EIGENVALUES EMBEDDED IN THE CONTINUUM FOR
NEGATIVELY CURVED MANIFOLDS

Harold Donnelly

1. INTRODUCTION

Suppose that M is a complete simply connected negatively curved surface and
A is the Laplacian of M. If M is the Poincaré upper half plane with constant
curvature —1, then the spectrum of —A is purely continuous and consists of the
half line [1/4,). '

Denote K to be the Gauss curvature of M. McKean [10] showed that if K < —1
then the spectrum of —A is bounded below by 1/4. By a more detailed argument,

Pinsky [14] proved that if K < —1 then 1/4 does not appear in the point spectrum
of —A.

Since M may have continuous spectrum starting at 1/4, new proofs are required
to prevent M from having eigenvalues greater than 1/4. Let ds® = dr® + g°(r,8)d6?
be the metric in terms of geodesic polar coordinates (r,0) about some p € M. If
g = g(r) is independent of 0, then Pinsky [14] gave decay conditions on K(r) + 1,
as r — o, which insure that M has no eigenvalues greater than 1/4. Unfortunately,
his method does not generalize in a straightforward way to metrics which are
not rotation invariant, at least for r suitably large.

In this paper we give decay conditions on K (r,0) + 1, K,, K,,, as r — o, which
imply that M has no eigenvalues greater than 1/4. We then easily generalize
our results to dimensions n = 2. By adding the hypothesis K < —1, one obtains
a criterion for a negatively curved manifold to have purely continuous spectrum
consisting of the half line [(n — 1)*/4,%).

Our method is a modification of Kato’s solution [9] given the analogous problem
for the Schrodinger operator on R”. The idea is to regard L>(R"”) = L*(R) X L*(S*™")
and to systematically exploit differential inequalities for L?(S*™') valued functions
on R.

The author thanks Professor Pinsky for sending us a copy of his paper [14]
and for informing us [12] of the open problem which arose in that work. This
provided the starting point for the present paper.

2. SURFACES HAVING ASYMPTOTICALLY CONSTANT CURVATURE

Let M be a complete simply connected negatively curved surface. Then for
each p € M the exponential map exp: T,M — M is a diffeomorphism [3, p. 184].
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Thus we may endow M with a global system of geodesic polar coordinates where
the metric is given by ds* = dr”® + g° (r,0) d0>. If K denotes the Gaussian curvature,
then g satisfies the ordinary differential equation 8°g/or* + Kg = 0 [11, p. 278]
along the geodesics emanating from p. '

Using the standard formula valid for any local coordinate system [8, p. 398],
the Laplacian may be computed as

] N 0 o
L AN -l_( _1_)
V=g 6r(gar) £ a0 £ a0

Define w = g'/*§ and H = g'/?>(~A — 1/4) g '/% Then one has

. —o*w L, oW A dw v
w = - g +A—+ Vw
ar? 00” a0

Now suppose that K(r,0) < 0 satisfies the decay conditions
) limr|K+1]=0

r—o

ii) S r|K+1|dr < d,
@.1) iii) S e”| K, |dr < d,

iv) g e | Ky, |dr < d,

where d,, d,, d; are constants independent of 6.
One has

LEMMA 2.2. If the decay conditions (2.1) are satisfied then A = 0(e™”) and
V=0@G"" asr— o,

Proof. This follows from Propositions A.6, A.7 of the appendix.
Suppose that ¢ is an eigenfunction of —A with eigenvalue E + 1/4 for E > 0.
Then
S lw|Pdr < o

2.3)
Hw =Fw
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The unique continuation theorem of Aronzajn [1, p. 235] implies that w does
not vanish identically on any open set.

LEMMA 2.4. If the decay conditions (2.1) are satisfied then d/dr(r & (r)) = 0,
r > R, where one defines ¥ (r) = (w’, w’) — (g *w,, w,) + E (w, w) with w’ = dw/ar
and where ( , ) is the standard global inner produce on L*(S").

Proof. Using (2.3) and computing one obtains

d d
— g M) =w,w)+Ewuw) - (— rg™?) we,we) + 2r (Vw, w)
dr ar

The lemma now follows from Lemma 2.2 and Proposition A.6.

Since { is in the domain of —A, one has dy € L® This forces & (r) to be
integrable. As a consequence, using Lemma 2.4, we see that ¢ (r) < O for r > R,,.

