DIFFERENTIAL SUBORDINATIONS AND UNIVALENT
FUNCTIONS

Sanford S. Miller and Petru T. Mocanu

1. INTRODUCTION

Let p(2) be regular in the unit disc U and let Y(r,s,) be a complex function
defined in a domain of C°. With some simple conditions on s the present authors
in [6] determined a class of functions ¥ for which

(1) [W(p@e),p'(),2°p" )| <1, forzelU > Ip(2)| <1, forz€ U.
In addition, they determined a different class of functions ¥ for which
(2) Re¥(p(2),2p'(2),2°p"(2)) >0, forz€ U = Rep(z)>0, forze U.

If A represents the unit disc in (1) and the right-half complex plane in (2)
then both results can be written in the form

(3) {(U(p2),2p'(2),2°p"(2)):z€ U}y CA = {p):z€ U} CA.

Note that in both cases A is simply connected and has a smooth boundary. In
this paper we will show that if A is any simply connected domain with a “nice
boundary,” then there is a class of functions ¥ for which (3) is true. Actually
we will prove a more general result; if Q is a domain and A is a simply connected
domain with a “nice boundary” we will determine a class of functions ¥ for which

(4) (W(p(),2p'(2),2°P"(2)):2€ U} C Q > {p(2):z€ U} C A.

This basic result and applications of it in the theory of differential equations
are given in section 2. In section 3 we show that the result has many important
applications, especially in the theory of univalent functions; it provides elegantly
short proofs for some well-known results and enables us to obtain several new
results.

Since many of the resultsin this paper can be expressed in terms of subordination,
we repeat here the definition of subordination between two functions g(z) and
G(z) regular in U. We say g(z) is subordinate to G(z), written g(z) < G(2), if G(2)
is univalent, g(0) = G(0) and g(U) C G(U).
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If §(r,s,t) is holomorphic and g(z) is a conformal mapping of U onto A such
that ¥(p(0),0,0) = ¢(0) = p(0), then (3) can be expressed as

(3" ¥(p),2p' (2),2°p"(2)) < q(z2) >  pl2) < q(2).

Similarly, if g(z) is a conformal mapping of U onto A such that ¢(0) = p(0),
then (4) can be expressed as

(4") {(U(p2),20"(2),2°p"()):2€ UYCQ >  p)<q2).

In the particular case when Q is simply connected, ¥(r,s,t) is holomorphic and
h(2) is a conformal mapping of U onto Q with £(0) = {(p(0),0,0), then (4’) can
be expressed as

(5) U(p),2p' (2),2°p"(2)) <h(z) > p(2) <ql2).

It is this differential subordination result which is the basis of most of the
applications in section 3.

In section 4 we consider the problem of dominating the solutions of the differential
subordination

(6) ¥ (p(2), 2p'(2), 2°P"(2)) < h(2).

Namely, if p(2) satisfies (6), does there exist a function q(2) such that p(2) < ¢(z)?
We also consider the problem of finding the “smallest” such g(z).

2. DIFFERENTIAL SUBORDINATIONS

We need to first specify those simply connected domains with the “nice boundary”
referred to in section 1. We do this in terms of a mapping ¢ from U onto A
as follows:

Definition 1. We say g € @ if ¢(2) is regular and univalent on U except for
those points { € dU for which lim ¢ (z) = oo.

z2—{

2el

The domain A = g(U) will be simply connected and its boundary will consist
of either a simple closed regular curve or the union (possibly infinite) of pairwise
disjoint simple regular curves each of which converges to o in both directions.
The functions ¢, (z) = z and ¢,(2) = (1 + 2) /(1 — 2) are examples of these two cases.
Note that g, (U) and g,(U) correspond to the domains used in (1) and (2) respectively.

We will need the following lemma, a version of which is given in [6, Lemma
B], to prove our main result.

LEMMA 1. Let q € Q with q(0) =a, and let p(z) = a +p.2" +p, 2" + ...
be regular in U with p(z) # a and n = 1. If there exists a point z, € U such that
P(2) € q(@U) and p(|z]| < |2, |} C ¢q(U), then
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(7) 200 (20) =m {,q' (L,), and
(8) Re [1+———-——z°p (%) :Ia mRe[1+——————coq o) ]
P'(2y) q’ (Lo)

where ¢ ' (p(2,)) = {, =€ and m = n = 1.

