A RUDIN-CARLESON THEOREM FOR UNIFORMLY CONVERGENT TAYLOR SERIES

Daniel M. Oberlin

Let T be the unit circle in the complex plane and let m be normalized Lebesgue measure on T. For a continuous complex-valued function f(z) on T and an integer j, define the Fourier coefficient $\hat{f}(j)$ by $\hat{f}(j) = \int_{T} f(z) z^{-j} dm(z)$. The letter A will stand for the space of continuous functions f(z) on T such that $\hat{f}(j) = 0$ for j < 0, while U will denote the set of all $f \in A$ such that

$$f(z) = \lim_{n \to \infty} \sum_{j=0}^{n} \hat{f}(j) z^{j}$$

uniformly on T. Recall the classical Rudin-Carleson theorem.

THEOREM 1. ([6],[2]). Let $K \subseteq T$ be a closed set with m(K) = 0 and suppose that g is a continuous function on K. There exists $f \in A$ such that f(z) = g(z) for $z \in K$ and $|f(z)| < \sup\{|g(w)|: w \in K\}$ if $z \notin K$.

The purpose of this note is to strengthen Theorem 1 as follows:

THEOREM 2. Let K and g be as in Theorem 1. Then there exists $f \in U$ such that the conclusions of Theorem 1 are valid.

This theorem answers a question on p. 89 of [5] and extends certain previously known results. (See, e.g., [4].)

We now begin the proof. Let $D_n(z) = \sum_{j=0}^n z^j$ so that $\sum_{j=0}^n \hat{f}(j)z^j$ is equal to the convolution over the group T $D_n * f(z)$. Let Y be the set $\{0\} \cup \{n^{-1}\}_{n=1}^{\infty}$, and let \tilde{T} be the space $T \times Y$. Then, if $f \in A$, $f \in U$ if and only if the function

$$\tilde{f}(z,y) = \begin{cases} f(z) & \text{if } y = 0 \\ D_n * f(z) & \text{if } y = n^{-1} \end{cases}$$

is continuous on \tilde{T} . Thus U corresponds to a uniformly closed subspace \tilde{U} of the space of continuous functions on \tilde{T} . The conclusion of our theorem can be stated as follows: if $K \subseteq T$ is compact and of measure zero, then $\tilde{K} = \{(k,0) : k \in K\}$ is a set of interpolation for the space \tilde{U} of functions on \tilde{T} . The generalized Rudin-Carleson theorem [1] now shows that it is enough to establish the following fact.

Received October 23, 1978. Revision received November 2, 1978. Partially supported by NSF Grant MCS 76-02267-A01.

Michigan Math. J. 27 (1980).

(2)

If $\tilde{\lambda}$ is a Borel measure on \tilde{T} satisfying

(1)
$$\int_{\tilde{T}} \tilde{f} d\tilde{\lambda} = 0 \text{ for every } \tilde{f} \in \tilde{U}, \text{ then }$$

$$|\tilde{\lambda}|(\tilde{K}) = 0 \text{ for all } \tilde{K} \text{ as above.}$$

Here $|\tilde{\lambda}|$ denotes the total variation measure associated with $\tilde{\lambda}$.

Each measure $\tilde{\lambda}$ on \tilde{T} can be considered as a sequence $\{\lambda_n\}_{n=0}^{\infty}$ of measures on T such that the series of total variation norms $\sum_{n=0}^{\infty} ||\lambda_n||$ is finite. Thus (1) follows from the next statement.

If $\{\lambda_n\}_{n=0}^{\infty}$ is a sequence of measures on T

such that
$$\sum_{n=0}^{\infty} ||\lambda_n|| < \infty$$
, and if $\int_T f(z) d\lambda_0(\bar{z}) = \sum_{n=1}^{\infty} \int_T D_n * f(z) d\lambda_n(\bar{z})$

for all $f \in U$, then λ_0 is absolutely continuous with respect to m.

The idea behind (2) is that λ_0 is the limit in the dual space of U of a sequence of polynomials, and such a limit should be absolutely continuous. To make this precise, we need to introduce some more notation. For $f \in U$, define ||f|| to be $\sup \{|D_n * f(z)| : z \in T, \ n = 1, \ 2, \ ...\}$. For a measure λ on T, define $||\lambda||^*$ to be $\sup \{|\int_T f(z) d\lambda(\bar{z})| : f \in U, \ ||f|| \le 1\}$. Then it follows from the hypotheses of (2) that for each $\varepsilon > 0$ there is a polynomial p(z) such that, identifying p and the measure $p(\bar{z}) dm(z)$, we have $||\lambda_0 - p||^* < \varepsilon$. Now (2) will follow when we prove assertions (3) and (4) below.

