HARMONIC FORMS ON NONCOMPACT RIEMANNIAN AND
KAHLER MANIFOLDS

R. E. Greene and H. Wu

More than thirty years ago, S. Bochner [4] proved that if a compact Riemannian
manifold has nonnegative Ricci curvature (i.e., the Ricci tensor considered as a
quadratic form is nonnegative) then any harmonic 1-form is parallel and if the
manifold has positive Ricci curvature (i.e., the Ricci tensor is positive definite)
then the only harmonic 1-form is the 0 form. The proof technique was first to
calculate the Laplacian A ({«,a)) of the inner product (a,a) of a harmonic 1-form
o with itself. The calculation showed that when the Ricci tensor is nonnegative
{a, a) is subharmonic (i.e., A (o, a) is nonnegative) so that by the maximum principle
{a,a) is constant and A({«a,a)) = 0. The computation also showed that, when the
Ricci tensor is nonnegative, A({a,a)) is positive at a point of the manifold if
either the covariant differential Da is nonzero at that point or o is not zero
at that point and the Ricci curvature is positive there, thus that A({a,a}) = 0
implies that Da = 0 and, if the Ricci curvature is positive at one point, that a = 0
at that point and hence o = 0.

In the intervening years, this technique hasbeen applied in many other situations
and has been particularly useful in the study of forms on complex manifolds
(cf. [9] and [20] for extensive bibliography). During this period, the technique
as described has frequently been used in a modified form in which the maximum

principle is dispensed with by consideration of {(Aa,a), which of course vanishes

M
if « is harmonic (cf,, e.g. [9; p. 85ff]). Essentially equivalent calculations are
used in this approach, and for the purpose of this paper the direct information
that (a,a) is subharmonic is needed.

In view of the importance of the technique for compact manifolds, it is natural
to seek extensions of the technique to noncompact manifolds. For such extensions,
restrictions on the forms to be considered must be imposed since, for example,
any noncompact Riemannian manifold admits many nonzero harmonic 1-forms
(an easy way to see this is to recall that on any open Riemannian manifold there
are many nonconstant harmonic functions [15] and that the differential of a
harmonic function is a harmonic 1-form since A and d commute). A natural type
of restriction is to require the forms of be L? (or more generally L?, 1 < p < ),

i.e. to require (a, o) (respectively, (o, )?’?) to be finite. One might then

M M
hope to establish the nonexistence of L? or L” harmonic forms on certain noncompact
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manifolds. This hope can be realized provided one has in hand two types of results:
first, that (a,a) (respectively, (a,a)?’?) is subharmonic for the form being consi-
dered; and, second, that the integral over the manifold of a nonnegative subharmonic
function is infinite unless the function vanishes identically.

Since the subharmonicity of (a,«) is a local question, the calculations for the
compact case apply to yield the first type of result needed. Results of the second
type have recently been obtained by the present authors [14] and by S.-T. Yau
[23]:

(*) If M is a complete noncompact Riemannian manifold with Riemannian
sectional curvature nonnegative outside some compact set and if f is a nonnegative

subharmonic function on M, then S fP=+wif 1 < p < +owunless f=0 [14].
M

(**) If M is a complete noncompact Riemannian manifold and if f is a
nonnegative nonconstant subharmonic function on M then S fZ =+ if
M

1<p< 4+ [23].

(***) If M is a complete noncompact Riemannian manifold and if u« is a
nonnegative C~ function on M with A(log z) bounded below on the set

M, ={x € M: u(x) >0} and with O<S log u= o, then X u®? = o for all
M, M

p > 0 unless u is identically zero [23].

The purpose of this paper is to exhibit some theorems on the nonexistence
of L? (or L?) harmonic .and holomorphic forms which are generalizations of the
most important theorems of this type for compact manifolds; these theorems are,
as indicated, to be obtained by combining local computations of subharmonicity
with theorems on the infinity of integrals such as (*) or (**). The list of theorems
of this type given here is by no means exhaustive: for instance, any of the numerous
subharmonicity calculations made for the compact case yields a result for the
noncompact case by combination with (*) or (**). The results on Riemannian
manifolds are given in Section 1 and those on Kahler manifolds in Section 2.
In Section 3, there is a discussion of a cohomology vanishing theorem related
to the results in Section 2 (cf. the authors’ announcements [11]; cf. also [21]).

Some results closely related to the present paper (in the special case of L?)
were obtained by Dodziuk [7] by method different from that used here; this method
seems, however, to be usable only in the L® case. There are also results related
to the present ones in [1], [2], and [8].

1. RIEMANNIAN MANIFOLDS

In accordance with the program already indicated, one wishes to determine
when (a,a)'/? is subharmonic, where a is a harmonic form. Since (a,a)'’® may
not be smooth (at zeroes of o), one computes instead A ({(a,a) + ¢€) /2. if this quantity
is nonnegative for all (small) € > O then (o, )'’? is subharmonic since the limit
uniformly on compact sets of subharmonic functions is subharmonic. Let
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X,, ..., X, be a local orthonormal frame field, n = dimension M, in a neighborhood
of a point Pin M with DX, =0at P, i =1, ..., n. By a straightforward computation
(cf. [14]),

A(eya) +8) V7 = ((a,a) +£) 2 - D [(Dy, Dyo,a) (o) +e)
+ £(Dy.0, Dy a) + (a,0)(Dya,Dy ) — (Dya,a)?].