Proof. We will use Lemma A of [6] to prove the result. Although the hypothesis
of Lemma A requires g(z2) to be regular in U, the proof actually only requires
g(2) to be regular in {|z| <|z,|} U {2,}. If we take g(z) = ¢ " (p(2)) then g(z) will
be regular in {|z| = |2,|}, and we can obtain (7) and (8) by applying Lemma A
to this g(2).

Note that (7) is a relation between the outer normals to the curves p(|z| = | z,])
and g(dU) at their point of tangency p(z,) = ¢({,), and (8) is a relation between
the curvatures of these two curves at their point of tangency. These relations
form the basis for the following definition.

Definition 2. Let Q be a domain in C and ¢ € @. We define ¥,(Q,q) to be
the class of functions {: C> — C that satisfy the following:

(a) ¥ (r,s,t) is continuous in a domain D C C?,
(b) (¢(0),0,0) € D and {(¢(0),0,0) € Q,
(c) l“(ro:so»to) # Q when (ro,so:to) € D, r,=q(l), s, = m{q’'(¢) and

Re[l + £,/s,] = mRe[1+{q"()/q" (O)],

where |{] = 1, ¢() is finite and m = n = 1.
We write ¥, (Q,q) as ¥(Q,q).

Remarks. 1. We do not require that Q be simply-connected or that it have
a particularly nice boundary as we do for q(U).

2. If @ C Q then ¥, (Q,q) C ¥,(Q,9), that is, enlarging Q decreases the class
v,(Q,q).

3. Note that ¥,(Q,q) C ¥,.,,(Q,9).
We are now prepared to state and prove the principal theorem of this article.

THEOREM 1. Let q(0) = a and let ¥ € ¥,(Q,q) with corresponding domain
D. Let p(z) = a+ p,2" + p,.,2""" + ... be regular in U with p(z) # a and n = 1.
If (p(2),2p’ (2),2°p" (2)) € D when z € U and

9 $(p(2),2p'(2),2°p"(2)) EQ  whenz € U,

then p(z) < q(2).

Proof. Since ¢(z) is univalent in U and p(0) = ¢(0) = a, we only need to show
that p(U) C q(U). Suppose not, and let 2z, € U be such that

p(z) € ¢@@U)  and  p(|z]| < |2|) C q(U).
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By Lemma 1, at the point 2z, we must have p(z,) = q({,), 2,0"(2,) = myq’'(L,)

and
Re [1+ 2o0"(2o) ]2 mRe[1+ £09” (Lo) ]
p’(2,) q’ (L)

where |{,| = 1 and m = n = 1. Using part (c) of Definition 2 we obtain

P(p(2,), 200" (20), 250" (2,)) & Q

which contradicts (9). Hence p(U) C g(U) and p(z) < g(2).

The set of functions p(2) satisfying (9) is not a vacuous set. Since  is a domain
and ¥ is continuous at (a,0,0), if we take p(z) = a + p,2", then for sufficiently
small |p, |

V(p(2),2p' (2),2°p"(2)) = ¥(a + p,2",np, 2", n(n — 1)p,2") € Q

when z € U.

On checking the definitions of @ and ¥,(Q,q) we see that the hypothesis of
Theorem 1 requires that g(z) behave very nicely on aU. If this is not the case
or if the behavior of g(z) on aU is not known, it may still be possible to prove
that p(z) < g(z) by the following limiting procedure.

COROLLARY 1.1. Let q(2) be univalentin U with q(0) = a, and let q,(2) = q(p2)
for 0 <p<1. Lety € ¥,(Q,q,) with domain D, for 0 < p < 1, and let

pe)=a+p,2" + ...

be regular in U with p(z) # a and n = 1. If (p(2), 2p’ (2), 2°p” (2)) € D, when z € U,
and (p(2), 2p’ (2),2°p"(2)) € Q, when z € U, then p(2) < q(2). .