If λ_0 is a measure which is the limit in $||\cdot||^*$ of polynomials,

(3) then so is $\lambda_0|_K$, the restriction of λ_0 to any compact $K \subseteq T$ with m(K) = 0.

Suppose that ν is a measure on T

(4) supported on a closed set E with m(E) = 0. If ν is the limit in $||\cdot||^*$ of polynomials, then $\nu = 0$.

The proof of (3) is easy. Fix $\varepsilon > 0$. Let g(z) be a polynomial such that $g\lambda_0$ approximates $\lambda_0|_K$ well in the total variation norm: $||\lambda_0|_K - g\lambda_0|| < \varepsilon/2$. (The existence of g follows from Theorem 1.) The operator $f \to gf$ is a bounded linear operator on U. Since the adjoint operator is bounded on U^* and since λ_0 is the limit in $||\cdot||^*$ of polynomials, there is a polynomial p with $||g\lambda_0 - gp||^* < \varepsilon/2$. Now $||\lambda_0|_K - gp||^* < \varepsilon$ follows from the inequality $||\eta||^* \le ||\eta||$ for measures η on T.

The proof of (4) is somewhat longer. Suppose $\{\eta_n\}_{n=0}^{\infty}$ is a sequence of measures on T satisfying $\sum_{n=0}^{\infty}||\eta_n||<\infty$ and define an analytic function A(z) on the open unit disc by $A(z)=\sum_{j=0}^{\infty}a_jz^j,\ a_j=\sum_{n=0}^{j}\hat{\eta}_n(j),\ \text{and}\ \hat{\eta}_n(j)=\int_Tz^{-j}d\eta_n(z).$ It follows from the proof of Theorem 1 of [7] that $A(z)\in H^p(0< p<1)$ and that if $A^*(e^{i\theta})=\lim_{r\to 1}A(re^{i\theta}),$ then

$$m\{e^{i\theta}: |A^*(e^{i\theta})| > s\} \le \frac{M}{s} \sum_{n=0}^{\infty} ||\eta_n|| \ (s > 0)$$

for some absolute constant M. It is easy to see that if

$$B(z) = \sum_{j=0}^{\infty} b_j z^j, b_j = \hat{\eta}_0(j) + \sum_{n \ge j} \hat{\eta}_n(j),$$

then $B(z) \in H^p$ (0 and

(7)

(5)
$$m\{e^{i\theta}: |B^*(e^{i\theta})| > s\} \le \frac{M}{s} \sum_{n=0}^{\infty} ||\eta_n|| (s > 0),$$

but with a possibly larger absolute constant M.

Now suppose that μ is a measure on T and define $C_{\mu}(z) = \int_{T} (1 - z\bar{w})^{-1} d_{\mu}(w)$. Then $C_{\mu}(z)$ is the Cauchy transform of μ , so $C_{\mu}^{*}(e^{i\theta}) = \lim_{r \to 1} C_{\mu}(re^{i\theta})$ exists for almost all $e^{i\theta} \in T$. We will need the following fact.

(6) If
$$\mu$$
 is the limit in $||\cdot||^*$ of polynomials, then $m\{e^{i\theta}:|C_{\mu}^*(e^{i\theta})|>s\}=o(s^{-1})$ as $s\to\infty$.

To prove (6), fix $\epsilon > 0$ and let p be a polynomial such that $||\mu - p||^* < \epsilon$. It follows from the Hahn-Banach theorem that there exists a sequence $\{\eta_n\}_{n=0}^{\infty}$ of measures on T such that

$$\int_{T} f(z) d \mu(\bar{z}) - \int_{T} f(z) p(\bar{z}) dm(z) = \int_{T} f(z) d \eta_{0}(\bar{z})$$

$$+ \sum_{n=1}^{\infty} \int_{T} D_{n} * f(z) d \eta_{n}(\bar{z}) \qquad (f \in U),$$

