POLYNOMIAL VALUES AND ALMOST POWERS

Jan Turk

1. Introduction. For n€Z and m&€N with m =22 the m-free part of n is the
smallest positive integer a with the property that xn=ay™ for some y€Z. Let
FeZ[X] have at least two distinct zeros. We prove that if @ > 1 is the m-free part of
F(x) for some x€ Z and some m € N with m 2= 2 then @ has a certain multiplicative
structure (see Corollary 1), e.g. the greatest prime divisor P(a) of a exceeds
c; loglog a, where ¢, is a positive number depending only on F. This includes the well
known fact that P(F(x)) >c; loglog|F(x)| for |F(x)|>1. Let FEZ[X] have at
least three simple zeros and suppose that F(x) = £ab, where x€Z, a€ N and b is
some power, i.e. bE{y"|y€Z, meN, m>=2}. We prove that a cannot be small in
comparison to |F(x)|:a>1exp(c,(loglog(|F(x)|+3))!°~¢), where ¢; denotes a
positive constant depending only on F and e > 0. This includes the well-known fact
that there exist only finitely many x € Z such that F(x) is a power. We also show
that these numbers a@ are not a product of primes which are very small with respect to
|F(x)| : P(a) > c;logloglog(|F(x)|+3), where ¢; > 0 depends only on F.

2. Let FEZ[X] have at least two distinct zeros and let a€ Z, a#0.

It is well known (see, e.g., [1]) that there exist positive numbers ez and cg(a) such
that P(F(x))>erloglog|F(x)| for [F(x)|>1 and such that if F(x)=ay™, for
certain x, y € Z with |y| > 1 and some m € N, then m < cr(a). In the existing proofs
for the second result, the first result is used. This is unnecessary, in fact the first
result can be proved in the same manner as the second one, as can be seen in the
proof of Theorem 1 in this section. We also give an upper bound cg(a) for m which
is explicit in a. For completeness we state the results that we use in the proof of
Theorem 1. These results can be found in [1] as Theorem A (= Proposition),
Lemma C (= Lemma 1), while Lemma 2 is implicit in the proof of Theorem 1 in [1]
(see also [2], Lemma 4.3).

PROPOSITION. Let oy, ..., ay, where N 22, be nonzero algebraic numbers. Let
K be the smallest normal field containing o, ...,y and put d=[K:Q]. Let
Ay, ..., Ay (23) be upper bounds for the heights of «,, ..., ay, respectively. Put
Q' =1I)-"log A;, Q=9Q'log Ay. There exist positive numbers C, and C, such that
Sfor every B =2 the inequalities

0 < |afr...abv—1] <exp(—(CNd)“2"Qlog Q' log B)

have no solution in rational integers by, . . ., by with absolute values at most B.
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LEMMA 1. Let v, and vy, be algebraic integers in a field K of degree d. Then

H(—zl—) < 2d-29T] max{|oy,], |o72|)
2 4

where o runs through all isomorphic injections of K into C and H(«) denotes the
height of o.

LEMMA 2. Let K be a field of degree [ K : Q] =d. By definition, the units of K are
the algebraic integers e in K with |Ne| =1, where N= Ng,q is the norm map from K
to Q. There exist an integer r=r(K) € {0,1,...,d—1} and units g, ..., n, of K,
with ng a root of unity, such that every unit e of K is of the form e=11}_¢ 7 }’f Jor
certain b; €Z (0< j< r), while |by| < ¢y(K), some suitable number depending only
on K. Moreover, there exists a number c= c(K) such that for every oo € K there
exists a unit € of K such that 8= ea satisfies c~'|NB|"?< |oB| < c|NB|"? for every
isomorphic injection o of K into C.