Proof. The function g,(z) will be univalent on U for 0 < p < 1. Hence q, € Q
and ¥ € ¥,(Q,q,) is well defined. If we let p,(2) = p(pz), 0 < p < 1, then

2_n 2. 2

U(p, (2),2p, (2),2"p, (2)) = Y(p(p2),p2p’ (p2),p"2"p" (p2)) € O

when z € U. We apply Theorem 1 to obtain p,(2) < g,(2). Hence p(pz) < q(p2), and
by letting p — 1~ we obtain p(2) < ¢(2).

We consider next the case when  in ¥,(Q,q) is a simply-connected domain.

Definition 3. Let h be a conformal mapping of U onto Q and ¢ € @. We
will denote by ¥, (h,q) the class of functions ¢ € ¥, (Q,q) = ¥, (h(U),q) which
are holomorphic in their corresponding domains D and satisfy { (g (0),0,0) = A (0).
We write ¥, (h,q) as ¥ (A,q).

The following theorem and corollary are immediately obtained from Theorem
1 and Corollary 1.1.

THEOREM 2. Lety € V¥, (h,q) with corresponding domain D and with q(0) = a.
Letp(z) = a + p,2" + ... be regular in U with p(2) # a and n = 1. If
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(p(2),2p’ (2),2°p"(2)) € D
when z € U then

(10) U(p),2p' (2),2°p"(2)) < h(2) > pR)<q).

COROLLARY 2.1. Let h(z) and q(z) be univalent in U with q(0) = a, and let
h,(z) = h(p2),q,(2) = q(p2), for0 <p<1. Let ¢y € ¥,(h,,q,) with domain D, for
0<p<l1,andlet p(z) =a+p,2" + ... be regular in U with p(z) # a and n=1.
If (p(2),2p’ (2),2°p"(2)) € D when z € U, then

U(p@),2p' (2),2°p"(2) <h(z) = p()<q).
Remarks. 1. Inthe special case when h(z) = q(2), if € ¥, (g(2),g(2)) we obtain
(11) U(p@),2p'(2),2°p" (@) < qz) =  p) <q).

For the class of functions ¥, ((1 + 2)/(1 — 2), (1 + 2)/ (1 — 2)), relation (11) reduces
to (2). Examples of these classes and applications of (11) are given in [6].

2. The implication in (10) is sharp over the class ¥,(A,q), in the sense that
there exists Y € ¥, (h,q) such that (10) will be satisfied when p(2) = g(2). To show
this, take §(r,s,t) = h(g~'(r)). On checking the conditions of Definition 3 we see
that ¢ is holomorphic in ¢(U) X C X C,

$(g(0),0,0) = h(0) € A(U)  and  U(ro,80,%) = k(L) & A(U)

when r, = q(L,), |{,| = 1. Hence ¥ € ¥,(h(U),q) and by Definition 3 we have
¢ € ¥, (h,q). Moreover $(q(2),2q’ (2),2°q” (2)) = h(2), and so by (10) we obtain the
sharp result q(2) < ¢(2).

3. For a particular ¢ € ¥, (h,q) it may be possible to improve (10) by finding
a function ¢(z) subordinate to g(z) such that (10) can be replaced by

(12) $(p(2),2p' (2),2°p" (2)) <h(z) >  p(2) < G(2) (<q(2)).

The problem of finding the “smallest” g(z) satisfying (12) will be discussed in
section 4.

Examples. We will consider the class of functions ¥, (U, + 2)/(1 — 2)).
Substituting 2 = U and ¢q(z) = (1 + 2)/(1 — 2) in Definition 2 we see that

q() = ryi(ryreal),  {q' () =—-(1+r3)/2

and Re[l + £¢"(0)/q’({)] = 0 when |{| = 1. Hence the class ¥, (U,(1 + 2)/(1 — 2))
consists of those functions { that are continuous in a domain D C C?, with
(1,000 ED and |¥(1,0,0)] <1, and that satisfy |[U(ryi,s,,t, + &Li)|=1 if
(roi,s,,t, + t,i) € D, s, < —n(1 + r3)/2 and s, + ¢, < 0, when n = 1. If in addition
¢ is holomorphic in D and {(1,0,0) = 0, then by Definition 3 we would also have
p € ¥,(2,(1 +2)/(1 — 2)).
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If p2)=1+p,z"+p,,,2""" + ... is regular in U, with p(2) ¥ 1 and n =1,
and if ¥ € ¥, (U,(1 + 2)/(1 — 2)), then by Theorem 1

