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1. INTRODUCTION

In this paper we show that two theorems about minimally immersed surfaces
are just special cases of more general statements about harmonically immersed
surfaces. Both results characterize the harmonic immersion of a surface in the
sphere in terms of the behavior of an immersion into the containing Euclidean
space.

At the heart of these extensions is use of the energy 1 metric I, which at
many points plays the role which the induced metric does on a minimal surface.
We highlight the metric I' here since it appears to be of general use in studying
harmonically mapped surfaces. (See [7] and [9].)

Suppose a Riemannian metric g = g;; dx'dx’ is specified on a surface S which
isimmersed in a manifold M with Riemann.ian.metric G =G, du” du®. (We assume
C” smoothness throughout.) Let I = h,;dx'dx’ be the metric induced on S by G.
The energy function e of the immersion is given by
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Among all metrics on S proportional to g, only the choice I' = e(g,I)g on S yields
energy function 1. Thus, we refer to I' as the energy 1 metric of the immersion.
Note that only the conformal class of g matters in the determination of I'.

An immersion X:(S,g) —» (M",Q) is called harmonic in case X is extremal for

the integral of e(g,I) with respect to g. The Euler-Lagrange equation which must
be satisfied is
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Here A, is the Laplace-Beltrami operator of g, I';, is the Christoffel symbol associated
with G, and X = (X®). Onesums on i, j, B,ywithi,j=1,2and o, B,vy=1, 2, ..., n.
Again, only the conformal class of g matters. In particular, (2) holds if and only
if X(S,I') » (M",) is harmonic for T" = e(g,I)g. (See [2].)

An immersion X:(S,g) - (M",G) is minimal if and only if it is harmonic with
gal. For a minimal immersion, the energy 1 metric I' = e(g,I)g is I itself. It is
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usual to study minimal immersions by taking g = I from the outset, so that the
energy integral is just the ordinary area integral. For a general harmonic immersion,
it seems natural to take g = I from the outset, if only because the energy integral
is then just the area integral with respect to g =I'. A more compelling reason
for the choice is that certain geometric properties of I and I' are interrelated.
In particular, we have the following.

Remark 1. (See [8].) If I is complete on S, so is I' = e(g,I)g for any choice
of metric g on S. Suppose now that X:(S,g) —» (M",G) is harmonic. Then I satisfies
the Codazzi-Mainardi equations of classical surface theory with respect to I' as
metric, a property we denote by Cod(I',]). Moreover, the curvatures of I and I
are related by

3 K(I) =pnK(Qd),

where O <p = (detI/detT) =1. Here w =1 for a minimal immersion, while
otherwise, u = 1 at isolated points on S. From (3) one gets K(I) = 0 if K(I') = 0.
Thus K(I') =0 if K(I') = 0 and K(I) = 0. Similarly, K(') <0 if K(I) = 0. Thus
KI=0if K(I) =0 and K(I') =0.

The following theorems about minimal immersions are generalized in this paper.
Note that reference to G is omitted since standard metrics are used on the n-sphere
and Euclidean space. We thank U. Simon for helpful comments related to Theorem
2.

THEOREM 1. (See [3] or [4].) =An immersion X:(S,I) - S” is minimal if
and only if the cone immersion X:(S X R*,]) > R”*" (described in Section 2) is
minimal with respect to its induced metric I = r*1 + dr.

THEOREM 2. (See [4], [11] and [12].) An immersion X :(S,I) — R™"! satisfies
A X = \X for a function \ # 0 if and only if X(S) C S™(r) where r> = -2/\>0
is constant, and X : (S,I) — S™(r) is minimal.

2. USING THE CONE OVER S TO CHARACTERIZE HARMONIC IMMERSION
‘ OF SIN §”

Given an immersion X:S— S"” C R"*! with n = 3, the set
CS)={rx/x€ X(S),0<r}

is called the (infinite) cone over S. We think of C(S) as the image under the
immersion X:S X R* — R"*" where X (p,r) = rX(p) for r > 0. The first fundamen-
tal form of X is T = r?1 + dr®. In fact, to any choice of metric g on S, one associates
the metric § = r®g + dr?on S X R*. With this understanding, we have the following
generalization of Theorem 1.

PROPOSITION 1. Let T be the energy 1 metric of the immersion

X:(S,g)—>S*Cc R
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and let X:(S X R*, &) — R"*! be the associated cone immersion. Then these state-
ments are equivalent.

() X is harmonic if and only if X is harmonic.
@) g="Tr.
Proof. Assume that g is arbitrary, and that & = r°g + dr”. Let II and II denote
the second fundamental forms for X and X respectively. Since II at X(p) and

IT at X(p,r) are virtually the same for all » > 0 (see [3]), it is easy to check
that

(4) tr,lI=0 = tr 1l = 0.

