to Q(F,;).
Thus, equation (3) defines an isomorphism between @(F,, ;) and the set Q,, ; of non-
negative trigonometric polynomials having degree <z —1 and constant term equal
to 1. In [1] it is shown that the extreme elements of Q,, ; are exactly the trigonometric
polynomials of the form

. n_l .
(4) g(ett)=clTl IeII__)\j|2
Jj=

where |\j|=1forj=1,2,...,n—1and ¢~ '= (27) "' [TI§"|e" — \;|*at.
By the argument above we have established the following result: A measure p is an
extreme point of @(F,, ;) if and only if it is of the form (3) where g is of the form (4).

EXAMPLE 2. Suppose that n> 1, that 1 < m < n and that n and m are relatively
prime. Define 7, ,, : T—->T? by Tn,m(X) = (x7",x"~™) . It follows from the assump-
tion that n and m are relatively prime that =, ,, is one-to-one. Let F,, ,, = 7, ,(T).
Consider p € Q(F,, ,,). As in Example 2, we define a measure » on T via »(4) =
(T, m(A)). It is easy to show that i(—p,q) = #(gn+ (p—q)m). It follows that
v(N) = 0 for all integers N of the form

(5) N==x(gn+ (p—q)m) p,q>0.

It is an exercise in elementary number theory to show that the integers which cannot
be written in the form (5) are exactly those which can be written in the form

©) N=kn—jm

where 0< k<m, 1<j<n—1 and k<. It follows that dv(e') =g(e') dt/2n
where g(e') is a non-negative trigonometric polynomial of the form

@ gley =1+ Y ace™,
sES
where S denotes the set of integers of the form (6).
We have shown that each p € @(F,,,,,) has the form

®) |75, dutx, ) = 2m) ! Sz'f(e-fm',e"<"—'")')g(e") d

where g belongs to the set Q, ,, of non-negative trigonometric polynomials of the
form (7). On the other hand, it is easy to show that any measure on T? of the form (8)
with g € Q,, ,, belongs to @(F),,,,). It follows that a measure of the form (8) is an
extreme point of @(F, ,,) if and only if g is an extreme point of Q, ,,. A particular
example of an extreme point of Q, ,, is the function g(e) =1—cos(m(n—1)t).

EXAMPLE 3. Let g be an inner function, i.e., g is analytic on D and, at almost
every point of T, g has a radial limit of absolute value 1. Suppose that there is a
closed subset Q, of T such that Q, has (arc-length) measure equal to 0, and g has an
analytic continuation across every open sub-arc of T\Q,. Assume also that g(0) is
real. (See [0].) Motivated by Rudin’s example [3], we consider the function defined
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on DX D by G(z,w) =Re[(1+zg(w))/(1 —zg(w))]. It is not hard to show that G
has the representation G(z,w) = {12 P,(x)P,,(») du(x,y), where p is the member of
Q@ defined by

|, 1y dutx,y) = @~ | 18 0Y,0) |y
T2 T

Note that the measure u is supported by the closure S of the spiral

So=1((g(»),») |y € T\Q,}.
Thus, p belongs to @(S).
Consider a member » of @(S). Clearly we can decompose v as follows

S h(x,) dV(x,y)=S h(g(y),y) de(y)+S h(x,y)dv,(x,y),
T2 T T2

where v( is a non-negative measure on T with »o(Q,) =0 and », is a non-negative
measure on T? with support contained in T X Q.. If we take h(x,y) =x""y™, where
n and m are positive integers, then

©) | @onmymary ) + [ x ="y dv (x,9) =o0.
T T2
It follows easily from (9) that

(10) | oD v+ | x5 dn(x3) =0

T2

for every f € B such that f(0) = 0. Using a result due to Rudin (see [0, pp. 80-81]),
we can find a function & in B having the properties: k(y) =1 for y € Q,, |k(y)| <1
for y € T\Q,, and k(0) = 0. It follows from (10) that

an ST (N kWD) f(y)dvy(y) + K X"k f(y)dvi(x,y) =0

T2
for every f€ B and for r=1,2,.... Since »; has support contained in T'x Q,, it
follows that (11) may be rewritten as
(12) |, @O RO TG dvo ) + [ %73} dmi(x,3) = 0.