Define w,, = r"w for any m = 0. Then w,, satisfies the ordinary differential
equation:

(2.5) W), — 2mr wl, + g 2w, 0 + mim+)r*w,, —Aw,,, + (E-V)w,, =0

One has
LEMMA 2.5. Define

&L (m,r) = W, w,,) + E—ER;r '+ m(m + 1) r 2w, w,,) — (8 > W05 W)

If the decay conditions (2.1) are satisfied then d/dr(r>.& (m,r)) >0 for m > m,,
r>R,>R,.

Proof. One computes, employing (2.5):

d R,
—@2Z (m,r)) = 2ri2m + 1) (w,,w,,) + 2rE (1——) (w,,,w,,)
dr 2r

Jd
- (a—(rzg"z)wm,e, wmp) + 2r* (V—-ER,r Huw,,, w,)
r

The lemma now follows from Lemma 2.1 and Proposition A.6.

By examining the formula defining .# (m,r) we find that for some R, > R,

there exists an m, > m,so that & (m,,R,) > 0. By Lemma 2.6, one has.# (m,,r) > 0
for all r = R,.

Since Sl|w||2dr<oo, we may choose R, >R, so that (w’,w)(R;) <0 and

—ER,;r ' +m,2m, + )r><0ifr=R,.
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Then

m P .
w +—uw|| + (E-ER,R,
3

+m(m + DRI)|w|® — (g% w,,w,)

R;*™.Z (m,,R;) =

and so

Rgzmlj (m,R;) < "w'"2 + E”w”2 - (g_zwe’ w,)
R;*™.#Z(m,,R;) < $(R;) <0

a contradiction.
This yields,

THEOREM 2.7. Let M be a complete simply connected negatively curved surface.
Suppose that the Gauss curvature of M satisfies the decay conditions (2.1). Then
—A has no eigenvalue A > 1/4.

3. A COUNTEREXAMPLE WITH POSITIVE CURVATURE

We observe in this section that the decay conditions (2.1) are not sufficient
in themselves to guarantee the conclusion of Theorem 2.7. In fact, there are surfaces
M with K identically —1 outside a compact set for which —A has arbitrarily large
eigenvalues. Thus the hypothesis K < 0 for Theorem 2.7 is used there in an essential
way.

Let g(r) be a function satisfying g(0) =0, g'(0) =1, and g(r) = e " for r = 1.
Denote M to be the Riemannian manifold diffeomorphic to R? with metric
ds® = dr’ + g°(r)d8® in geodesic polar coordinates about some p € M. Then one
has K= —g"/g=—1forr=1.

Since g is independent of 0, the Laplacian A of M commutes with rotations.
Each ¢ € C3 (M) may be expanded as ¢ (r,w) = 2 b, (1) e’ where n is an inte-

ger. The standard local formula for the Laplacian [8, p. 398] implies that
A = 2 (A, d,) e"° where

2 ’
— d ¢n +g—d¢n _n_2 —2

Ad, g2¢e,.

drX g dr
This decomposes the operator A as the direct sum of the operators A, acting on
L*(R",g(r) dr).

Now A, is unitarily equivalent to the operator D, = g'/?A_ g™/
L*(R*,dr). A computation shows that

% acting on

d2

U
Dyp=—+[o@)—n’g @]V
dr
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where o(r) = —1/2h"(r) — 1/4(R’ (1)? and g(r) = exp (h(r)). Thus if r = 1, one

has
-D, = + | — + n%e”

A theorem of Titchmarsh-Weyl [16] states that operators of the form
—d?/dr* + q(r) with ¢ (r) - © as r — « have no essential spectrum. Thus if n # 0,
—D, has pure point spectrum consisting of eigenvalues \,, (n) with \,(n)1 o as
m — o,

Since A is unitarily equivalent to the direct sum of the operators A,
A= 2 A,, and each A, is unitarily equivalent to D,, we see that —A has arbitrarily

large eigenvalues.

On the other hand, —D, has no eigenvalues greater than 1/4, since
—D, = —d?/dr® + 1/4 outside the compact set 0 < r < 1. The decomposition princi-
ple [6] implies that the essential spectrum of — D, is the interval [1/4,=). Therefore,
the continuous spectrum of — D, is also the interval [1/4, ).