In terms of local coordinates on S and S”, let B be the vector valued 2-form on
S defined by
0X”

(5) y=1I}+ (II‘.’.e - 5
ij i ij i k
dx

where i, j,k=1,2 and vy = 1, 2, ..., n. By comparing the definition of II in formula
(116.4) of [10] with the formula for VdX in (3.1) of [1], one sees that B is the
form VdX studied in [1] and [12]. It follows (see [1]) that X is harmonic if
and only if the tension field #r 8 = 0. Similarly, X is harmonic if and only if
its tension field trgﬁ = 0, where B is the vector valued 2-form on S X R™ defined
by

R gkaX"’
6) By=T3+ Tt -1

i

ox®
Here i, j,k=1,2,3andy=1,2,...,n + 1.
We must show #r, 8 = 0 equivalent to trgé = 0 if and only if g =T. Keeping
g arbitrary, introduce coordinates x', x* on S isothermal for g, and use the coordi-
nates x', x>, ron S X R*. Then
g = A(dx")® + (dx*)*} and g = r>{(dx")® + (dx*)*} + dr?,

so that

while

Because II; is the normal component of B, (5) shows that &, =0 if and only
if tr, II=0 and
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I, L, X L,
(7) I+ =17 +T,,

fi

O.‘

Similarly, since II; is the normal component of B, (6) shows that ¢, =0 if
and only if ¢r,II = 0 and

I L i L 2 T I f r
[+ T+ AT, =T 2+ T,0 + r’Al,2 =0,
(8)

r3 i3 g3 g_3 2 i-3
T24+T2— T 2+T0) + ALl =0.

Since (4) holds for any choice of g, it is enough to check that (7) and (8) are
equivalent if and only if g = T. If I = E(dx")* + 2Fdx'dx” + G (dx®)?, the fact that
I =r?I+ dr? yields

Thus (7) and (8) are equivalent if and only if
(9) 2N =E + G.

But by (1), (9) is the statement that e(g,I) = 1, so the proof is complete.

3. USING THE LAPLACIAN TO CHARACTERIZE HARMONIC IMMERSION
OF SIN S*

It is known (see [12]) that X:(S,g) — S" C R**"'is harmonic if and only if
A, X = AX for a function \ # 0. Setting S”(r) = {x/|x| = r}, this same statement
holds with S”(r) in place of S”. A more exact result is found in 4.14 of [1].
It states that X:(S,g) - S C R"*' is harmonic if and only if A X =—2e(g]X.
This means that X:(S,g) — S™(r) C R”*" is harmonic if and only if

(10) AX = —2e(g)X/r?
To complete the picture established by these facts, we have the following generaliza-
tion of Theorem 2.

PROPOSITION 2. An immersion X:(S,g) — R*** with energy 1 metric T satis-
fies

(a) ArX = \X for a function \ # 0, and

(b) Cod(T,I)
if and only if

(i) X(S) C S™(r) where r® = —2/\ > 0 is constant, and
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(i) X:(S,g) = 8" (r) is harmonic.

Remark 2. Here is an example to show that condition (b) cannot be deleted
in Proposition 2. Let S be the square 0 <V 2x <% /2,0<V 2y <% /2 in R?
and define X by

V2X((xy)=(sinV 2x, cos V2% + sin \/Ey, cos \/?y),

sothat |X| = 1 + cos V 2x sin V 2y, which is not constant. Take g = dx® + dy* =T.
Then e(I,]) = 1 and A X = —2X, even though X (S) lies in no 2-sphere. Condition
(b) is implicit in Theorem 2, since I' = I there, and Cod(1,I) is automatic.

Remark 3. Let 1= Edx'+ 2Fdx3y + Gdy® for any conformal parameter
z =x + iy on the Riemann surface R, determined by S on g. Let I' be the energy
1 metric of some immersion X:(S,g) —» (M",G). In [8] we show that condition
(b) holds if and only if the quadratic differential Q = (E — G — 2iF)dz” on R,
is holomorphic. On the other hand, Q is holomorphic on R, (see [5] or [6}) if
and only if the vector field on S given by the left side of (2) has no component
tangent to X(S). In Proposition 1 we have an immersion X:(S,g) = R""?, so that
A, X is the left side of (2), and (b) is equivalent to the assumption that A X or
AL X is normal to X(S).

Proof of Proposition 2. If (i) and (ii) hold, (10) yields (a), and (b) follows by
Remark 3. if (a) and (b) hold, Remark 3 shows that A.X, and therefore X, must
be normal to X(S). Thus, for each vector field Y tangent to X (S),

Y(X,X) = 2(Y(X),X) =0,

where ( , ) is the Euclidean inner product, and (X,X) is a constant which we
call #® # 0, so that X(S) C S™(r). Now (a) implies that X : (S,g) — S™(r) is harmonic,
and (10) gives the fact that A = —2/r? as required.
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