1+2
(13) P (p2), 20 (2),2°P" () EU > p)< T
whereas if € ¥, (z,(1 + 2) /(1 — 2)) then by Theorem 2
. 1+ 2
(14) U(p@),2p' (2),2°P' )y <2 = pl)< i

We will now consider some specific cases.

(a) If §, (r,5,t) = t + 8s — r* + 1 then it is easy to show that

U, & ¥, (2,(1 +2)/(1 — 2),

but ¢, € ¥, (2,(1 +2)/(1 —2)) for n=2. If p(z) =1 + p,z" + ... is regular in U,
with p(z) # 1 and n = 2, then from (14) we obtain

+ 2z

1
2°p"(z) + 32p’(2) — p°(2) + 1 <z > pl)<
-z

(b) If ¥, (r,s,t) = ar + Bs, with —1 < a <1 and |[Re B| = 2, then

Y, € ¥, (U,(1+2)/(1-2)

forn=1.If p(2) =1+ p,z" + ... is regular in U, with p(z) # 1 and n = 1, then
from (13) we obtain

lap(z) + Bzp’ )| <1 =  pl) < .

Theorem 1 can be used to show that the solution of certain second order
differential equations are contained in a specific domain. For simplicity we take
n = 1. The proof of the following theorem follows directly from Theorem 1.

THEOREM 3. Let &\ € ¥(Q,q) and let w(z) be a regular function satisfying
w(U) C Q. If the differential equation $(p(2),zp’ (2),2°p" (2)) = w(z) has a solution
p(2) regular in U with p(0) = g(0) then p(2) < q(2).

As an example, if we take ¢, € ¥ (U,(1 + 2)/(1 — 2)) as in example (b) above,
we obtain the differential equation

(15) ap(2) + Bzp'(2) = w(z),

where —1 < a <1 and |Re B| = 2. If w(z) is regular then it is easy to show that
(15) has a regular solution. If in addition |w(z)| < 1 then by Theorem 3 the solutlon
p@) = §5t* 'w(t)dt/Bz*/? must satisfy Re p(z) > 0.



SUBORDINATIONS AND UNIVALENT FUNCTIONS 163

Note that by letting p(z) = f’ (2) in (15) we’ve proved that the differential equation
af’ (2) + Bzf” (2) = w(z), with w(z) regular and |w(z)| < 1, has a univalent solution.

3. APPLICATIONS OF DIFFERENTIAL SUBORDINATIONS

In this section we will present several different applications of Theorem 1,
mainly in the field of univalent functions, both to obtain new results and to provide
very simple proofs for some well-known results.

We first give some definitions that will be used in this section. If

fR=z+a2"+ ...

is regular in U and Re[2f"(2)/f' (2) + 1] > «, for z € U, then f(z) is called a
convex function of order o, while if Re zf’ (2)/f(2) > a, for z € U, then f(2) is
called a starlike function of order a. These classes of univalent functions will
be denoted respectively by C(a) and S*(a). If 0 = a <1 then C(a) C C(0) = C,
the class of convex functions, while S*(a) C S*(0) = S*, the class of starlike
functions.

Asour first application we obtain a subordination result for the Libera transform.
In [4], R. Libera showed that if f € S* then F = L(f) given by

2 F4

(16) F(z)=— X f@)dt
Z Jo

is also in S*.

We shall denote by K(2) the function obtained from (16) when f(¢) is the Koebe
function £/(1 + ¢)?, that is,

2 (° ¢ 2 2
7 K@) =— S ——-—2dt=—[ln(1+z)— ]
z Jo (1+1¢) -4 1+ 2

The order of starlikeness of F'(z) has remained an open problem. The following
theorem essentially solves this problem and also provides a simple proof of Libera’s
result.