THEOREM 1. Let F€ Z[X] have at least two distinct zeros and let a€ Z, a#0.
There exist positive numbers xg,c; = c,(F) and c,=c,(F), depending only on F,
such that if

{1 F(x) =ay™

with x,y, m € N and x 2 xr, with the proviso that m< log|F(x)| if y=1, then

) m< (2(w(a) +1))cl"“’(“)+”< IlIlogp) i =: cp(a),
pla

where w(a) denotes the number of distinct primes dividing a.

Proof. Write F(x) = a, I1%-,(X—o;)%i with «, ..., @, distinct and &, ..., k, €N.
We may assume that F is monic (a4,=1) in view of the following argument. Firstly,
we may assume without loss of generality that a,, is positive. It follows from (1) that
G(a,x) :=al"'F(x) = (a 'a)y™, where n is the degree of F. If the theorem has
been proved for monic polynomials then, provided x> xp:=a, 'xg, since G is
monic, m< cg(a? 'a) and the contribution of the primes dividing a, can be in-
corporated in ¢; = ¢;(F). Since a,, =1, the a;, .. ., «, are algebraic integers. Let K be
the (normal) field generated by «y, ..., a,, put d=[K:Q] and let @, ..., @, be the
distinct prime ideals of K which divide the ideal generated by a-Il;<;(e;—a;).
Assume that (1) holds for some x 2 xg, where xr 2 2 is sufficiently large, depending
only on F (how large will be apparent from the sequel). Then the prime ideal de-
composition of the integral ideal [x— ;] generated by x— «; has the form

S -
[x—e;] = [T @O (i=1,...,»)
k=1
for certain wy(i) 2 0, wi(i) € Z, where m; = m/(m, k;), with I'; = [1] if y = 1.
Choose «; and «; with o; # «;, say o and o, . Note that m,; and m, are divisible by
m*=m/(m, [k;,k,]). Hence there exist integral ideals I'}, 'y (=[1] if y=1)
in K with
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3) [x— o] = kfI EPO(IH™  (i=1,2).
=1

Note that it follows from (1) and y>1 that m* < m < (log|F(x)|) (log 2)"'< cylogx
for some c3=c;3(F). If y=1in (1) then

4) m* < m< cylogx

also holds, by assumption. Taking xr > 2max,¢;<,|;|, we have by (3) and x = xr,

5 E wi (i) log N®; + m* log NT'}
=logN[x—o;] < log(2x)? <rlogx (i=1,2).

Let h be the class number of K. By Lemma 2 there exist algebraic integers
Mis e Mgy Y1, Y2 i K (with y;=1if I'* =[1]) and a number ¢=c(K) such that

[7¢] = ®F, [vi]=(@F)*, for k=1,...,s and i=1,2 and
(6) ¢! < |oa||Na|7V4 < ¢ for every automorphism o of K and
oa €E{my,..., T, Y1, Y2)-
It follows from (3) and (6) that (x—a;)?=¢; TI5_, wfx?y™ for some unit ¢; of K

(i=1,2). Hence, by Lemma 2,

Q) (x—a)t = an"’wa"(” oi=1,2),

for certain b;(i) € Z, with |by(i)| < co(K). We now show that
3) |b(i)] <plogx for j=0,1,...,r and i=1,2.

Since ox=x and |ong| =1 for o € Aut(K) we infer from (7) that

r

s
X, (i) loglon,| = hloglx—oa| ~ X we(i) log|om| — m" log| o,
=: N\, (i) for o€ Aut(K) and i=1,2.

It follows from (6), N®; =2, NT'} > 1 that log|em| = —log ¢ and log|ay;| = —logc.
With the use of (5) we obtain that |\, (/)| <<glogx for every ¢ and i=1, 2. From the
equations (9) with r distinct o’s and Cramer’s rule it follows that (8) holds for
J=1,...,rand i=1,2. As observed already, (8) also holds for j=0. From (7) we
conclude that

