SURFACE SYMMETRY 1 )

Allan L. Edmonds

1. Introduction. Let G be a finite group and consider a free, orientation-preserving
action ¢ of G on a closed, oriented, connected surface M. There is one well-known
invariant of such an action, namely its class [M, ¢] in the free, oriented G-bordism
group Of¢¢(G). This invariant, and other concepts introduced here, are explained in
more detail in Section 2. For the present, O (G) can be identified with the homol-
ogy group H,(G; Z) or the bordism group Q,(K(G,1)).

THEOREM 1.1. Two free orientation-preserving actions ¢, and ¢, of a finite
abelian group G on a closed, oriented, connected surface M are equivalent by
an equivariant, orientation-preserving homeomorphism if and only if [M,¢,]=
[M, $,] in OF(G).

Theorem 1.1 is proved by classifying appropriate covering spaces using a purely
algebraic result of independent interest. Let V denote a symplectic inner product
space over the integers Z. In the absence of mention to the contrary we adhere to the
basic definitions about inner product spaces found in [5; Chapter 1]. Then Aut V'
acts on the set Epi( ¥, G) of epimorphisms from V to G.

THEOREM 1.2. If G is a finite abelian group and V is a symplectic inner product
space over Z, then there is an injection Epi(V, G)/Aut V—>H,(G;Z).

To prove Theorem 1.2 we extend the result known as Witt’s Theorem, which states
that an isometric embedding U— V of a free summand U of a symplectic inner
product space V over field R is the restriction of an isometry of V [1; p. (2)], to the
analogous statement when R is any local ring. This is undoubtedly known to some,
but we are aware of no clear statement in the literature. The reason is that such
results are usually given in the more difficult context of symmetric inner product
spaces; and in this case the analogous extension to a local ring is valid only if 2 is a
unit [5; p. 9].

Now consider the case of an arbitrary, effective, orientation-preserving action ¢ of
a finite group G on the surface M. Another obvious invariant is the set D of fixed
point data of ¢. In the case of smooth actions, D consists of the local representations
of the isotropy groups G,, for each x in the singular set, which consists of all points
with nontrivial isotropy group. In the general case of an oriented surface with orien-
tation-preserving action, the isotropy groups G, are all cyclic, and the set O of fixed
point data is given as a set (with multiplicities) of conjugacy classes in G of gener-
ators for these isotropy groups G,, one for each singular orbit. The point is that O
describes the action of G in a neighborhood of the singular set for the action. When
G is abelian, D becomes an unordered set of nontrivial, not necessarily distinct,
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elements of G with product the identity. In this case the elements of O generate a
well-defined subgroup H(®), and ¢ induces a free action ¢ of G/H(D) on the orbit
surface M/(¢| H(D)). Then there is the following general classification theorem.

THEOREM 1.3. An effective, orientation-preserving action ¢ of a finite abelian
group G on a connected, closed, oriented surface M is determined, up to orientation-
preserving, equivariant homeomorphism by two invariants:

(i) the fixed point data O of ¢ and

(ii) the free cobordism class of the induced free action of G/H(D) on
M/(¢| H(D)).

Invariant (ii) can be identified with an element of H,(G/H(D); Z). Alternatively
it can be interpreted as a restricted G-cobordism class of ¢ itself, where each point of
the singular set of a G-cobordism is required to have isotropy group lying within
H(D).

When G is a finite cyclic group Z/n, then, since H,(Z/n;Z) =0, Theorem 1.3
specializes to give the result of J. Nielsen [6] that an action of Z/n is determined by
its fixed point data.

When G= (Z/p)", p prime, and the genus of M is sufficiently big with respect to
r, Theorem 1.3 can be inferred from the computational results of P. A. Smith in [7].

In outline the remainder of this paper is as follows. In Section 2 we translate the
problem of classifying free G-actions on a given surface into that of classifying the
connected G-covering spaces of a given surface, as in [7]. We also define and inter-
pret the basic invariant in O7(G) = H,(G;Z) in a purely algebraic way. In Section
3 we prove the version of Witt’s Theorem for symplectic inner product spaces over a
local ring. In Section 4, Theorem 1.2 is proved, completing the proof of Theorem
1.1. In Section 5, these results are extended to prove Theorem 1.3. Finally, in Section
6 we briefly discuss the case of nonabelian groups G, to be considered in more detail
in a sequel to this paper.