Since (a,a)(Dyx,a,Dya) — <DX‘,OL,OL>2Z 0, A({a,a) +€)"?=0 provided that

2 (Dy,Dy,a,a) = 0. Now again computing relative to the frame {X;} as in [14],

11
one obtains

Aa|p= 2 Dy Dy o|p— 2 o' A {(X,) Ry x o] p

i,j=1

where A = —(d3 + 3d), {0’} is the dual basis of {X,}, i(X;) denotes interior product
with X; and the curvature operator R (equal to the commutator of covariant
differentiation) is extended to act on forms in the usual fashion. Since Aa =0

. The quadratic

by hypothesis, <2 DX,-DX,-a’a> = (Z o' A i(Xj)RXina,a>
i £ i.j P

form on the right hand side is denoted in previous literature by F(a); passage
to component notation verifies that the expression here coincides with the F( )
notation of [9] and [22].

Clearly, if F{(a) = 0 for all a and in all P in M, then (a,a) is subharmonic
when a is harmonic. A particularly interesting case of this phenomenon is when
a is a 1-form; in that case, F'(a) = 0 if the Ricci curvature of M is nonnegative

(for the relevant—and straightforward—computation in the present notation, see
[14]).

THEOREM 1. IfM is a complete noncompact manifold with nonnegative Ricci
tensor, then no nonzero harmonic 1-form is in L (M), 1 < p < o, If, moreover, the
sectional curvature of M is nonnegative outside of some compact set, then no nonzero
harmonic 1-form is in L* (M).

Remarks. A similar theorem holds for harmonic r-forms, r > 1: The only change
required in hypothesis to obtain the same conclusions is that the hypothesis of
nonnegativity of Ricci curvature is to be replaced by the hypothesis that FE is
a nonnegative quadratic form. The first statement of the Theorem is a slight
improvement of a result in [23], where all the ingredients for its proof are in
fact given. The second statement (for 1 < p < +) is essentially given in [14].

Proof of Theorem 1. Since (a,a)'’? is subharmonic, the second statement

follows from (*). The statement (**) implies that if S ({a,a) '?)? < 4o then

M
(a,a) is constant. But the volume of a complete noncompact manifold of nonnegative

Riccei curvature is infinite ([5], [23]) so that (a,«) must be zero constantly.
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2. HERMITIAN AND KAHLER MANIFOLDS

To extend the considerations of Section 1 to complex manifolds, it is useful
to consider a somewhat more general situation, namely, to study forms with values
in holomorphic vector bundles which are harmonic relative to the complex Lapla-
cian defined in this situation. To fix a suitable notation for the necessary calcula-
tions, a brief summary of the definition of the complex Laplacian in this setting

will now be given: Let M be a complex manifold and E5S Mbe a holomorphic
vector bundle with Hermitian metric (,). So if s,, ..., s,,, m = dimension of the
fibre of E, is a local holomorphic frame (i.e. a set of local holomorphic sections
which span the fibres as complex vector spaces) and the matrix (4,;) is defined by
h;;= (s;,s;), i,j = 1, ..., m, then (h;;) is an Hermitian positive definite matrix.
There is a unique covariant derivative V operating on (local) sections of E such
that (a) X ((s’,s")) = (Vys',s"( + (s’',V4s") for any real tangent vector X and
local sections s’,s” of E and (b) Vys = —V —1V ;s for any real tangent vector
X and local holomorphic section s of E (here J = the complex structure tensor
of M). This covariant derivative V defines, by complex linear extension V,s
for any local section s of E complex tangent vector Z = X + V —1Y, namely,
V,8 =Vys + V-1V s. Property (b) then becomes V,s = 0 if Z is type (0,1) and
s is holomorphic; property (a) becomes Z((s’,s")) = (V,s',s") + (s’,Vzs").

Now suppose M has an Hermitian metric g, i.e.,, a J-invariant Riemannian
metric. Denote by g also the inner product on all real tensors at each point of
M induced by g at that point and extend g to act on complex tensors by complex
linearity. Then define the Hermitian inner product G on complex tensors (at a
point of M) by G(¢,{) = g(g, V). If the Riemannian covariant derivative D, e,
Z=X+V-1Y, ¢ =¢, +V —1¢p,,is defined to be

(Dx ¢, — DY('P2) +V "‘]-(Dx‘Pz + Dyo,)

then ZG(¢,¥) = G(Dzo,¥) + G(e,Dz¥).