(10) (x—a)t = Hn""’l‘[wwk“’a"’ (i=1,2),

where wi(i) €{0,1,..., m*—1} with wi(i) = wi(i) mod m* and |B;(i)| <m* with
B;(i) = b;(i) mod m* and sgn(B;(i)) =sgn(b;(i)), with

r - > s I . lfm
8 = v,-{ I 7/ @=5@ I1 vr,z“k""“f«"’} (i=1,2).
J= =
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We now show that the algebraic integers §; € K satisfy, for some ¢, = c4(F),
an |08;] < exp((cslogx)/m*) for o € Aut(K) and i=1,2.
By (6) and (5) we have log|oy;| <glog NT} < (logx)/m*. By (8) we have

L, (510 = 8,() loglom;| << logx.
By (6) and (5) we have
L (witi) = (i) logloml < X (wili) = (1)) Iog NO
< kf::} wi (i) log N®, <rlogx.

This proves (11). From (10) we obtain

h

x_. r s *

(12) ( a2> —1= T i@ =8 T ape@=oxD) (5, /5, )m" — 1.
X— o Jj=0 k=1

Taking xp> [(ay— ;) (1—¢) 71| for every {#1 with {#=1, we have, for x> xp,
that the expression in (12) is nonzero. Assuming that m* >1 we apply the proposi-
tion to the right-hand side of (12), with N=r+s5+2, a;=9;_; for 1<i<r+1,
Opyy ey AN_] = MMy .e..y Ty, QN = 62/61 and B=m*. Put w = w(aDp), where
DF=N(H,-<j(a,-—aj)). Then NS d—1+dw+2< (d+1)(w+1). Also H(a;) < ¢cs=
¢cs(K)=:A,; for 1<i<r+1. By Lemma 1 and (6) we have

H(my) < 2d-29TI max{|omy|,1} < 2d-29- c9(N®)"

’ < p(k)e =:Ar+k+1 (1< k<s)

for some cg = c4(K), where p(k) is the rational prime in ®;. Note that the number
of distinct k£ with p(k) = p is at most d for every prime p. By Lemma 1 and (11) we
have

H(8,/8,) < 2d-29T] max{|a8,|, |68;|} < 2d-29exp((dcy logx)/m*)

’ < exp((¢; logx)/m*) =: Ay,

where we used (4) in the last inequality. It follows from the proposition that

X — Oy )h-—l
X— oy

d
>exp(—(Cld(d+1)(w+1))c2(d+l)(“’+”cs-< II 1ogp>

-(logcs +d % loglogp) - (log x) (m*)~log m*)

plaDp

for some cg = cg(K). On the other hand, for x 2 x5, with xr sufficiently large,

h h
x_az)—l 1+————°“—°‘2) ~1
X— oy X— oy

< cgx7! < exp(—logx).
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Combining these estimates for |[((x—a,)/(x—a;))"—1| we obtain, for some large
10 = C1o(F), J
m*=1 or m*/logm* < (2(w+1))‘:10(“’+1)( II logp) (1 Lk loglogp).
plaDg plaDg
Finally observe that m < [k;, k] m* = ¢;ym*. This implies that (2) holds for every

¢, > d, provided that ¢, = ¢, (F) is sufficiently large (we also incorporate the primes
dividing Df in ¢;(F)). a

REMARK. If y=1in (1) then one can, more naturally, apply the proposition to the
right hand side of (7) with y;=1, with N=r+s+1, B=cglogx (cf. (8) and (5)).

The condition x> xr in Theorem 1 can actually be omitted if one takes c;(F)
sufficiently large: if (1) holds with x < xg then

m < cp(F) == max log|F(x)|/log?2.
I<sx<xp

3. Definition. Let m € N with m >2. The m-free part of an integer n is the
smallest positive integer a with the property that £n=ay”™ for some y € Z.

We recall that the number of distinct prime divisors of a positive integer a is
denoted by w(a) and the greatest prime divisor of a>1 by P(a), while P(1) =1.