2. Free actions and covering spaces. Let F@ (G, M) denote the set of free, orienta-
tion-preserving actions of the finite group G on the connected, closed, oriented
surface M. Thus FQ(G, M) consists of injective homomorphisms ¢ : G — JC(M),
where JC(M) denotes the group of all orientation-preserving homeomorphisms of
M, and each ¢(g), g#e, has no fixed points. The action of JC(M) on itself by
conjugation induces an action of JC(M) on FQ(G, M). The collection FQR(G, M) *
of 3C(M)-orbits is the set of equivalence classes of free actions of G on M.

It follows from the classification of surfaces and the multiplicativity of the Euler
characteristic in a covering that the orbit spaces M/¢, ¢E€EFQR(G, M), are all
oriented and orientation-preserving homeomorphic to a given closed, oriented
surface N. Therefore, modulo the action of JC(M), one can assign to each
P EFQR(G, M) a connected G-covering of N. Let Cov(G,N) denote the set of all
such connected G-coverings of N. The pullback construction defines an action of
JC(N) on Cov(G,N); let Cov(G,N)* denote the set of JC(NN)-orbits, the set of
equivalence classes of connected, regular coverings of N with group G.

LEMMA 2.1. There is a bijection FQ(G,M)* <—> Cov(G, N)*.
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The proof is not difficult (cf. [7; pp. 257-259)).
Fix a base point xy € N. Let Epi(A, B) denote the group of epimorphisms of the
group A onto the group B.

LEMMA 2.2. There is a bijection Cov(G, N) <—> Epi(n(N, xp), G).

The proof is an exercise in covering space theory and is omitted.

If two G-coverings of N are equivalent, it follows from the homogeneity of sur-
faces and the homotopy lifting property of coverings that the two coverings are
equivalent via a base point preserving homeomorphism of N.

Let JC(N, xy) denote the group of base point preserving, orientation-preserving
homeomorphisms of N. Then there is an induced homomorphism

JC(N, x9) — Aut(m (N, xp))

which is surjective. (Since N=S? or is aspherical, any automorphism of (N, xg)
can be realized by a based homotopy equivalence; by results due originally to
Nielsen, this homotopy equivalence is homotopic to a homeomorphism. See
[3; 13.1] for a reasonably simple proof of this fact.) Now Aut(m; (N, Xx,)) acts on
Epi(7; (N, xy), G) by pre-composition: «-¢ = ¢oa~1. Let Epi(w, G)* denote the set
of Aut(w)-orbits. These remarks provide a proof of the following lemma.

LEMMA 2.3. There is a bijection Cov(G, N)* <—> Epi(7,(N, X)), G)*.

Let Of°(G) denote the set of free, oriented G-cobordism classes of free oriented
G-surfaces. (See [2], for example.) There is then the bordism invariant

B:FR(G, M) — 0 (G),

which factors through FQ@(G, M) *. From the point of view of covering spaces one

obtains a similar bordism invariant B: Cov(G,N) — Q,(K(G, 1)) where K(G,1)

denotes an Eilenberg-MacLane space of type (G, 1). Here B assigns to a G-covering

the oriented cobordism class of the classifying map N— K(G, 1) of the covering.
Now one can see directly or via the bordism spectral sequence that

0 (K(G,1)) = Hy(K(G,1);Z) = Hy(G; Z).
In terms of Epi, then, we obtain
B:Epi(7 (N, xy),G) > H,(G; 7).

If ¢:7,(N,x,) > G and ¢ : N> K(G, 1) is the corresponding map of spaces, then
B(¢) = (&J)*[N], where [N] € H,(N;Z) is the fundamental class of the oriented
manifold N.

All three versions of B factor through the corresponding sets of equivalence classes,
yielding for example, B* : Epi(7, (N, Xxy),G)* = H,(G; Z).

Of course, in this context B and B* are well-defined on the larger domains
Hom(m (N, xy),G) and Hom(=, (N, xy), G)*.