Since the transition functions of E are holomorphic, the action of @ on (local)
sections of E and also on i-forms A‘(E) with values in E is well-defined. As usual,
3:APY(E)— AP (E) and 9°> = 0. An Hermitian inner product on A”?(E) is
determined by forming the tensor product of the Hermitian inner products (,)

and G, i.e. <<2 Si P 2 sj¢j>> = 2 (s;,8;) G(@ ;¥ ;). In the remainder of the
i,j '

paper for typographical convenience, the ({ )) inner product and the G inner
product will be denoted by (,) since no confusion will result. There is a unique
differential operator 8*:A4”?**(E)— A”'%(E) such that for E-valued forms ¢,
of compact support of type (p,q) and (p,q + 1) respectively

S (Gonb) = X (0,340,

The complex Laplacian [0: A”?(E) — A”? (E) is defined to be the operator 90* +9*d
ifp + g > 0; however, forp = ¢ = 00 isdefinedtobe —(dd* + 9* ). The unfortunate
change in sign in the latter is necessitated by our wish to preserve the identity
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for functions on a Kédhler manifold that L f = (1/2) Af, so that f is subharmonic
if and only if [J f = 0. The operator [J will now be computed explicitly for p + ¢ > 0;
the same computation applies to the case p = ¢ = 0 by reversing all signs. First
one needs an explicit formula for 8*. For this purpose, extend V to map A*(E),
i>0, to A" (E) by defining V (sw), o € A', s a section of E, to be the element
of A”"*(E) determined by

V(s0)(Xo,... X)) = D, (1Y Vys* 0 Xo,..s Koy s X0, X))

SIRLD i
Jj=0

+ sdoX,, ... X;).

Then the operator V — 3, to be denoted by V', maps A*?(E) to A”*"(E). The
complex linear extension of the Hodge * operator determined by g maps A”? to
A""%""? The fact that 8* = — *V’ » is verifiable by a standard Stokes’ theorem
procedure.

To continue the calculation of [1 at a point P € M, choose a local holomorphic
frame field e,, ..., e,, on some neighborhood of P with Ve, =0 at P for each
t =1, ..., m.Such a choice can be made by multiplying an arbitrary local holomorphic
frame field by a suitable holomorphically varying element of GL (m,C). Define

1-forms of by Ve, = E e w’; these forms are of type (1,0) for any holomor-

P o)
p=1
phic frame and are 0 at P for the particular frame chosen. Choose also a real
g-orthonormal frame Uy, J ,U,,Ju, on M in a neighborhood of P,

and set V= (1/ 2)(v —\/ Jv) and V, = (1/\/2)(v + V —=1dJv;) so that
G(V, ,) = G(V,,V) =0 and G(V,V,) =3, for all i,;. Let {91, ,0.,0,,...,06,.} be
the complex 1-forms dual to the basis Vl, V., V, ..,V (8s are type (1,0),
8,s type (0,1)). A straightforward calculatlon shows that for any w € A”(M),
*x (0° A xw) = L(V)u) where v denotes interior product. To initiate the [J calcula-

tion proper, let ¢ = 2 e, ¢’; then

o=1

5*“) = —9*xV' x (E ea(pc) =—9 *xV’ (2 e, *‘Po)
= —3« (z (Ve)x¢®) + 2 e, d(*x¢” ))
= —J * ( z e, (u)s A *(Pa) + 2 eua(*¢°))

= —Z e, [3* (0% A *@”)] + 2 e, 0% ¢°
PO p

=1}}

and -

=¥

*

il
6
Il

—xV’ « 3 (2 eccp“) = V' (z e, (ﬁa@’))
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= —=x (2 e,y A * 7 + 2 e, (0 *—3cp°))
2 e, d*d¢” — 2 e, * (oA dg,)

At P, »° = 0 for all p,o so that at P, Clp = 2 (e,Og°) — 2 e, [0% (@ A *¢7)].
o o,p

Write the forms ?, which are of type (1,0), in terms of 0, ..., 0, say *® = 2 v® .0

Then the fact that » (8° A * ) = +(V;) u for any (p, q) form u yields after a routine
calculation that at P, at which point »® = 0,

—[3 % (5 A *3¢°)] = D (V)DL AL (V)

where, ®°, the curvature form of E at P, is by definition d »®. Thus at P,

Oo =2 e,(06°) = > (Vy,e,)Dy0") + > ¢, (2 i(V) @F A iﬂZ-)«f’)

i,o i,o

where [ in the [¢° term is the complex Laplacian on A” ‘., The terms on the
right hand side are in fact each independent of the choice of holomorphic frame
(e,). Since the left-hand side is frame-independent, it is sufficient to check that
the third term on the right is frame-independent. This independence is a conse-
quence of a straightforward linear algebraic computation using the standard fact

that if (in an obvious matrix notion) € = Ae is another holomorphic frame then
® = A" PA.