THEOREM 4. Iff € S* and F and K are defined by (16) and (17) respectively,
then ‘
z2F'(z) zK'(2) 1-—=:z
< < .
F(z) K (2) 1+ 2

Proof. 1If we let p(2) = 2F’(2) /F(2) and ¢(z) = zK'(2)/ K (z) then we obtain

zp’(2) __zf’(z)<1——z
p@+1  f) 1+z

p(2) +
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and

2q’ (2) 1-2
(18) q(2) + = = h(2).
g2)+1 14z

If we let ¥ (r,s) =r + s/(r + 1) then we have

(19) ¥ (p(2),2p" (2)) < h(2) and ¥ (q(2),2q' (2)) = h(2).

We will first show that € ¥ (h,A). The function ¥ is holomorphicin (C — {—1}) X C
and satisfies {(h(0),0) = A(0). In addition

Re Y (A(L),mLA (1)) = Re[h(é) +

mh’ () ] _m
2

— < 0,
h(+1

when |{| = 1 and m = 1. Hence $(k(), m{h’' () &€ h(U), and by Definition
3 we have ¢ € ¥ (h,h). From (19) and Theorem 2 we obtain

(20) p2) <h(2) and q(2) < h(z),
or equivalently,

zZF'(2) 1-—:z 2K'(z) 1-2z
< a < .
F(2) 1+2 K(z) 1+2

(This provides a simple proof of Libera’s result that F € S*.)

We will use (20) and Corollary 2.1 to show that p(z) < ¢(2). We first show
that g (2) is univalent. From (18) and (20) we obtain

R Lq’ (9

(21) e
g +1

=Re [A() — q(@)] = —Re q(Q) = 0,

when |{| = 1. Hence g(|{| = 1) is starlike with respect to —1, and consequently
g (2) is univalent.

We now show that ¢ € ¥(A,,q,), for 0 <p < 1. Since ¥(g,(0),0) = ~,(0) = 1,
we only need to show that (g, (0), miq, () &€ h,(U) for 0 <p <1, when [{| =1

and m = 1. From (20) we obtain g,(z) < h,(z). Combining this with (21) and the
fact that A, (U) is a disc we obtain

£’
(@, (0, mLa’ ) = q,(0 + = _ g @) + m [k, Q) — q,©] & &, (V).
q,(0+1

Hence by (19) and Corollary 2.1 we have p(z) < g (z), and consequently

2F'|F< 2K’ /K.
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Note that as a consequence of this theorem the order of starlikeness of L (S*),

the class of Libera transforms of starlike functions, is given by Iillrxf Re 2K’ (2) / K(2).
z|<1

Recently P. Mocanu, M. Reade and D. Ripianu have evaluated this infimum [8].
We next use Theorem 2 to provide a new and shorter proof of a recent result

of T. MacGregor [5], concerning a subordination of convex functions of order
.

THEOREM 5. Iffe€ C(a), 0 =a <1, then zf'(2) /f(2) < q(2), where q(2) is the
univalent function defined by

’ 1+(1 -2
©2) 0 + 2q’(2) _ + ( a)z

0) =1).
o - (@(0)=1)

Proof. If we let p(z) = 2f'(2)/f(2) and Y(r,s) =r + s/r, then since f € C(a)
we obtain

2p' () z2f"(2) 1+(1 -2z
= +1<
p(2) f' ) 1-=2

p) + = h(2),

that is

(23) U(p(2),2p" (2)) < h(2).

The function ¢(z) defined by (22) is regular in U and satisfies

(24) U (q(2),2q9' (2)) = h(2).

We will first show that & € ¥ (h,h). The function ¢ is holomorphic in (C — {0}) X C
and satisfies ¥ (2(0),0) = ~(0). In addition, a simple calculation shows that

hl
Ti——(g—)] < Reh(l) =a,

Re ¢ (h(0),mLA" (0) = Re[h(é) +

when |{| = 1 and m = 1. Hence {(h((),m{A’({)) € A(U), and by Definition 3
we have ¢ € ¥ (h,h). From (23), (24) and Theorem 2 we obtain

(25) p(2) <h(2) and q(2) < h(2).