Now suppose that G is a finite abelian group. Then

Epi(’lrl(N9x0) ’ G) zEpi(Hl(N)yG)’
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since the Hurewicz homomorphism identifies H,(N) as the abelianization of
w1 (N, Xxy). (Throughout this paper all homology groups are understood to have
integer coefficients.) Then H,;(N) is a symplectic inner product space over Z, using
intersection numbers. The Hurewicz homomorphism induces a surjection

Aut(m(N,xy)) —> Aut(H;(N)),

where Aut(H;(N)) denotes the group of isometries of H,(N) and consists of those
isomorphisms of the group H,(N) which are induced by homeomorphisms. (Essen-
tially, one constructs explicit generators for Aut(H;(N)), and then one shows that
these generators can be realized by Dehn twist homeomorphisms about appropriate
simple closed curves. Cf. [4; p. 178].) Then Aut(H,;(N)) acts on Epi(H,;(N),G),
and there is an induced bijection

Epi(7(N,X),G)* <—> Epi(H;(N),G)*.

Since symplectic inner product spaces V over the integers correspond exactly to the
inner product spaces H;(N),N a closed oriented surface, we obtain the following
precise version of Theorem 1.2 stated in the introduction.

THEOREM 2.4. Let V be a symplectic inner product space over Z. Then the
bordism invariant B induces an injection B* : Epi(V, G)* >—> H,(G), provided G
is a finite abelian group.

REMARK 2.5. We shall also see that B* is surjective if and only if dim V' > 2rank G,
where rank G is the minimum cardinality of generating sets for G.

The remainder of this section is devoted to characterizing when B(¢,;) =B(¢,) in
H,(G), for ¢, ¢, EEpi(H;(N), G) and to reformulating Theorem 2.4 one last time
into the statement which will be proved in Section 4. We note that for this part of the
discussion N denotes a closed, oriented surface which need not be connected.

Let G=Z/m; XZ/myX ---xZ/m, where m;,,|m; for i=1,...,r—1 (and r=
rank G). Then Hom(V, G) =1/ Hom(V, Z/m;). Therefore any homomorphism
¢ : V— G can be uniquely expressed as (¢‘) in terms of its r coordinate functions.

Now V/m; is an inner product space over Z/m; and as such is canonically iso-
morphic to Hom(V/m;, Z/m;) =Hom(V,Z/m;), by the correspondence v—>¢,,
where ¢,(w)=v-w. Thus Hom(V,Z/m;) becomes an inner product space over
Z/m; in a natural way. If ¢ = (¢) : ¥— G, then the expression ¢‘- ¢’ makes sense,
by appropriate reduction of coefficients, in Z/m;, if i< .

PROPOSITION 2.6. Let ¢,,¢, € Hom(H,(N),G), where N is a closed, oriented
surface_and G;Z(ml X -+ XZ/m, as above. If B(¢,) =B(¢,) in H,(G), then for
i<J, ¢i-¢{ =5 ¢4 in Z/m;.

REMARK 2.7. In particular, for ¢ €EHom(H,(N),G), B(¢) determines the (g)
numbers ¢+ ¢’ in Z/m;, i <j.

Proof of Propositio;_r 2:6. First let ¢ € Hom(H,(N), G) such that B(¢) = 0.
We shall show that ¢'-¢/=0 in Z/m,~. Since B(¢) =0, the corresponding map
$:N—>K(G,1) extends to a map §: V—>K(G, 1) where V is a compact, oriented
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3-manifold with oriented boundary N. It is a standard consequence of Poincaré
duality that there is a symplectic basis ay, ...,qa,, by, ...,b, for H,(N) such that
i,(ag) =0, k=1,...,n, where i: N—V is the inclusion. Then each ¢’ is a linear
combination of b}, ...,b} only, and hence ¢'-¢/ =0 in Z/m;.

More generally, suppose ¢,, ¢, € Hom(H,;(N),G) such that B(¢,;) =B(¢,).
Let ¢, denote ¢, in Hom(H,(N), G), where N denotes N with the opposite orienta-
tion. Then ¢4- ¢ = —¢i-¢3. Consider ¢; ® ¢, € Hom(H, (NI N),G). It follows
that B(¢; @ ¢,) =B(¢;) —B(#,) =0, so that the first case shows that

(61 D) - (61D ) =0.

But (¢, @ ¢,)* = qS{‘@q@ﬂ‘, and since NN N= @, ¢*- ¢4 =0 and ¢i- ¢ =0, it follows
that ¢{-¢{ = ¢3- ¢4 in Z/m;, as required. O

Using Proposition 2.6 we can at last formulate Theorems 1.2 and 2.4 in the ver-
sion to be proved in Section 4, without any reference to homology.