The computation of Ca, a € A”“, will be carried out only in the case of (M,g)
being a Kédhler manifold (a similar but more complicated calculation establishes
the general Hermitian metric formula, which is stated but not explicitly computed
later). In particular, it is now assumed that the local orthonormal frame
Vi ooy Vo, Vi, ..., V, satisfies DV, = DV, = 0 at P and hence

[‘/i’Vj] = [Vi: V;] = [V“‘_,J] =0

at P. Such an orthonormal frame coincides at P with the coordinate frame
d d d d

azl’ - az,,’az_l’ o 9z,
(z4,.-.,2,) around P. This fact implies the formulae for any form o

of a suitably chosen holomorphic coordinate system

aa=29iADvia 5a=2§i/\D;{a

*a = z — (V) Dga d*a = Z - "(Vi)DV.'a’

i i
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(8* = the adjoint of 9): the right-hand sides are clearly frame-independent and
the formulae are immediately verifiable at the point P in the coordinate frame.
From these formulae,

5*5(1:—2 L (Vi)DV, (2 87/ A vaa)
i J

== (V){Dy,#’ A Dya + 8’ A Dy, Dy,a}

iJ

== (V){Dy,0’ n Dy a} — > DyDyc
iLJ i

+>° 8 A U(V)Dy Dy

i
and

33*a = —> 8/a Dy, (2 L(Vi)DVIa)

12

= ~2 6/ A Dy u(V)Dya.

i
At P, [Dg, (V)] = 0 because Dy, V, = 0. Hence at P

Oa = =" Dy Do+ > 8/ au(V,)Dy,Dye
i Ly

= 8 A UV,)Dy Dy

&Lj

= DyDga+ > 8/ Au(V)Dy Dy — DyDy)a
i ij

= —2 DV,DV,O‘ - 2 87 A t(Vi)RV‘.ga,
i iv

last equality holding at P because there RV:‘“G* by definition being
D[Vi,p;] - DV‘DZ + Dy Dy,
equals Dg/,.Dv, — DV'_D‘—ﬁ.

The term z 6’ A V(V)Ry; o is independent of the frames {V,,V,} having

i
special properties at P. To put the first term in similar intrinsic form, define
Dz‘,’w = DyDy, — Dy, for any (complex) vector fields, V, W. Then at P
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> Dy Dya=> D}ga,

and the right-hand side is intrinsically defined in the sense that its value is the
same for all orthonormal frames {V,,V,}. Combining these results yields the

following expression for O, ¢ = Z e ¢ which holds for any local orthonormal

frame {V,, V,} with Vs of type (1,6) and local holomorphic frame {e_ }:

Oe = -(2 e, (D%,5,0") + 2 (Vv,eq)(Dq(p"))

i,o

—z e, ®" A W(V)Ry,;.¢)

oiJ

+ E e, (L (V) ®F A (V) o)

o,p,i

A similar calculation of [l¢° using the fact that on a Kahler manifold
30* + 9*d = 39* + 9%9

yields an alternative formula for Og, ¢ € AY(E),

Ue = —(2 e, (D}, 5,0°) + (Vwe‘,)(Dv,.cp"))

i,o

- Z e, (Ry,v,¢")

a,i,J

+ 2 e, (0’ A L(V)Ry,p ¢°)

o,i,j

+ 2 e, L(V)D A U(V)e).

a,p,i

Of course, the calculation of this second formula can also be viewed as a
verification that 99* + 9*9 = 39* + 8*9 if the equality of the right-hand sides
of the formulae is checked directly.

To compute [J{¢,¢) for a harmonic form ¢, it is convenient to introduce a
covariant differentiation operation D® on E-valued forms which is in effect the

tensor product of D and V: precisely, define D% (2 e, ¢’ | to be

D e.Dxe” + D (Vxe,)o".

o
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That this definition is independent of choice of the frame {e,} is easily checked,

as s the formula X (¢,¥) = (DE@,¥) + (¢,D3¢) for any (complex) vector X and
any ¢, € A(E). Thus

e,e) = D ViVilo,e)

(1)
= > (D}, DY.e,0) + (DV,0,D7 )

+ (D%:9,D7,9) + (¢,D5.D7 ¢)).

Take now again {V,} and {e_} to have the special properties at P € M indicated

previously and write ¢ = 2 e,¢’. Then at P

D% D%, (E eaq,v) =D (V,Vye)e” + D e (DyDyg°)
= > e.(DyDy6%)

since Vy e, = 0.

Also at P
DY DYe =Y (Vy,Vye)o" + O e, (DyDye’)
=D (V5,Ve)0" + D e, (DyDy,¢")

+ z e, (RViV,-"PU)'

The term 2 (Vy,Vy e,)¢ is intrinsically defined. Comparing the resulting expres-
sion for O{¢,¢) with the O¢ formulae shows that if (e =0, then O {g,p) is
the sum of the nonnegative quantity 2 (DV.¢,D7.9) + z (D%,D% @) and

intrinsic terms which at a point depend only on the value of ¢ at that point
and the curvatures R and ®. Thus if suitable assumptions on R and ® be made,

it will follow that [l (¢,¢) = 0 if O =0. A similar calculation shows that at
P for any e > 0