COROLLARY 1. Let Fe€Z[X] have at least two distinct zeros. There exist positive
numbers €, and 6, , depending only on F, with the following property. Let a € N with
a =3 be the m-free part of F(x) for some x € Z and some m € N with m 2 2. Then

(i) w(a) > 6;(logloga)(loglogloga)™!
(13) or
(i) P(a) > exp(d;(logloga)(loglogloga)™).

In particular

(14) P(a) > ¢ logloga.

Proof. Since w(a) 21 and P(a) =22 we may assume that @ > @, where g, is some
large number depending only on F, since for the remaining values of @ the inequali-
ties (13) and (14) are valid if we take 6, > 0 and ¢, > 0 sufficiently small. Observe that
cr(a) in (2) satisfies

(15)  cp(a) € ((w(a) +1)log3P(a))o @+ (for every a € Z, a # 0)
for some ¢y = cy(F). Since a is m-free we have
(16) a< I‘Ipm—l < P(a)(m—l)w(a).

pla

We have F(x) = ay™ for some x, y € Z. We may assume that F(x) = ay™ with x =0
and y € N (by considering also +F(—x)). Since a > a,, we have x 2 xg. If y> 1 then,
by Theorem 1, m< cr(a) and it follows from (15) and (16) that

(17 ((w(a) + 1) log3P(a))c @+ > |oga,
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where c=c¢y+1. If y=1 then it follows from (2) with m = [log F(x)] = [loga] and
(15), that (17) also holds in this case. If w(a) < log P(a) then it follows from (17)
that (13)(ii) holds and if w(a) >log P(a) then (13)(i) follows from (17). The inequal-
ity (14) is a direct consequence of (13) and w(a) < w(P(a)) < 2P(a)(log P(a))~! for
a>1, where 7w(x) denotes the number of primes not exceeding x. O

REMARKS. If a€ N is the m-free part of some integer for some m =2 then
P(a)>1(m—1)""loga, since a< Ty, p™ ' < < pay p™ 1 < eXm=DP@ (the con-
stant % cannot be replaced by a constant larger than 1 in view of the m-free numbers
of the form a= Hpspp'"“l). So if a is the m-free part of some integer for some m
(=2) which is small with respect to @ then we have a nontrivial lower bound for
P(a), e.g., if m<(2¢)~!(loga)(logloga)~! then P(a) > elogloga. The inequality
(14) of Corollary 1 states that if a>1 is the m-free part of an integer of the
form F(x), where FE€ Z[ X] has at least two distinct zeros, then P(a) > elogloga
holds regardless of the value of m (>2), with e=¢,;(F). Note that this includes
that P(F(x)) > ¢,(F)loglog|F(x)| for |F(x)| > 1 (take a = |F(x)| and m =
[(log|F(x)|)(log2)"'1+1). As observed already, the inequalities for w(a) and
P(a) in (13) and (14) are trivial for small values of a, i.e. a< ay(F). By the well-
known theorem of Schinzel and Tijdeman [1] these values for @ can only occur for
|x| < x, provided that F has at least three simple zeros. See also, Theorem 2, (22).

4. Let FE€ Z[ X] have at least three simple zeros.
Suppose that

(18) F(x) = xay™

where x, y,a, m € N with m 2 2. Let a,, denote the m-free part of a. SprindZuk (see
[1]) obtained the following upper bound for x when m=2 in (18):

(19) x < exp((2a,)¢F') when m=2 in (18).

In [2] Sprindzuk investigated the equations (18) with m = 3. It follows from his
results that when m 23 in (18):

(20) x < exp(c(2a,,)*™™)

where n is the degree of F and c is an effectively computable number depending only
on F and m. We need to know how ¢ depends on m. Estimating the relevant con-
stants occurring in his proof we find that (20) holds with c=c(F )'"5, e.g., with
c(F)= (2H)C0”4, where H is the height of F and C, is an absolute constant. The
dependency of the bound in (20) on m can be removed with the use of Theorem 1.