THEOREM 2.8. Let V be a symplectic inner product space over Z; let
G=Z/m XZ/myX -+ XZ/m,,

where m;,, | m; for i<r; and let ¢, ¢, € Epi(V, G): Then there exists o € Aut V
such that ¢, = ¢y °c if and only if, for 1 <i<j<r, ¢{-¢1 =3¢ in Z/m;.

REMARK 2.9. It follows from Theorem 2.8 that the converse of Proposition 2.6
is true.

3. Witt’s Theorem over a local ring. In this section we prove the following gen-
eralization of Witt’s Theorem.

THEOREM 3.1. Let V be a symplectic inner product space over a local ring R, and
let U, and U, be free R-module summands of V. Then any isometry U, — U,
extends to an isometry of V.

When R is a field this is proved, for example, in Artin [1; p. 121]. We shall estab-
lish some formalism for reducing the general case to that of a field. This formalism
will be used in Section 4 as well.

A Witt problem in the symplectic inner product space V consists of r independent
vectors x,X,, ..., X, spanning a free summand of V of dimension r and r+1 inde-
pendent vectors y;,¥,, ...,¥,4+; spanning a free summand of V of dimension r+1
such that x;-x; =y;-y; for i,j< r. A solution of the Witt problem {x;, y;} is a vector
X,+1 € V such that

() XpXpe1=YiVre1, i<r, and

(i) x;,...,Xx,4; spans a free summand of V of dimension r+1.

If x,,, satisfies (i), then x,, is called a partial solution.

Now Theorem 3.1 is equivalent to the assertion that all Witt problems are
solvable.

In the following lemmas all rings are understood to be commutative and have a
unit element. All ring homomorphisms must preserve the unit elements.
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LEMMA 3.2. Let V be a symplectic inner product space over a ring R, and let
R — S be a ring homomorphism (mapping unit element to unit element). Then the
induced homomorphism V—SQgV maps Witt problems in V to Witt problems in
SQrV, where SQrV is given the induced inner product.

The proof is clear, since S®g— preserves free summands.

LEMMA 3.3. Let W be a free summand of a symplectic inner product space V over
a ring R. Let p: R — S be a ring homomorphism. Then SQr(W*)=(SQrW)* in
SQrV.

Proof. By definition W+ is given by a short exact sequence
' 0> Wt >V —> Homg(W,R) >0

which splits since Homg( W, R) is free over R. This leads to a commutative diagram
with exact rows:

0> SW' - SRV — S®Homzx(W,R) -0

be=lp |
0> (S®W)* 5> S®V - Homg(SRQW,S) =0

The middle vertical arrow 8 is the identity and the left one « is an inclusion. The
right one v is sQf =g where g(tQw) =stpo(f(w)).

Now S®Homg(W,R) and Homg(S® W, S) are both free S-modules, and v is
easily seen to induce a bijection between the bases constructed from an R-basis of
W. Thus v is an isomorphism. Therefore « is also an isomorphism, as required. O

LEMMA 3.4. Let R — S be a ring epimorphism, let V be a symplectic inner product
space over R, and let {x;,y;} be a Witt problem in V which has a partial solution.
Then the set of partial solutions in V maps onto the set of partial solutions of the
induced Witt problem {Xx;,y;} in SQrV.

Proof. Any two partial solutions in ¥V of the given Witt problem differ by an ele-
ment of {x;,...,x, ) ={vEV:v-x;=0,i=1,...,r}, which thus parametrizes the
set of partial solutions. The image X,,, in S®z V of a partial solution x,,; in Vis
clearly a partial solution of the induced Witt problem {X;, y;}. Therefore the set of

partial solutions of the induced Witt problem is parametrized by (¥,, ...,X,)>*. But
under V> S®gV, {x,...,x,>> maps onto {(X;,...,%X,)" by Lemma 3.3. The
result follows. O

Proof of Theorem 3.1. It suffices to show that any Witt problem {x,,...,x,;
Y1, .-->»Yr+1} In the symplectic inner product space V over the local ring R has a
solution. Let R — F be the projection of R onto the field obtained by dividing out
the maximal ideal of nonunits.

We first show that the Witt problem has partial solutions. We seek x,,; such that
Xi*Xpr1=Yi*Vr+1 fOr i<r. If V has dimension n=2m and we fix a symplectic basis

ey, ...,e, with respect to which the form has matrix (_‘; ;), this amounts to 7

equations in #» unknowns. Let x; = ¥ a;e; and ¢;=y;-y,+;. Then we have the system
of equations Ax=c, where ’
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—A,m+1 A, m+2 - Ty Ay Q13 ... Ay
4= . : . .. .