72 R. E. GREENE and H. WU

1
O((e, ) +£)/% = 7 (@) +e)"3’22 [—((Dy,@,¢) + (¢,Dy0))((Dy.0,¢)
+ (@, Dyp,0)) + 2((¢,¢) +&)((Dy,9, Dy ) + (Dyo,Dy ¢ ))]

1 -1/2
+ 5 (o) +e) 2 (Dy,Dyg,9) + {9, Dy Dyo)).

i

By the Schwarz inequality, the term in [ ] brackets is nonnegative. Thus

1
D@ +0)7= — (e.0) +2) 7% X ((Dy,Dy,0.¢) + (¢,D5,Dye)).

Again, if, O¢ = 0, then the right hand side will be, at a particular point of M,
dependent only on the values of ¢, R and ® at that point. If the sumz is nonnegative

so that O((¢,¢) + €)'/? is nonnegative for all & > 0, then the function ({¢,p))"’?,
which is not necessarily smooth, will be subharmonic because it is then the limit
uniformly on compact subsets of the subharmonic functions ({(¢,¢) +€)*ase — 0™.

Also for any positive C” function A, Ah” = p(p — 1)h? || dh||* + ph* ' Ah so
that if Ak =0 then AR® = 0 if p = 1. Thus ({¢,¢) + €)?’? is subharmonic if
p = 1 and ((¢,¢) + €)'/? is subharmonic. Hence (¢,¢)”’? is also subharmonic,

a fact which also follows directly from subharmonicity of (¢, ¢) '/

The following theorem is a concrete illustration of these general principles.

THEOREM 2. If M is a complete Kahler manifold and if at each point the
sum of any q eigenvalues of the Ricci tensor of M is nonnegative, then any harmonic
form of type (0,q) or (q,0) that is in L” for some p with 1 <p < +x is parallel.
If in addition the volume of M is infinite or if the sums of any q. eigenvalues
of the Ricci tensor are all positive at some point of M, then any such form is
identically zero. If M is a complete Kdihler manifold and if at each point the
sum of any q eigenvalues of the Ricci tensor of M is nonnegative and if the Riemannian
sectional curvature is nonnegative outside some compact subset of M, then no
harmonic (q,0) or (0,q) form is in LF, 1 < p < + except the zero form.

Proof. The case of ordinary, C-valued forms corresponds in the previous
calculations to E being the trivial line bundle M X C with the metric determined
by (1,1) = 1 and hence ® = 0. If ¢ is a (C-valued) form of type (0,q) then

8/ A U(V)Ry,50 =0

because Rm& preserves type and v(V;)a =0 for any (0,q) form «. Hence at p

DyDyp¢=-0¢— D Rype and DyDye=—Oe. IfOe=0,

(Dy, Dy, ,0) + (¢, DDy, 0) = D (—Ry y,0,0) = —<2 Rv,f,,cp,<p>.
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The operator Z = 2 Ry ¢ is Hermitian: for any forms o, (Za,B) = (o, ZB).

This fact is easily verified by expressing Z in real coordinates. Thus there is

an orthonormal basis W,, ..., W, for the vectors of type (0,1) relative to which
AW, = \,W,, \, real. If 0,, ..., 0,, 6, ..., B, is the basis dual to W,, ..., W,
w,, .. W then .%’(6) = —)\ 6 since O .%(6 (W)) = 6 (Z (W) + %’(6 Y(W).
Consequently %’(9 ce A 6 )— —(N, + .+ )\q)B A...nB; . So (%cp,cp) =0

(>0 if ¢#0) at P if ANyt +N = 0 (>O) at P for a11 Jis ves Jgr J1 < oo <Jyg-
Thus if L¢ = 0,

(41 (Dy,Dy0,0) + (¢, Dy Dy, ¢) =0

if A + .+ A, =0 for allj, < ... <j,, and (at P)

(D) (Dy, Dy ¢,¢) + {¢,DyDy ) >0

if N+...+N >0 for all j,<..<j, and ¢#0 (at P). In particular
D(((p,cp) +e)1/2> 0 under the \; + ... +\;, =0 condition and > O under the
N+ o+ N >0 condition unless q) O

y#/? is subharmonic under the

By the remarks preceding the theorem, (¢,¢

)p/2

general (first stated) hypothesis of the theorem. If (¢, ¢ is finite for some

M
p, 1 <p <o, then (**) of the introduction implies that (¢,¢) is constant. Thus
O(¢,¢) = 0. Then (f) and ({}) imply that > (Dy,¢,Dye) + >, (Dye,Dye) =0

and so ¢ is parallel. If the volume of M is infinite, then the constant {(¢,¢) must
be zero so ¢ = 0. Also, regardless of the volume of M, the fact that (J{(p,¢) =0
and the formulae () and (f{{) together imply that ¢ = 0 at any point where
N, + o+ N >0, for all j, <...<j,. Thus (¢,¢) =0 and ¢ =0 under either
hypothe51s of the second statement of the theorem. The last statement of the
theorem follows immediately from (*) of the introduction and the subharmonicity
of (¢,¢)”’%. The statements for (g,0) forms follow from those for (0,q) forms since
a form is harmonic if and only if its conjugate is harmonic and conjugation preserves
the metric norm.

