A RUDIN-CARLESON THEOREM FOR UNIFORMLY
CONVERGENT TAYLOR SERIES

Daniel M. Oberlin

Let T be the unit circle in the complex plane and let m be normalized Lebesgue
measure on 7. For a continuous complex-valued function f(z) on 7' and an integer

Jj, define the Fourier coefficient 7(j) by 7(j) = f(2)z7 dm(2). The letter A will

T
stand for the space of continuous functions f(z) on T such that f(j) = 0 for j < 0,
while U will denote the set of all f € A such that

f2) =1lim > f(j)z’

n—o <

uniformly on 7' Recall the classical Rudin-Carleson theorem.

THEOREM 1. ([6},[2]). Let K C T be a closed set with m(K) = 0 and suppose
that g is a continuous function on K. There exists f € A such that f(z) = g(2)
forz€ Kand |f(z)] <sup{|lgw)|:weE K} ifz& K.

The purpose of this note is to strengthen Theorem 1 as follows:

THEOREM 2. Let K and g be as in Theorem 1. Then there exists f € U such
that the conclusions of Theorem 1 are valid.

This theorem answers a question on p. 89 of [5] and extends certain previously
known results. (See, e.g., [4].)
We now begin the proof. Let D, (z) = 2 2’ so that 2 f ()2’ is equal to the
j=0 Jj=0
convolution over the group T D, = f(2). Let Y be the set {0} U {n"')}%_,, and
let 7' be the space T'X Y. Then, if f € A, f € U if and only if the function

fz) if y=0

f(zy) {Dn cf@) if y=n?
is continuous on 7. Thus U corresponds to a uniformly closed subspace U of the
space of continuous functions on T. The conclusion of our theorem can be stated
as follows: if K C T is compact and of measure zero, then K= {(%,0): % € K}
is a set of interpolation for the space U of functions on 7. The generalized
Rudin-Carleson theorem [1] now shows that it is enough to establish the following
fact.
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If X is a Borel measure on T satisfying

(1) S fd\ = 0 for every f € U, then

T

|IX](K) = 0 for all K as above.

Here |A| denotes the total variation measure associated with A.

Each measure X on 7 can be considered as a sequence {\,}>_, of measures

on T such that the series of total variation norms z [IA,|| is finite. Thus (1)
n=0

follows from the next statement.

If {A,} o is a sequence of measures on T
such that > ||\, || < «, and if S f@AN(Z) =D S D, * f(2)d\, (2)
n=0 T T

n=1

(2)
for all f € U, then \, is absolutely continuous with respect
tom.

The idea behind (2) is that A\, is the limit in the dual space of U of a sequence
of polynomials, and such a limit should be absolutely continuous. To make this
precise, we need to introduce some more notation. For f € U, define || f|| to be
sup {|D,*f(2)|:z€ T, n=1, 2, ...}. For a measure \ on T, define ||\[|* to be

sup X fRANR|:FE U ||f]l = 1}. Then it follows from the hypotheses of
T

(2) that for each € > 0 there is a polynomial p(z) such that, identifying p and
the measure p(2)dm(z), we have ||\, — p||* <& Now (2) will follow when we
prove assertions (3) and (4) below.

If A, is a measure which is the limit in ||-||* of polynomials,
3) then so is A\, | g, the restriction of A, to any compact K C T
with m(K) = 0.

Suppose that v is a measure on T’
4) supported on a closed set E with m(E) = 0.

If v is the limit in || || * of polynomials, then v = 0.

The proof of (3) is easy. Fix £ > 0. Let g(z) be a polynomial such that g\,
approximates Ag|, well in the total variation norm: ||\y|x — &Xo]| <€/2. (The
existence of g follows from Theorem 1.) The operator f— gf is a bounded linear
operator on U. Since the adjoint operator is bounded on U* and since A, is the
limit in ||-|]* of polynomials, there is a polynomial p with ||g\, — gp||* <e/2.
Now ||Ao|x — &p|]* < € follows from the inequality ||n||* = ||q|| for measures 7
onT.
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The proof of (4) is somewhat longer. Suppose {0, },_, is a sequence of measures

on T satisfying 2 |Im.|| <o and define an analytic function A (z) on the open

n=0
unit disc by A(2) = 2 a, 2, a; = Z M1.(7), and 0, ()) = S 27dn,,(z). It follows
from the proof of Theorem 1 of [7] that A(z) € H?(0 <p < 1) and that if
A*(e'®) = lim A (re*®), then