A, m+1 4, m+2 oo A Qn Gpy ... Gy

The matrix A has rank r, since it is equivalent to the matrix

ay ... Qi
: )
an ...
and {x;,...,x,} forms a basis for a free summand of V. Therefore Ax= ¢ has solu-

tions, and the given Witt problem has partial solutions.

On the other hand, the induced Witt problem {X;; ;} in FQgV has solutions by
the classical Witt Theorem. By Lemma 3.4 there is a partial solution x,,; of the
original problem whose image X,,; is a solution of the induced problem. We claim
that x,,; actually solves the given Witt problem. It suffices to show that the
2nXx (r+1) matrix given by (x;,X,,...,X,4;) has rank r+1. The induced matrix
(¥1,%3,...,X%41) has rank r+1 since X, ; solves the induced Witt problem. That is,
some (r+1) X (r+1) submatrix has nonzero determinant in F. But then the cor-
responding submatrix over R has unit determinant, completing the proof. O

We shall use the following slightly stronger statement.

COROLLARY 3.5. Let { X1, ..., X3 Y15 -..,Yrs1} be a Witt problem in a symplectic
inner product space V over a local ring R. Let R— S be an epimorphism of local
rings. Then the given Witt problem has solutions, and the set of solutions maps onto
the set of solutions of the induced Witt problem in SQV.

The proof of the first clause is explicitly given above. The proof of the second
clause is obtained from the final paragraph of the proof of Theorem 3.1 by replacing
references to the field F with references to S.

4. Proof of the free classification theorem. After two lemmas, the proof of
Theorem 2.8 is given in three stages.

In this section, V denotes a symplectic inner product space over Z of dimension 2n
and V/m denotes Z/m&V.

LEMMA 4.1. Reduction modulo an integer m, p:V— V/m, induces a surjection
Aut( V) —> Aut(V/m)—i.e. Sp,,(Z) —>> Sp,,(Z/m).

Proof. 1t suffices to show that any symplectic basis a;, ...,a,, by, ..., b, of V/m
is the image of some symplectic basis a{, ...,a,, b{, ..., b, of V. Choose aj to be
any indivisible element of V such that p(aj) =a,. Let ¢; € V such that a{-¢; =1 and
let d; € V be any indivisible element such that p(d,;) = b,. Then a;-d, = km+1 for
some k. Set b{=d;—kmc,. Then p(b{)=p(d,) =b;, and a{-b;=1. Since the
orthogonal splittings V= (ay, b{Y® (a{, b{)* and

Vim = (al,b])@(az,...,a,,,bz,...,b,,)

respect reduction modulo m, an induction on dimension completes the proof. O
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LEMMA 4.2. If the positive integer m has prime factorization m=p%1 ... p¥s, then
the reductions p;: V/m— V/p¥ induce an isomorphism Aut(V/m) = @; Aut(V/pki)
—i.e. Spyu(Z/m) = @; Span(Z/p}i).

Proof. Certainly on the level of finite abelian groups, V,, splits as the direct sum
of its primary components: ¥/m= @ V/pki. Any automorphism of V/m respects
this splitting and induces automorphisms of the primary components. On the other
hand the inner product on V/m is identified with the sum of the inner products of
the primary components. Thus the direct sum of isometries ¥/p}i — V/pki yields an
isometry of V/m, as required. O

1. Reduction of the general case to that of a p-group. Let G be an arbitrary finite
abelian group of order m=pf{i...pk. Let G;C G be the pi-primary component of
G, so that G= G| X - - - X G;. Then there is a commutative diagram

Epi(V,G) S [1Epi(V,G))
= | = |
Epi(V/m, G) — [1Epi(V/pki, G;)

in which the vertical arrows are bijections induced by reduction of coefficients, and
the horizontal arrows are bijections induced by the projections of G and V/m onto
their primary components.

There is an induced commutative diagram obtained by dividing out the actions of
Aut V, Aut V/m, and Aut V/pki, i=1,...,s:

Epi(V, G)* — [1Epi(V, G)*
) )
Epi(V/m, G)* — [1Epi(V/pki,G;)*

By Lemma 3.1 the vertical arrows are bijections. By Lemma 3.2 the lower horizontal
arrow is a bijection. It follows that Epi(V, G)* =11, Epi(V, G;)*.