We shall use this result and Corollary 2.1 to show that p(z) < q(z) < A(2). In
order to do so, we need first show that ¢(z) is univalent. From (22) and (25)
we obtain

g’ (©
q(0)

(26) Re

= Re [A({) — q({)] =a — Req(()= 0,

when |{| = 1. Hence ¢(|{] = 1) is starlike with respect to the origin and consequently
g(2) is univalent.
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Since {(g(0),0) = A(0) = 1, in order to show that ¢ € ¥(h,,q,) we only need
to show that Y (g ((), miq,({)) & h,(U) when [{| =1, m=1 and 0 <p < 1. From
(25) we obtain g,(2) < A, (2). Since h_(U) is a disc, from (26) we obtain

, m{q,(0)
U(g, (D),miqg (0) =q, () + —61—(5— =q,() +m[h, ) —q,Q)] & h, ).

Hence by (23) and Corollary 2.1 we have p(z) < g(z), which completes the proof
of the theorem.

Note that by proving p(2) < k(2) in (25) we have actually obtained a simple
proof of C(a) C S™(w).

In the previous applications we have used Theorem 2 and have dealt with
functions ¢ which were holomorphic. In the following application the function
¢ is only continuous; we will have to use the more general Theorem 1.

THEOREM 6. Let o« =0, h(2) =2z/(1 — 2°) and p(2) =1+ p,z + p,2° + ...
be regular in U. If

{zp'(z) 2 }
27) —ap()[zp’ () +Rez"p’(2)]:2€ U ¢C R(U)
p(2)

thenp(z) <1 +2)/1 - 2).

Proof. Letq(z) =1 +2)/(1 — 2) and y(r,s,t) = s/r — ar(s + Re ). The conclu-
sion will follow from Theorem 1 if we can show ¢ € ¥ (h(U),q). The function
¥ is continuous on (C — {0}) X C? and satisfies ¥(g(0),0,0) = 4(0) = 0. Note that
the domain A(U) consists of the complex plane with the slits {ib:b=1,b= —1}
removed. To complete the proof we only need to show that Y (r,,s,,t,) & A(U)
if [¢] =1, ro = q(0) = ai, s, = m{q’ ({) = ~m (1 + a”)/2 and

Re[l + £,/s,) = mRe[l1 +{q" (¢)/q’' (©)] =0,
when m = 1. Since |(1 + a®)/2a| = 1 if a # 0, we obtain

1+ a®

U (ro,80,t) = —m —aai(s, + Re t,)

2ai

1+a®
=ilm p —a asyRe(l + £,/s,) | =ib & h(U),
a

where |b| = 1. Hence § € ¥ (A (U),g) andp(2) < (1 + 2) /(1 — 2).

In the special case when a = 0, the function ¢ is holomorphic. In this case
(27) simplifies to

zp’(2) 2z 1+z
< p, > pRR)< .
p(2) 1-2 1—2z




SUBORDINATIONS AND UNIVALENT FUNCTIONS 167

If we take p(2) = f’ (2) in this differential subordination we obtain the following
sufficiency condition for univalence:

2f"(2) 2z
<
flz) 1-2°

=> Re f’' (z) > 0.

Our final application deals with a result originally proved by D. Hallenbeck
and S. Ruscheweyh [2, p. 192]. Their proof required the use of the Hadamard
convolution and the Herglotz integral formula. We present a much simpler proof
using differential subordinations.

THEOREM 7. Let h(2) be a convex univalent function and vy # 0 with Re v = 0.
If p(2) is regular in U and p(0) = h(0) thenp(2) + z2p' (2) /v < h(2) > p (2) < h(z).