. ) M
m{e: |A* ()| > s} = ~ Z [Im.]] (s> 0)
n=0

for some absolute constant M. It is easy to see that if

B@) =D b2, b; =) + >, 4.0,
Jj=0

nz=j

then B(z) € H® (0 <p < 1) and

. . M ‘
(5) m {e”: |B* (¢’ )|>s}s—s—2|lnn]|(s>0),

but with a possibly larger absolute constant M.

Now suppose that p is a measure on 7" and define C, (2} = 1- zw)"ld (iu)

Then C (z) is the Cauchy transform of p, so Cj} ) = 11m C (re'®) exists for
almost all e*® € T. We will need the following fact.
©) If w is the limit in || ||* of polynomials, then

m{e”:|C*(e”)| >s}) =o(s"') as s— .
To prove (6), fix e > 0 and let p be a polynomial such that || — p||* < e. It follows

from the Hahn-Banach theorem that there exists a sequence {n,}5_, of measures
on T such that

S f(Z)du(Z')—S [(2)p(2)dm(2) = S f(2)dn,(2)

T

4+

M«

S D, f(z)dn,(2) ~(fe U),

1

n

(D D .l <e.
n=0

In particular, L(j) = p(j) + No(J) + 2 M. (7)) =p(J) + b; (j = 0). Putting

nz=j
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B(z) = z b2’
j=o

we see that C,(z) =p(z) + B(2). Let b =sup {|p(2)|: z € T'}. Then for s> 2b,
m{e”:|C*(e”)] > s} = m{e”:|B*(e®)] >5/2}= 26 M/s

by (5) and (7). Since M is fixed, this establishes (6).

Next consider the following assertion,

If X is a probability measure on 7 supported by a closed
@®) ~ set K with m(K) = 0, then

m{e’:|ImC} (e*® )| = s} = 2 arctan (2/s) /=.
This statement, together with (3) and (6), implies (4): Writev = p, — p, + i(nz — p,)
where the positive measures p, and p, (respectively, n, and w,) are supported

on disjoint sets K, and K, (respectively, K, and K,) partitioning E. It is enough
to show that if K is a compact subset of one of the intersections

K.NK;,it=1,2;5j=3,4),

then v| . = 0. But, by (3), v| 1 is a limit in the norm || || * of polynomials, so (6) holds
with p = v|4. Together with (8) (applied to A = ;| and X = p,|4) and the fact
that Re (1 — zw) ™' = 1/2, for ziv € T, zi # 1, this shows that p;|x = p;|x = 0.

Thus it remains to establish (8). A computation shows that (8) holds if A is
the unit mass at 1, so it is

m{e*:|C*(e'’)| = s} is independent

9)
of X so long as \ satisfies the hypotheses of (8).
Forsuch ), C, (2) = (1 — 20) “*d \ (w) is continuous on D ~ K, the complement

T
of K in the closed unit disc. For z € D ~ K,
(10) ReC,(2) = 1/2,ReC, (2) =1/2 ifandonlyif ze€ T.

Now let C(2) = (1 — z) ™" and fix \. Since C, (0) = 1, C, (2) is subordinate to C(z).
Thus there exists an analytic function g(z) on the open unit disc such that g(0) = 0,
|g()| = |z]if |z] < 1, and C, (2) = C(g(z)). Because of (10), g(2) is an inner function.
Thus (9) follows from the following assertion.

If g(2) is an inner function with g(0) = 0 and if

11 g* () = linll g(re®), then for any Borel subset B of T,

m{e”:g*(e*®) € B} = m(B).
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To prove (11), define a measure m,; on 7T by the rule

S f(Z)dm1(2)=S f(g*(2))dm(2)
T

T

for continuous functions f(z) on 7. Then S f(2)dm,(2) = S f (z)dm (z) whenever

T T

f(2) = 2" for some integer n, so m, = m.

We remark that the proof of Theorem 2 depends indirectly (by way of [7]),
but apparently unavoidably, on the deep results of Carleson and Hunt [3] concerning
the convergence of Fourier series.
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