On a compact Kahler manifold, a harmonic (C-valued) form of type (q,0) is
necessarily holomorphic. The same conclusion does not hold in general for (q,0)
forms on complete but noncompact Kahler manifolds. However, if a harmonic
(g,0) form is in L?(M), then the form is again necessarily holomorphic [2]. This
fact yields a refined result in which an integrated curvature estimate suffices
in contrast to the pointwise curvature condition which usually holds. To state
the precise result, which is implicit in the results in [23] (see also [19] for the
compact case), let for each P € M, m,(P) = the minimum sum of g eigenvalues
of the Ricci tensor at P.

THEOREM 3. If M is a complete Kdhler manifold with m, bounded below

and 0 < m, < « then there are no harmonic (q,0) or (0,q) forms in L*M)

M
except the O-form.
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Proof of Theorem 3. If ¢ is an L® harmonic (g,0) form, then ¢ is holomorphic.
In particular Dye = 0 if V is a vector of type (1,0): this fact follows easily from
writing ¢ in a holomorphic normal coordinate system, for instance. Let u = (¢, ¢).
If u #0 at a point P € M and if {V,} is a special frame at P as before, then

_ 1 _ _

1 = V. V. =— V.V.u — (V.u)(V,
og u 2 :V.(log u) uZ(u Viu — (Vu)(V,u)
=(¢:0)" >, [{¢,0)(Dy,Dy0,0) + (@,Dg.Dye)]

+(,0) " Y [{@,0)((Dye,Dye) + Dye,Dye))
— ((Dy,#,¢) + (0, D)) (Dy,0,0) + {(¢,Dy.0)]

= <«p,cp>'22 [{¢,¢){¢, Dy, Dye)]
+ <«p,cp>‘22 [{,9)(Dye,Dye) — (Dyo.,0) 7]
= (¢,0) " D, [{0,0)(0, Dy, Dye)] = (@)~ <<P, E Dv,.Dv,.q>>-

Since ¢ is type (g,0), 6’ A L(V,-(va‘—,icp = 0 because R, y preserves types. From
the first formula for the complex Laplacian and the fact that at P,

N2
DV,'V‘ - DV,'V,‘ - RV,?i,

it follows that 2 Dy Dy ¢ = —2 Ry v.¢. (Alternatively, one can deduce
this formula directliy from the factithat DV,-<P = 0 for any type (1,0) V so that
Dy ¢ =0 and hence z Dy Dy ¢ = 0.) By the reasoning employed in the proof
of Theorem 2 i

—<q>, 2 Rv,.v,.q>> =m,(P){¢,¢)

so that [ log u = m_(P). The conclusion of the theorem for (g,0) forms follows
from statement (***). The statement for (0,q) forms is a consequence of that for
(g,0) forms by conjugation.

If X and Y are two (real) unit tangent vectors at a point of a Kahler manifold,
then the holomorphic bisectional curvature determined by X and Y is by definition
R(X,JX,Y,JY). A Kihler manifold is said to have nonnegative (respectively,
positive) bisectional curvature if this number is nonnegative (positive) for any
two unit vectors X, Y. By the Bianchi identity and the Kahler properties of R,
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RX,JX,Y,JY)=R(X,Y,JX,JY) + R(X,JY,X,JY)
=R(X,Y,X,Y) + R(X,JY,X,JY);

hence nonnegativity (or positivity) of sectional curvature implies nonnegativity
(or positivity) of holomorphic bisectional curvature [10]

THEOREM 4. If M is a complete Kdhler manifold with everywhere nonnegative
holomorphic bisectional curvature, then for any p, 1 <p < 4o, every harmonic
form of type (1,1) in L” (M) is parallel. If in addition the volume of M is infinite
then any such form is identically zero. If (regardless of the volume of M) the
holomorphic bisectional curvatures of M are all positive at one point of M, then
every harmonic (1,1) form that is in L (M) for some p, 1 <p < +0o, is a constant
multiple of the Kdhler form of M. If M is a complete Kédhler manifold with nonnegative
holomorphic bisectional curvature and if the Riemannian sectional curvature of
M is nonnegative everywhere outside some compact subset of M, then no harmonic
(1,1) form other than the zero form is in L” (M) for p with 1 < p < +oo.

Note that this theorem is not quite a direct analogue of Theorems 1, 2, and
3: That M have positive holomorphic bisectional curvature does not imply vanishing
of L” harmonic (1,1) forms but rather that such forms are constant multiples
of the Kahler form. This corresponds to the fact in the compact case that positivity
of holomorphic bisectional curvature implies not the vanishing of the second Betti
number b,(M) but rather that b,(M) = 1, the second cohomology group being
generated by multiples of the Kiahler form [10]. In the following proof of Theorem
4, it corresponds to the fact that positivity of holomorphic bisectional curvature
(at a point) and vanishing of F(¢) together imply that ¢ is a multiple at that
point of the Kahler form but not that ¢ = 0 at that point.