On the other hand,.if G=2Z/m; X ---xX2Z/m,, where each m;,,|m;, and
$1, ¢, € Epi(V, G), then there are the components ¢!, ..., ¢]and ¢1, ..., ¢} deter-
mined by the projections of G onto each Z/m;. Also each ¢} has its pj-primary
component ¢y.

Now ¢7-¢¥ is the p;-primary component of ¢%-¢% in Z/my, for i<[ It follows
that, for i</, ¢}- ¢} = ¢}- ¢} in Z/m, if and only if ¢V ¢V = ¢¥- ¢4 in the p;-primary
part of Z/m, for all j. In particular, the left vertical arrow in the following commuta-
tive diagram of natural transformations is an isomorphism.

Epi(V,G)* % H,(G)

= l = l,
IEpi(V, G * 5 T1Hy(G)
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The right vertical arrow is an isomorphism by the Kunneth formula. Therefore the
lower arrow is injective if and only if the upper arrow is injective, which completes
the proof of the reduction to the p-primary case. O

I1. Reduction of the p-group case to that of G=(Z/p*)". Suppose that G =
Z/p*1x -« xZ/p* where pis a prime and k, 2k, >--- > k,. Let

G=1Z/p 1 xZ/p*r x - x Z/p*1 = (Z/pF1)".

Then there is a natural surjective homomorphism G—> G. Given any ¢ €Epi(V, G),
there is always a lift ¢: V— G since V is free. Such a lift ¢ is automatically an
epimorphism in this situation: one must verify that the induced homomorphism
V/p*1 — G has rank r over Z/p*1 and this follows since the further induced homo-
morphism V/p* —Z/p*rx - - . x Z/p*r has rank r over Z/p*r.

It suffices to show that if ¢;,¢, € Epi(V, G), with B(¢;) = B(¢,), and
&, € Epi(V, G) is a lift of ¢,, then there is a lift ¢, € Epi(V, G) of ¢, such that
B(¢)) =B(¢,).

A straightforward inductive argument, lifting one coordinate function one step at
a time reduces one to the case when G = Z/p*x ---xZ/p*xZ/p', | < k, and
G=Z/p*x ---xZ/p*xZ/p*, each of s factors, say. Given ¢;, ¢, and @,, the
problem of finding d~>2 is a Witt problem in the inner product space Hom(V, G), of
the sort discussed in Section 3. Each of ¢,, ¢,, and ¢, has s components. The first
s—1 components of ¢, are necessarily those of ¢,. To find @3 is a Witt problem over
Z/p* which has a solution ¢3 over Z/p’. By Corollary 3.5, there is a choice of ¢3
which maps to ¢35 and solves the Witt problem, as required. ]

I11. Completion of the proof of Theorem 2.8 when G = (Z/p*)". Let
¢1,92 € Epi(V, G)

with components ¢/, (m =1,2; 1<i<r) and suppose that ¢{-¢f = ¢}-¢4 for
1<i<j<r. Then ¢, ..., ¢7and ¢, ..., ¢} each span free r-dimensional summands
of the symplectic inner product space Hom(V, Z/p*) = Hom(V/p*, Z/p*) over the
local ring Z/p*. Let ¢}, : V/p*— Z/p* denote the epimorphism induced by ¢/, for
m=1,2 and 1< i< r. By Theorem 3.1 there is an automorphism v of Hom(V/p*, Z/p*)
such that y(¢}) =@} for i=1, ..., r. Since V/p* and Hom(V/p*, Z/p*) are natur-
ally isomorphic as inner product spaces over Z/p¥, v is induced by an isometry S
such that ¢t-B=¢} for i=1,...,r. By Lemma 4.1, 8 is induced by an isometry «
of V. Then ¢joax=¢}{ for 1<i<r. This completes the proof of Step III and of
Theorem 2.8. O

The remainder of this section is devoted to determining when the bordism invar-
iant B: Epi(V, G) — H,(G) is surjective.

PROPOSITION 4.3. If the zero element 0 € H,(G) lies in the image of B, then
dim V 2 2rank G.