Proof. Let ¥(r,s) =r + s/vy and h,(2) = h(pz) for 0 < p < 1. The conclusion of
the theorem will follow from Corollary 2.1 if we show that ¢ € ¥ (A ,h,) for
0 < p < 1. The function ¢ is holomorphic in C? and satisfies ¥ (%(0),0) = £ (0). We
only need to show that

U (h (p0), mpLh’ (p0)) = h(pl) + m~~"plh (p0) & A, (U),

when [{| =1 and m = 1. But this follows immediately since A, (U) is convex,
h{pl) € h,(3U), pLh'(pl) is the outer normal to A, (3U) and

arg[m~y plh (p)] = arg [pLh (p0)] + arg vy~

where |arg v 7| = w/2.

4. DOMINANTS OF DIFFERENTIAL SUBORDINATIONS

Let ¢:C® — C be holomorphic in a domain D and let A (z) be univalent in U.
Suppose p(2) isregular in U, (p(2), 2p’(2), 2°p" (2)) € D when z € U, and p (2) satisfies
the differential subordination

(28) V(p(2),2p" (2),2°p" (2) < h (2).

In this section we will be concerned with dominating the solutions of this differential
subordination. We first define our terms.

Definition 4. The univalent function ¢(z) is said to be a dominant of the
differential subordination (28) if p(z) < ¢(z) for all p(2) satisfying (28). If G(z)
is a dominant of (28) and §(z) < g(2) for all dominants g(z2) of (28) then § is
said to be the best dominant of (28).

Remarks. (1) If there are two best dominants ¢, and g,, then g¢,(2) < g,(2)
and ¢, (2) < g, (2). This implies that q,(z) = g,(e‘®2). Hence the best dominant of
(28), if it exists, will be unique up to rotation of U.
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(2) If g(2) is a dominant of (28) and also satisfies (28) then ¢(z) will be the
best dominant. Note that this was the case in Theorems 4 and 5 (see (18) and
(24) respectively).

The study of differential subordinations of the form (28), or more generally
of the form §(p(2),2p'(2),...,2*p* (2)) < A (2), is a relatively untouched area of
research. Our purpose here is to introduce the subject and to give some definitive
answers when &k = 2.

Several special cases of (28) have appeared in the literature. In 1935 G. M.
Goluzin [1] showed that if A(z) is convex then 2zp’(2) < h(2) has best dominant
g = §3h(t)t " dt. In 1970 T. Suffridge [10, p. 777] showed that Goluzin’s result
is true if A is starlike. In 1947 R. Robinson [9, p. 22] showed that if %(z) and
q(z) = 27 Y2 h(t)dt are univalent then p(2) + zp’(2) < h(2) has best dominant q(2),
at least for |z| <1/5. In 1975 D. Hallenbeck and S. Ruscheweyh [2, p. 192]
showed that if v# 0, Re y=0 and h(z) is convex, then p(z) + zp’(2) /v < h(2)
has best dominant g(2) = yz ™ §3A(t)t" " dt.

The following theorem and corollary prove existence of the best dominant of
(28) for certain Y; they also provide a method for obtaining the best dominant.
The proofs which follow immediately from Theorem 2 and Corollary 2.1. are omitted.

THEOREM 8. Let ¢:C?>— C be holomorphic in a domain D and let h(z) be
univalent in U. Suppose p(2) = a + p,z" + ... is regular in U,

p&#an=1 (pk),zp (2),2°p" () € D

when z € U, and U (p(2),2p’'(2),2°p"(2)) < h(z). If the differential equation
(g (2),2q' (2),2°q"(2)) = h(2) has a solution q € Q, with ¢(0) = a, and if

Y E W, (hq)

then p(2) < q(2) and q(2) is the best dominant.

COROLLARY 8.1. Let §:C*?>— C be holomorphic in a domain D and let h(2)
be univalent in U. Suppose p(z2) = a + p,z° + ... is regular in U, p(2) # a, n =1,
(p(2),2p"(2),2°p"(2)) € D when z € U, and U (p(2),2p' (2),2°p" (2)) < h(2). If the
differential equation {(q (2),2q' (2),2°q"(2)) = k(2) has a univalent solution q, with
q0) =a, and if ¢ € ¥, (h(p2),q(pz)) for 0 <p <1, then p(2) <q(2) and q(2) is
the best dominant.