Proof of Theorem 4. If ¢ is an harmonic (1,1) form, then the (1,1) forms
¢ + ¢ and (\/——_ 1) ‘(¢ — @) are also harmonic and they are real forms. It follows
easily that it suffices to prove the theorem for the case of real forms. In this
case, the theorem is implied by statements (*) and (**) combined with the reasoning
in Section 1 about the subharmonicity of (¢,¢)'/? once it is verified that for
a real harmonic (1,1) form «:

(a) The quantity F(¢) defined in Section 1 is nonnegative if the holomorphic
bisectional curvature of M is nonnegative

(b) F(¢) is positive at a point of M if at that point the holomorphic bisectional
curvature is all positive and ¢ is not a multiple of the Kahler form at that point.

These properties of F'(¢) are established by a direct calculation using the property
that there is an orthonormal basis of the real tangent space at a point P of M
of the form X,, X, =JX,, X;, X, =JX; .... X,, =JX,, , such that ¢(X;,X;) =0
unless i,j are 2k — 1, 2k in some order for some % (see [3] for proof of this property
and further details; cf. also [10]).

The previous theorems give essentially complete information in the case mani-
folds of low dimension.

THEOREM 5. If M is a complete Kdhler manifold with dim o M = 2, with
nonnegative holomorphic bisectional curvature and with nonnegative sectional



76 R. E. GREENE and H. WU

curvature everywhere outside some compact subset of M, then for anyp, 1 = p < +ox,
there are no harmonic forms of any degree in L” (M) except forms which are identically
zero.

Theorem 5 is an immediate consequence of Theorem 2, 3 and 4 together with
the standard result that a form « is harmonic if and only if each component
of its (orthogonal) decomposition into forms of pure bidegree is harmonic. Of course,
various other versions of Theorem 5 can be formulated by using the various
statements of Theorem 2, 3, and 4.

The following result generalizes parts of the Kodaira vanishing theorem. (For
a different generalization, which is more refined in its conclusions but requires
more delicate hypotheses, see [1] and [2]). In the following theorem, K is the
line bundle of (n,0) forms, n = dims M and K* is the dual of K.

THEOREM 6. If M is a complex Kahler manifold of complex dimension n
and if L— M is an Hermitian holomorphic line bundle with the property that
the curvature form of L ® K* has nonnegative trace, then for any p, 1 <p < +,
every harmonic L-valued (0,n) form in L” (M) is parallel. If in addition M has
infinite volume or the trace of the curvature form of L ® K* is positive at one
point, then any such form is zero. If M is a complete Kdhler manifold, if L —
M is a line bundle such that L ® K* has a metric with curvature of nonnegative
trace, and if M has nonnegative sectional curvature everywhere outside some compact
set, then for every p, 1 <p < +x no harmonic L-valued (0,n) form is in L”(M)
except the zero form.

Theorem 6 is proved by the same process as used to establish Theorems 2-5:
The appropriate nonnegativity (or positivity) check is as follows: Write the harmonic
form ¢ as ep' where e is a local nonvanishing holomorphic section of L. Then
what is required is to verify the nonnegativity (or positivity) of

<z D'(r,.D'é(P,cP> + <q>, 2 D'&,D@,.‘P>

or equivalently of

(e,e)<2 Dy Dy 1,(p1> + <eq> Y (2 Vvvvie)cp‘l + e(z DT{DVicpl)>

The first term is equal (since ¢ is harmonic) to

(e,e)<-—2 Ry’ + D v (V)®] A L(Vi)¢‘,«91>-

The second term is equal to

Z - (e;e)(‘Pl"Pl)(zq);(Vi!Vi)) + Z (e’e)(‘P,L (V‘)CD;/\ L(Vi)‘Pl)-

T
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Now if ¢' is a (0,n) form, then

2 V@ AL (V)e! = D @1 (V,, Ve,

since ¢' is a multiple of 8' A ... A 8". Thus the second term is zero so that
what is required is to check the nonnegativity (or positivity) of

By the calculations for Theorem 2 this expression is greater than or equal to

(¢',¢') X (the trace of the Ricci tensor +2 ®;(V,, V.)), the second factor being

nonnegative (or positive) precisely by the hypothesis of the theorem. The remainder
of the proof of the theorem follows a by now familiar pattern and is omitted.

Although it will not be used further here, the following formula for the complex
Laplacian on E-valued forms when M is an Hermitian but not necessarily Kahler
manifold is useful for, among other purposes, illustrating the simplification that
the Kahler condition generates. To state the formula (given here in the form
calculated in [17]; see also [2]) let S and T be the operators on ordinary forms.