Using the fact that lim,(k(»))" = 0 v, — a.e., we have

(13) | x» anixy) =0

for every f € B and for n=1,2,.... Again using both Rudin’s theorem and the fact
that », is supported by T X Q, we may assert that (13) holds for every continuous
complex valued function f on T and for n==+1,%2,.... Let p be the measure
defined on T via fyh(»)dp(¥) = f12 h(y) dvi(x,y). Note that p(T\Q,) =0. It
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follows from (13) that dv,(xy) = dp(y)|dx|/2=x. Let ¢ =»,(T?). Suppose v is an
extreme point of @ and 0 < ¢ < 1. Then we may write

|y dveey == | iGN, »dnG) +c| ey dsy)|dx s,
T2 T T2

where d#, = (1 —c) 'dyy and dp=c~'dp. Since the measures dv and dp|dx|/2=
belong to @, it follows that the measure induced on T? by the functional

= [ r(2(),9) dro()

also belongs to @. Hence, we reach the absurd conclusion that

| ey dvixy) = [0V, 9 i) = | hix,») db(y) |dx| /27
T2 T2

The preceding argument shows that an extreme point » of @(S) is either of the
form dv(x,y) = dp(y)|dx|/2=, where p is any probability measure supported by Qe
or v is of the form

(14) | ey vy = | hGEY,2) dro)

where », is a probability measure on T which satisfies vy (Q,) = 0. We will examine
measures of the form (14) more closely. It follows from (9) that [ g(»)y™dvy(¥) =0
form=1,2,.... By the theorem of F. and M. Riesz we have g(y) dvy(y) = f(») |dy|
where f belongs to the Hardy space H!. (See [0].) Thus, if » is a member of @ of the
form (14) then » is of the form

(15) | ) avey) = | HEG)L2EDNSO) Iy,

where f € H', where gf > Oa.e., and where fy g(¥)f(»)|dy| = 1. It is a trivial matter
to show that any measure of the form (15) belongs to Q.

It is clear from the foregoing that the set of measures in @ of the form (14) is iso-
morphic to the convex subset of H! given by

R, = {ﬂfe H', fz >0a.e. on T and STf(y)R})|dy| = 1},

Thus, the extreme points of @ of the form (15) are exactly those for which fis an
extreme point of R,.

To complete our analysis of the face @(S) we will give characterization of the
extreme points of R,. We claim that a member of R, is extreme if and only if it is an
outer function. (See [0] for a discussion of outer functions.) Since R, is a subset of
the unit ball of H' and since the outer functions of norm 1 are the extreme points of
the unit ball of H!, it follows that any outer function in R, is an extreme point of R,.
(See [0, p. 139].) Suppose that f € R, is not outer. We will modify an argument due
to deLeeuw and Rudin to show that fis not an extreme point of R,. Since fis not
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outer, there is non-constant inner function 7 and a function F € H! such that f= IF.
Furthermore, by multiplying 7 by an appropriate constant if necessary, we may
assume that {1|f(y)| ReI(y)|dy| = 0.

Let h= %(1 +I?)F. Since I is non-constant, the function is not 0. Also since
|I(y)| =1la.e. on T, it follows that

h(y) = 3I() +INIP)F(y) = f(») ReI()

a.e. on T. Thus, we have

gV ER() =gf(P)(1£Rel(y)) 20
a.e. on T. Furthermore, since g(»)f(¥) = |f(»)|, it follows that

| eV RNy = | DDy | 170 Rel()lady] =1.

Thus, we have f+h € R,. Hence fis not extreme.

To construct a pair of specific extreme points of R, we observe first that it is easy
to show that (g=i)%/2i is outer. Since §(g=+i)%/2i=1+(g—g)/2i on T and since
frg(»)|dy| = fxg(y)|dy], it follows that (g=+i)?/2i is an extreme point of R,.

EXAMPLE 4. To find our final example we will first define an isomorphism J
between @ and a family K of linear operators on B. We then obtain our example by
exhibiting extreme elements of XK and applying J 1.