From the above theorem and corollary we see that the problem of finding
the best dominant of the differential subordination (28) reduces to solving a
differential equation and the algebraic operation of checking whether ¢ € ¥, (A,q9)
or ¢ € ¥, (h(pz),q(pz)). Note that the conclusion of the theorem and corollary
can be written in the symmetric form

P (p(2),2p'(2),2°p" (7)) < ¥ (q(2),2¢' (2),2°¢"(2)) = pR)<ql).

Examples. (a) Consider the differential subordination
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(29) (p(2)' " (2p’ (2))* < h(2),

where h € §*, 0 < o = 1 and p(2) is regular in U with p(0) = 0. The differential
equation

(30) (q(2)) 7*(2q" (2))* = h(2)

has solution ¢(2) = (&' §3A"/*(¢)¢t *dt)* which is a-convex and is in S* [7, p.
219]. Let ¢ (r,s,t) = r'™ s%,h, (2) = h(p2) and g, (2) = g(pz). In order to use Corollary
8.1 we only need to show that & € ¥(h,,q,) for 0 <p < 1. To do this we need
to show $ (g (pl),mplq’ (pl)) & A, (U), when || = 1 and m = 1. Using (30) together
with the fact that A (U) is a starlike domain we obtain

P (g (p0),mplq’ (p0)) = (g (p0)' " *(mplq’ (p)) = m°h(pl) & h (V).

Hence, by Corollary 8.1, ¢(2) is the best dominant of (29) and we have the sharp
result

z

(PE)'7@'@)*<h(z) > pR)< (a'l X h”“(t)t‘ldt) .

(4]

If o = 1 then this reduces to the result of Suffridge [10, p. 777].
If f € S* then the differential equation (p)' ™ (zp’)* = f has solution

pl2) = (a“‘ S f”“(t)t”ldt) )

In this case our result yields
81 f<h > (a'l S f”“(t)t“‘dt) < (a“ S h'/e (t)t‘ldt) ,
0 o

forO<a=1.

(b) Consider the differential subordination
(32) p(2) +2zp" (@) /v < h(2),

where 2 € C, v # 0, Re v = 0, and p(2) is regular in U with p(0) =0 [2, p. 192].
The differential equation

(33) q(2) + 29" (2)/v = h(2)
has a univalent solution ¢(z) =~z 7§ h(¢)¢t" 'dt (see [3, p. 115]). Taking

$(r,s)=r+s/v,h,(2) =h(pz) and q,(2) = q(pz), we mneed to show that
y € ¥(h,q,) for 0 <p < 1. To do this we need to show that"
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Y (g (pl),mplq’ (pD)) & A, (U),

when |§|- =1 and m = 1. From (33) and Theorem 7 we obtain ¢(z) < (hz). Hence

q(pz) < h(pz) and g (p{) € A, (U). Using this together with (32) and the fact that
h,(U) is a convex domain we obtain

P (q (L), mplq’ (p0)) = q(pl) + m [R(pl) — q(pD)] & A (U).

Hence, by Corollary 8.1, ¢(2) is the best dominant of (32) and we have the sharp
result

z

p(Z) + 2p’ (z)/'y < h(2) => p(z) < ,Yz—"l S h(t)ty—ldt.

0

In the special case when p(z) = a + p, 2" + ..., with n = 2, a similar analysis,
using ¥, (h,,q,) with n = 2, shows that if p(2) + 2p' (2) /vy < h (2) = q(2) + nzq’(2) /v
then p(2) < g(2) =v/nz""" S h(t) /" dt (see also [2]).

(c) Consider the linear differential subordination
AZ’p"(2) +Bzp' (2) + Cp(2) < h(2) = 2,

where p(z) =p,z" + ... is regular in U, A=0, B= —A and C > —B. If we take
¥ (r,s,t) = At + Bs + Cr, then the differential equation ¥ (g (2),29’ (2),2%¢” (2)) = 2
has univalent solution ¢(2) = z/(B + C). It is a simple calculation to show that
V € ¥, (h,q). Hence p(2) < z/(B + C) and z/(B + C) is the best dominant.
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