In conclusion we may state that —A has continuous spectrum consisting of
the interval [1/4, ). Moreover, —A has arbitrarily large eigenvalues.

4. GENERALIZATION TO HIGHER DIMENSIONS

The above results generalize in a straightforward way to manifolds M of
dimension n = 2. The additional details required are outlined below. One need
only utilize the technique of Jacobi fields and suitable theorems for systems of
ordinary differential equations.

Let M” be a complete simply connected negatively curved manifold. Given
P € M, the exponential map exp: T,M — M is a diffeomorphism [15, p. 330]. For
each w € 8", denote v (w,f) to be the unit speed geodesic starting at p with
direction w.

A vector field y along v is called a Jacobi field [15, p. 307] if
4.1) ¥y +R(y, V=0

where y” is the second covariant derivative, R is the curvature tensor, and V

is the tangent vector of . Suppose that y is perpendicular to vy, which is the
case of interest. One may choose an orthonormal frame e,,...,e,_,, V of vectors

parallel along v. Settingy = 2 o, e;, we find that Jacobi’s equation (4.1) is equivalent
to the linear system of ordinary differential equations

where a,;(t) = R(e;, V, V, ¢).
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Let 8 € S"! and denote K (w,0,?) to be the sectional curvature of the plane
obtained by parallel translation of the (w,8) plane along v (w, ). Suppose that K

is asymptotically constantin the sense that | ¢|K+1|dt < d, where d, is a constant.

o
By applying Theorem 13.1 of [7, p. 305] to the system (4.2), we deduce that
any Jacobi field has the asymptotic behavior:

YO =€y, +ot™)

(4.3)
Y (@) =€@.+o)

as t — o, for some constant vector y,. We will be interested in Jacobi fields
satisfying the initial conditions y{0) = 0, y’'(0) # 0. Since M has nonpositive
curvature, it follows from the Rauch comparison theorem [15, p. 348] and [7,
p. 305] that y_ # 0.

Let D denote the covariant derivative on S”', with respect to its standard

-] [--]

metric. Suppose that | ||D K|e*dt <d, and \ |D? K|e*dt < d,. Applying varia-
o o
tion of parameters, [7, p. 48] we deduce that |D_y|| = 0(|y|) and [ID || = 0(|)

ast— oo,

Suppose that I' (w,?) = tw is the straight line in T,M which maps to v (w,?)
under exp: T, M—> M. If E,,...,E,_,,» is an orthonormal frame along I in T, M,
lety, be the Jacobi field satisfying y; (0) = 0,y (0) = E,. It follows from the variational
characterization of Jacobi fields [15, p. 314] that y;(f) = exp (tE;). This allows
one to deduce, from (4.3), the asymptotic behavior of the components of the metric
tensor in a geodesic spherical coordinate system associated to exp: T,M —»M.

We may now state:

THEOREM 4.4. Let M be a simply connected complete Riemannian manifold
having nonpositive curvature. Fix p € M, and let r denote the geodesic distance
from p. Suppose that along geodesics emanating from p, the curvature of M satisfies
the decay conditions:

i) X r|K + 1|dr < d,

o]

ii) S |D, K] dr < d,
o

iii) S | D2 K|le* dr < d,
0
iv) limr||K+1||=0

for some constant d,, d,, d,. Then the Laplacian —A of M has no eigenvalue
A>(n— 1)%/4.

Proof. Let g = V det (g;,) be the volume element for the spherical normal
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coordinate system given by exp: T,M — M. If { is an eigenfunction of —A, then
set w = g'/?\.

Define 4 (r) = (W', w’) — ({(dw, dw),1) + E (w, w), where ( , ) is the Riemannian
metric of M and (, ) is the standard global inner product on L?(S"™'). Now
proceed by analogy with the differential inequalities arguments in Section 2. Our
discussion above provides the required decay estimates on the metric.

5. LAPLACIANS HAVING PURELY CONTINUOUS SPECTRUM

By combining Theorem 4.4 with known results, one obtains conditions for a
negatively curved manifold to have purely continuous spectrum. Related results
were obtained in [14, p. 11] for rotation invariant metrics.