Proof. Let ¢ : V—>>> G such that B(¢) =0. Realize ¢ by a map &:NﬁK(G, 1),
where N is a closed, oriented surface with H;(N) = V. Since B(¢) =0, ¢ extends to
amap ¢: W—K(G,1) where W is a compact, oriented 3-manifold with oriented
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boundary N. It is a standard consequence of Poincaré-Lefschetz duality that there is

a symplectic basis ay, ...,a,, by, ...,b, for H;(N) such that i,(a;) =0, 1<j<n.
Identifying V' with H,(N), it follows that ¢(a;) =0, 1 <j< n. Therefore G is gener-
ated by ¢(by), ..., ¢(b,). Thus n Zrank G, as required. O

PROPOSITION 4.4. If dim V 2 2rank G, then B : Epi(V, G} — H,(G) is surjective.

Proof. By the commutative diagram in Step I of the proof of Theorem 2.8 one can
assume that G is p-primary for some prime p. Suppose G is the p-group considered
in that proof, Step II. Then H,(G) — H,(G) is surjective. Therefore it suffices to
prove the result for G= G. That is, we may assume G = (Z/p*)".

Given a collection {¢;; €Z/p¥:1<i<j<r) of ;) integers modulo p¥, one must
construct an epimorphism ¢ : V' — G such that ¢'-¢/ =¢;; for all i, j. Let oy, ..., 0,
71, ..., T, be a symplectic basis for Hom(V, Z/p*) over Z/p*. Fori=1,...,r<n,
set ¢'=7;+ Ljcx tiox. Then if i <j,

(f)l(b]: <T,-+ E t,-kak) '(Tj"’ E tj10'[> - tijaj'Tj = tij'
k>i 1>j

Matrix considerations show ¢!,...,¢" span a free r-dimensional summand of
Hom(V, Z/p*) and define the desired element of Epi(V, G). O

REMARK 4.5. The action of Aut(¥V) on Epi(V,G) extends to an action of
Aut(V) X Aut(G). Similarly Aut(G) acts on H,(G). The naturality of B implies
that there is an induced injection Aut( V)\Epi(V, G)/Aut(G) >—> H,(G)/Aut(G).
The term Aut(V)\Epi(V, G)/Aut(G) corresponds to the ‘“weak’’ equivalence classes
of free G actions on the appropriate surface. In any specific case one can compute
H,(G)/Aut(G). For example, if G=(Z/p)’, p prime, then H,(G)/Aut(G) con-
sists of exactly 2 elements, detected by bordism. Thus, in this case, a given surface
admits 0, 1, or 2 weak equivalence classes of free G actions.

5. The general classification theorem. In this section we reformulate, prove, and
interpret the general classification of finite abelian group actions on surfaces via
fixed point data and appropriate equivariant cobordism class.

Let G be an arbitrary finite group and let ¢ be an effective, orientation-preserving
action of G on a connected, closed, oriented surface M. The singular set S= S is the
set of points of M with nontrivial isotropy group; the branch set B= B, is the image
of S in the orbit surface N=M/¢. The G-branched covering w : M — N is determined
by a surjective homomorphism p : w;(N—B, xy) = G, where (M, ¢) corresponds to
the end compactification of the corresponding G-covering space of N— B.

Let B={x,,...,x,]) and let C, ..., C, be small simple closed curves in N—B
such that C; bounds a disk D; and D;,NB=[x;}, i=1,...,n. Each C; inherits an
orientation from the orientation on D; which is induced from that on M. If each C; is
connected to the base point x, by a path, then elements v; € 7; (N— B, x;) are deter-
mined. The set of conjugacy classes of the elements p(vy,;), ...,0(y,) of G (counted
with multiplicities) is the set of fixed point data L = D(¢) and depends (up to order)
only on the action ¢ and the orientation of M.

Note that it follows from the Riemann-Hurwitz formula and the classification of
surfaces that two actions of G on M with the same fixed point data have homeo-
morphic orbit surfaces.
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From now on assume that G is abelian. Then we may view p as defined on
homology and suppress base point reference: p: H;(N—B) — G. If [C;] denotes the
homology class of the oriented curve C;, then the set of fixed point data O becomes
the set (with multiplicities) {p[C,1, ..., o[ C,]] of nonzero elements of G. Note that
plCil...pl[Chl=p([Ci]+---+[C,])=0.

Let H= H(D) be the subgroup of G generated by the fixed point data. H is well-
defined since G is abelian. Let 7 : G — G/H denote the projection. Then wp factors
through H,(N):

H(N-B) 5 G
) I
H,/(N) 5 G6/H.

Corresponding to the induced homomorphism 5 there is a free action ¢ induced on
M/ (¢ | H).