THEOREM 2. Let F€ Z[ X] have at least three simple zeros. There exist positive
numbers C, ¢y, ¢, ¢3, depending only on F, with the following properties. Let x € Z
and suppose that F(x) = xab where a € N and b is some power. Then

21 ((w(a) +1) log3P(a))C «@+D > Joglog( |F(x)| +3).
In particular

(22) a> i(loglog(|F(x)| +3))%



POLYNOMIAL VALUES AND ALMOST POWERS 219

(23) P(a) > cylogloglog( |F(x)| + 3).

Proof. To prove (21) we may assume that x = xp (by taking c= c(F) sufficiently
large) and that F(x) = xay™ for some m,y € N with y>1 and m>1 (if y=1 then
(21) follows from Theorem 1 and (15)). The inequality (21) follows now from (20)
and a,, < P(a)™@ (see (16)) and (2) and (15). To prove (22) from (21) it is sufficient
to observe that P(a) < a and w(a) < (loga)(logloga)™! for a>2. Finally, (23)
follows from (21) noting that w(a) < 7(P(a)) << P(a)(log P(a))~! for a> 1. O

Finally we formulate some of our results somewhat differently.

DEFINITION. For nonnegative integers n let a(n) be the smallest positive integer a
with the property that n= ab for some power b, i.e. for some b=y with y € Z and
me€N with m 2 2.

Clearly, for n € N we have 1< a(n) < n and a(n) =1 if and only if n is a power,
while a(n) = n if and only if # is not divisible by a power exceeding 1 (i.e. n is square
free).

DEFINITION. Let ¢ be a nondecreasing function defined on Z. An integer n 20 is
called a ¢-almost power if 1<a(n) < ¢(n), i.e. if there exist a power b= y™
(m =22) and an (m-free) integer a with 1 <a< ¢(n) such that n=ab.

A different, perhaps more natural, definition of a ¢-almost power results if we
replace 1 <a< ¢(n) by 1 <P(a)< ¢(n). (Equivalently, n is a ¢-almost power if
there is a m € N with m 22 such that v,(n) € mZ for p> ¢(n) but not for all
primes p).

We shall refer to these notions as ¢-almost power in the first sense and ¢-almost
power in the second sense, respectively.

The following corollary shows that the function n — a(n) restricted to the integers
n=|F(x)|, x € Z, where F € Z[ X] has at least two distinct zeros, has in its range no
integers a which are a product of primes that are small in comparison to a. Also, if F
has at least three simple zeros, |F(x)|, x € Z, is never a ¢-almost power, in both
senses, for appropriate ¢.

COROLLARY 2. Let FE€Z[X] have at least two distinct zeros. Then
(24) P(a(n)) > cyloglog(a(n) +1) for ne€ (|F(x)|:x € Z},

where ¢, is a positive number depending only on F.
Let FEZ[X] have at least three simple zeros. For n€Z, n 2 O we write

é1(n) = 5(10glog(n+3))‘l, ¢,(n) = c;3 logloglog(n+ 3).
Let x€Z. Then

|F(x)| is not an ¢|-almost power in the first sense.
|F(x)| is not an ¢,-almost power in the second sense.

Proof. If a(n) =24 then (24), with ¢y < %e, , follows from Corollary 1, (14), since
a(n) is the m-free part of n for some m>2. For 1< a(n) <3 the 1nequa11ty (24)
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trivially holds if ¢y <1, say. The other assertions are merely restatements of (22)
and (23). ‘ a

Added in proof. The bound cg(a) for m given in Theorem 1 depends only on the
prime divisors of a. One also has the bound m < crlog 3|a| loglog 3|e|, which can be
obtained likewise by not splitting a in its prime factors. Consequently the bound in
(22) can be improved to a> ] exp(c; (loglog( |F(x)|+3))!°~¢), and one can take ¢,
in Corollary 2 accordingly. I am grateful to Prof. V. G. Sprindzuk for pointing this
out to me.
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