We begin by stating:

PROPOSITION 5.1 Let M be a complete simply connected negatively curved
manifold. Suppose that all sectional curvatures of M are bounded above by —1.
Then the spectrum of —A is bounded below by (n — 1)*/4. Moreover, (n — 1)°/4
is not contained in the point spectrum of —A.

Proof. The fact that the spectrum of —A is bounded below by (n — 1)*/4
is due to McKean [10]. Alternative proofs of this result were given in [13, p.
88] and [17, p. 498].

Let g be the volume element for geodesic spherical coordinates about some
p € M. According to [14, p. 4] any eigenvalue A of —A must satisfy A > 1/4p”

g
where p = inf g7* —(—3— In fact, it was assumed in [14] that n = 2, but the same
>0 r

argument holds if n = 2. Since K < —1, a standard comparison theorem [3, p.

253] yields w = n — 1. Thus 1/4(n — 1)? cannot occur in the point spectrum of
—A.

One has:

THEOREM 5.2. Let M be a complete simply connected negatively curved mani-
fold whose sectional curvatures are bounded above by —1. Suppose that M satisfies
the decay conditions i)-iv) of Theorem 4.4. Then —A has purely continuous spectrum
consisting of the half line [(n — 1)?/4,).

Proof. By Theorem 4.4 and Proposition 5.1, M has purely, continuous spectrum.
It was shown in [4] that if K — —1 at infinity then the essential spectrum of
M is the half line [(n — 1)?/4,x). Since we have the stronger condition (iv) of
Theorem 4.4, our conclusion follows.

APPENDIX. SOME LEMMAS FROM ORDINARY DIFFERENTIAL
EQUATIONS

In this section we collect some facts concerning the second order equation:

(A.1) g +Kg=0
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PROPOSITION A.2. Let g(r) satisfy (A.1) for 0 < r < o with initial conditions
£0)=0,g2’00=1.If K< 0, then g’(r) > 0, g(r) > 0 for all r > 0.

r

Proof. Since g(r) = |\ g (r)dr, it is enough to show that g’(r) > 0. If not,

[¢]
let r, be the smallest r with g’ (r) = 0. Then g(r) = 0 for all r < r,. The formula,
To
g ry)=1- S Kgdr < 1, yields a contradiction.
0

oo

PROPOSITION A.3. Suppose that | K+1|dr <. Then the ordinary dif-
(]
ferential equation (A.1) has solutivns g,, g, which satisfy.

r

, _
o~ —8o0~ €

(A.4) , ,
) 1~ 8L~ ¢€

asr —» o,

Proof. [7, p. 381]

oo

PROPOSITION A.5. Let K(r) <0 and |K+1|dr < . Denote g(r) to be the
0
unique solution of (A.1) satisfying g(0) =0, g’(0) = 1. Then g~ g’ ~ c,e” for some
¢, >0.

Proof. By Proposition A.3 we may write g = ¢, g, + ¢,&, where g,, g, have
the asymptotic behavior (A.4). Since K =< 0, Proposition A.2 shows that ¢, > 0.

If K(r,0) is a family of K’s parameterized by 0 < 0 < 2w then the constant
¢,(0) in Proposition A.5 has good dependence on 8. This follows by examining
the estimates in [7, p. 381].

PROPOSITION A.6. Let K(r,0), 0 < 6 < 2w satisfy the conditions:
i) K(r,8) <O forallr
ii) S |K+1|dr < d,

L]

iii) S |K,|e” dr < d,

]

iv) S | Kpole® dr < d

o

where d,, d,, d, are constants independent of 6.

If g(r,0) are the corresponding solutions of (A.1), then as r — co:
i) g(r,0) ~ c,(0)e” c,;(8) >0

ii) g, (r,8) = 0(8)

iii) g, (r,0 = 0(g)
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iV) g,(r,B) -~ c1 (e) e"
Proof. Since g” + Kg = 0, one has g + Kg, + K,g = 0,

8oo + Kgy, + 2K, 8, + Ky g = 0.

The result now follows from Proposition A.5 and variation of parameters [7, p.
327].

By imposing stronger decay conditions on K(r,0), one obtains better control

of the ratio g~' ag/or:

|

10.

11.
12.
13.

14.

PROPOSITION A.7. Suppose that K(r,0) < 0 satisfies the integral condition

r|K + 1|dr <o, then g * dg/or=1+0(1/r) as r— .

Proof. [7, p. 380].
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