For a given set D= {g,...,g,} of fixed point data consisting of nontrivial ele-
ments of G with product the identity, let @(G, M; D) denote the set of effective,
orientation-preserving actions of G on M with fixed point data . Then the homeo-
morphism group JC(M) acts on Q(G, M; D) with orbit space Q(G, M; D)*, and we
have the following reformulation of the Classification Theorem 1.3.

THEOREM 5.1. Let G be a finite abelian group, let D be a set of fixed point data,
and let M be a connected, closed, oriented surface. Then there is an injection
B*:Q(G,M;D)* > H,(G/H(D)), induced by ¢ ——=>B*(¢).

REMARK 5.2. The target H,(G/H(®)) of B in Theorem 5.1 may be geometric-
ally interpreted here as the equivariant cobordism group of G-actions modulo
G-cobordisms in which all isotropy subgroups lie in H(D).

Proof of Theorem 5.1. Let ¢, and ¢, be effective actions of G on M with fixed
point data D such that B(¢,) =B(¢,) where ¢, denotes the induced free action
of G/H on M/(¢,|H), H= H(D). We may identify the two orbit surfaces
M/¢p,=N=M/¢, in such a way that By, is identified with B¢, , and corresponding
points have the same fixed point data. Then for k=1,2, d)k is determmed by an epi-
morphism p; : H;(N) — G. By the free classification Theorem 1.1, there is a homeo-
morphism f: N— N such that p, =p,f,. It may be assumed, by the homogeneity of
manifolds, that f is the identity on B=B, =By, CN. It follows that, changing ¢,
by an equivalence if necessary, we may identify M/ (¢, | H) and M/(¢, | H) (by the
lift of f) and assume that <f;1 = ¢,. In particular wp, = 7P, Where m: G— G/H is the
projection and py : H;(N—B) — G determines ¢, k=1,2. Then the algebraic dif-
ference p; —p,: H{(N—B) — G, defined by (p; —p,) (x) =p,(x) —p,(x), has image
in H.

Let ay,...,a, by, ..., b, be a symplectic basis for H,(N) represented by simple
closed curves 4y, ...,A,, By, ...,B, in N— B such that

if i#j, and A;NB; consists of a single point of transverse intersection. We shall
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show how to alter these curves into a similar new set 47, .. Ag, Bi,...,B; C
N—B, representing a new symplectic basis aj, ..., a;, b{,...,b; for H;(N) such
that p,(a/) =p,(a;) and p, (b)) =p;(b;), 1< i< g. There is then a homeomorphism
of N which takes a;/ to a; and b/ to b;, is the identity on B, and induces the desired
equivalence between p; and p,, hence between ¢, and ¢,.

Let Cy,...,C, be the small simple closed curves in N— B considered earlier,
chosen to miss each A4; and B;.

Consider the following operation which alters A; (or B;) and leaves the remaining
curves unchanged.

(5.3) Replace A; (or B;) by its band connected sum with a parallel copy of C;.

The effect on the corresponding basis of H;(N) is to replace @; by a;x¢; (or b; by
b;%c;), while all other entries in the basis of H;(N) remain unchanged. Both the +
sign and the — sign may be realized by appropriate choice of the connecting band.

By repeated application of operation (5.3) one simply reduces the lengths of each
p1(a;)pa(a;) " and p,(b;) po(b;)~! when expressed as a product of the fixed genera-
tors p1[Cy1, ...,0[C,] of H. This completes the proof. ' O

REMARK 5.4. The operations of coning off boundary components or deleting the
interiors of invariant disks centered at singular points indicate how to convert
Theorem 5.1 to a classification of actions on surfaces with boundary.

6. Concluding remarks. The main classification results of this paper definitely do
not extend as given to actions of nonabelian finite groups. It remains a problem of
some interest to decide just how far the results do extend and to construct new
invariants of actions of nonabelian groups.

In Part II of this work we shall show that free actions of metacyclic groups are
classified by cobordism. In addition, we shall analyze ‘‘indecomposable’’ actions—
actions with exactly 3 singular orbits and orbit space the sphere. For the metacyclic
groups and finite matrix groups SL,(F,), it will be shown that indecomposable
actions are determined up to weak equivalence by their fixed point data. On the
other hand, two indecomposable actions of the symmetric group on 7 letters will be
constructed which have the same fixed point data and the same cobordism class in
the sense of Section 5, but which are not weakly equivalent.
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