(2 GI-ADV‘:)—S and (Zi(Vi)Dw)—é*,

T

respectively, where 3* is the adjoint of 3 on ordinary forms. S and T are tensors
for any Hermitian manifold; they are identically zero on Kahler manifold. Then

for a E-valued form ¢ = 2 e, ¢’,

Oe=>e, (2 (V) D7 A (V) «p°),+ > e, (e%),

i,p o

as before. And for any ordinary form a,
Da = = Dy, Dya— > 6'a (Vi) Ry, g0
k ki
— D UV (Dy, B A Dgo) = D' 8% A [Dyg, (V)] Dy0
o ¥
+ > UV Dy, (Sa) = > T(®" A Dy,0) + TS«
P :

+ D 8, A Dy, (Ta) + > S((V)Dy,a) + STa.
k i
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3. COHOMOLOGY VANISHING

The results of Section 2 do not yield directly results on cohomology vanishing
for noncompact manifolds because it might happen that a particular deRham or
Dolbeault cohomology class contained no L” harmonic form. There is a cohomology
vanishing theorem related to Theorem 1 given in [23] (Theorem 6 there). Also,
there is a cohomology vanishing theorem (a weaker form of which was announced
by the authors in [11] as Theorem 1 there; cf. [21]) which is closely related
to Theorem 6:

THEOREM 7. If M is a complete Kdhler manifold with everywhere nonnegative
sectional curvature and if L is an Hermitian holomorphic line bundle with the
property that the curvature of L ® K* is positive, then H* (M, 0 (L)) = 0 for all
qg=1. ' \

Proof of Theorem 7. By the Dolbeault isomorphism theorem, it is enough to
show that if ¢ is a d-closed L-valued (0,q) form then there is an L-valued (0, — 1)
form ¢ with 3y = ¢. To solve this 8 problem, define, for each point P € M, the
number ¢(P) to be the minimum among the eigenvalues of the curvature of
L ® K*. Then P— c(P) is a positive continuous function on M. There is a non-
negative continuous plurisubharmonic function 7: M— R such that e 2¢/V cis

in L*(M), i.e. |\ ¢ e " (¢,¢) < +o. The existence of such a function 7 is a con-

sequence of the existence of a convex exhaustion function on M [6] say 1,: M — R.
If f:R — R is a suitable (rapidly increasing) nondecreasing convex function, then
T = for, will be a convex function such that ¢ */?*e "/?¢ is in L?(M). This function
7 is plurisubharmonic because any convex function on a Kahler manifold is
plurisubharmonic [12]. Some technical difficulty arises in the following argument
from the possible nondifferentiability of 7. Since the method of disposing of this
difficulty is given in detail in [13], it will not be considered further here and
the rest of the argument will be given as if + were C”.

Define a new metric %, on the bundle L by multiplying the original metric
h by e ".If ( ), is the metric on L-valued forms determined by this new metric

h_ (and by the metric on M) then X 1/c{p, @), < +oo,
M

It is a standard result ([2] [16] and especially [13] for the present version
of the L? theory of the d-operator) that an appropriate form § will exist if for
all (0,q) L-valued forms w of compact support

q S c{w,w), = S (Uo,0),.
M M
From a previous formula for [J,
(Ow,w), = —E (eD‘z,-iV‘_ml,euol)T + <e 2 - RVI‘-,lwl,eu)1>

+ D (e (V) @], A L(T)ob)enl),
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where @], is the curvature of L with metric 2, and the o = e»' notation of
Theorem 6 is continued. Now if ®; denotes the curvature of L with its original
metric, then the form @] is ®) + 337 and hence @], = @;. Then calculations
as in Theorems 3 and 6 show that

<e2 — Ry go', ew1> + D (@ (V)@ AL(V)oleo'),

1 1
= <e 2 - Ry p0,ew >
i T

+ D (e (VDAL (T)ob)en),

= ge(ew’,en’), = gc(w,w),.

Suppose for the moment that S <e Z D"",‘ V,.wl, ew1> = 0. Then

S (Dw,w)qu c{w,0) ..

The theorem then follows as already indicated.

Thus is remains only to show that S - <e 2 Df,i ‘-,‘wl,ew1> = 0.This inequality
holds in fact independently of the curvature assumptions. To check the inequality
set B = 2 (e(Dypw'),ew'), 8, B is a globally defined (ordinary) 1-form because

its definition is independent of choice of the local holomorphic section e and the
frame {V.}. A direct calculation of *d*B at the point P (where e and {V} satisfy
their previously indicated special properties) yields the result that

X * d * B = S [— <e 2 Df’;V,wl,e(ﬂ1> — 2 (eD‘—,lu)l, eDViwl>le

Since S +d * B =0 for any 1-form J3,

M

S — <92 D%z,v,ml,eml> = S E (eDyw',eDpw’),
M 2 T M i

SO

— S > (eDY, g0’ ew), =0,
M i
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as required. Incidentally, the inequality just established in the case of line bundles
holds also (and by essentially the same proof) for arbitrary holomorphic vector
bundles. Thus under suitable curvature assumptions there are vanishing theorems
for forms with values in a bundle of higher dimension than 1, but no detailed
formulation of such results will be given here (see [11], in which some further
remarks on the noncompact case are given.)
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