With each u € @ we associate an operator S, on B via the formula S, f(w) =
f12 f(X)P,, (Xy) du(x,y), where |w| < 1. For k 2 0 and |w| <1 we have

(16) S, Zkw)y= Y Z'mal—k,—1).

|= —o0
Since a(/— k, —1) vanishes unless 0 < /< k, it follows that S, maps polynomials of
degree < n into polynomials of degree < n. Note that (16) also implies that S, 1 = 1.
If p is a polynomial, then

S0 < | 1pG)IPy(2) du(2.) < IplIS,1 = | Pl

Since the polynomials are dense in B, it follows that S, maps B into itself. Actually,
we have proved more, namely, that S, belongs to the set K of operators on B which
have norm 1, carry 1 into itself, and carry polynomials of degree < » into polynomi-
als of degree < n. Let J be a mapping from @ into K defined by J(n) = S,. Clearly J
preserves convex combinations. J is also one-to-one. For, if J(p) =J(v), then it
follows by (16) that

(17) plk—=1,—=0) =p(k—1,-1)

for k = 0 and for all /. 1t follows easily from (17) that i(q, r) = #(q, r) for all pairs of
integers g, r and, hence, that p = ». Next we will show that J/ maps @ onto K. To
accomplish our task we need the following:
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PROPOSITION. Let S € K. Then there exists a unique linear operator S* which
maps the space C(T) of continuous complex valued functions into itself and also
satisfies the following: S*f= Sf for f € B, $*f= Sf for all f€ C(T), and S*f= 0
whenever f 2 0.

Proof. 1t follows from the Hahn-Banach theorem that, for each w € T, there
exists a unique probability measure «,, on T such that Sf(w) = |y f(x) da,, (x) for
all f € B. Clearly, the mapping w—«,, is weak* continuous. Let S* be defined by
Stg(w) = |1 g(x) da,,(x). It is easy to show that S¥ has the properties asserted in the
statement of the proposition.

Now we define a function R on pairs of integers by

27 . .
R(p,q) = (271')‘l So gqusﬂz—(p+q)(e:t) dt.

Using the proposition it is easy to show that R is positive definite. It follows from
Bochner’s theorem that there is a measure p on T2 such that = R. We claim that
p € @. It suffices to show that ji(p,q) =0 when p<0<gq. Consider the case
0<g<—p. Then §*Z-*+9) = §7-(r+% € B, Thus, i(p,q) =R(p, q) =0 in this
case. In the case 0 < —p < g we have

2T . .
w(o,q) = (27)"! jo ei1SZP*a(eit) dt.

Since SZP*1 is a polynomial of degree < p+ q, and since p+ g < g, it follows that
the gth Fourier coefficient of SZ?*7 must vanish. Thus, fi(p, g) = 0. Finally, we
show that S=S,. For k 2 0 we have, using (16),

k
SZk= Y, R(I—-k,—DZ'
=0

= ¥ all—k,—-DZ'=8,Z*

j=—c0
The preceding discussion proves the following:
THEOREM. J: @ — K is an isomorphism.

For n=1,2,..., let U, denote the set of polynomials of degree <»n which have
supnorm <1. Of course U, is the convex hull of its extreme points. Let p be an
extreme element of U,. We will show that there exists an extreme element of K which
maps Z" to p. Let K(Z",p) ={S € K| SZ" = p}. We observe that K(Z", p) is a face
of K. Thus, if we can show that K(Z", p) is non-empty, then it will follow from the
Krein-Milman theorem that K(Z", p) contains an extreme point of K. Define opera-
tors S; and S, on B by S, f(w) =n~ X n_, f(v) and S, f= fep. It follows from

Z! when h=0
S, Zni+h — ’
: {0 h=1,2,...n—1

that the operator S = S,° S, belongs to K(Z", p). This completes Example 4.
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REMARK. The interested reader may verify that, in the notation of Examples 1, 2,
and 4, we have J(Q(F,, ,,)) = K(Z",Z™), if m =1 or if n and m are relatively prime.
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