$$\sum_{n=1}^{\infty} ||\eta_{n}|| < \varepsilon.$$

In particular,
$$\hat{\mu}(j) = \hat{p}(j) + \hat{\eta}_0(j) + \sum_{n \geq j} \hat{\eta}_n(j) = \hat{p}(j) + b_j \ (j \geq 0)$$
. Putting

$$B(z) = \sum_{j=0}^{\infty} b_j z^j,$$

we see that $C_{\mu}(z) = p(z) + B(z)$. Let $b = \sup \{|p(z)|: z \in T\}$. Then for s > 2b,

$$m\{e^{i\theta}: |C_{\mu}^*(e^{i\theta})| > s\} \le m\{e^{i\theta}: |B^*(e^{i\theta})| > s/2\} \le 2\varepsilon M/s$$

by (5) and (7). Since M is fixed, this establishes (6).

Next consider the following assertion,

If λ is a probability measure on T supported by a closed

(8)
$$\operatorname{set} K \text{ with } m(K) = 0, \text{ then}$$

$$m\left\{e^{i\theta}: |\operatorname{Im}C_{\flat}^{*}(e^{i\theta})| \geq s\right\} = 2 \arctan\left(\frac{2}{s}\right)/\pi.$$

This statement, together with (3) and (6), implies (4): Write $\nu = \mu_1 - \mu_2 + i(\mu_3 - \mu_4)$ where the positive measures μ_1 and μ_2 (respectively, μ_3 and μ_4) are supported on disjoint sets K_1 and K_2 (respectively, K_3 and K_4) partitioning E. It is enough to show that if K is a compact subset of one of the intersections

$$K_i \cap K_i (i = 1, 2; j = 3, 4),$$

then $\nu|_K = 0$. But, by (3), $\nu|_K$ is a limit in the norm $||\cdot||^*$ of polynomials, so (6) holds with $\mu = \nu|_K$. Together with (8) (applied to $\lambda = \mu_i|_K$ and $\lambda = \mu_j|_K$) and the fact that $\text{Re} (1 - z\bar{w})^{-1} = 1/2$, for $z\bar{w} \in T$, $z\bar{w} \neq 1$, this shows that $\mu_i|_K = \mu_j|_K = 0$.

Thus it remains to establish (8). A computation shows that (8) holds if λ is the unit mass at 1, so it is

For such λ , $C_{\lambda}(z) = \int_{T} (1 - z\bar{w})^{-1} d\lambda(w)$ is continuous on $D \sim K$, the complement of K in the closed unit disc. For $z \in D \sim K$,

(10)
$$\operatorname{Re}C_{\lambda}(z) \ge 1/2$$
, $\operatorname{Re}C_{\lambda}(z) = 1/2$ if and only if $z \in T$.

Now let $C(z) = (1-z)^{-1}$ and fix λ . Since $C_{\lambda}(0) = 1$, $C_{\lambda}(z)$ is subordinate to C(z). Thus there exists an analytic function g(z) on the open unit disc such that g(0) = 0, $|g(z)| \le |z|$ if |z| < 1, and $C_{\lambda}(z) = C(g(z))$. Because of (10), g(z) is an inner function. Thus (9) follows from the following assertion.

If
$$g(z)$$
 is an inner function with $g(0) = 0$ and if
$$g^*(e^{i\theta}) = \lim_{r \to 1} g(re^{i\theta}), \text{ then for any Borel subset } B \text{ of } T,$$

$$m\{e^{i\theta}: g^*(e^{i\theta}) \in B\} = m(B).$$

To prove (11), define a measure m_1 on T by the rule

$$\int_{T} f(z) dm_{1}(z) = \int_{T} f(g^{*}(z)) dm(z)$$

for continuous functions f(z) on T. Then $\int_T f(z) dm_1(z) = \int_T f(z) dm(z)$ whenever $f(z) = z^n$ for some integer n, so $m_1 = m$.

We remark that the proof of Theorem 2 depends indirectly (by way of [7]), but apparently unavoidably, on the deep results of Carleson and Hunt [3] concerning the convergence of Fourier series.

REFERENCES

- 1. E. Bishop, A general Rudin-Carleson theorem. Proc. Amer. Math. Soc. 13 (1962), 140–143.
- 2. L. Carleson, Representations of continuous functions. Math. Z. 66 (1957), 447-451.
- 3. R. A. Hunt, On the convergence of Fourier series. (Proc. Conf., Edwardsville, Ill., 1967), pp. 235-255. Southern Illinois Univ. Press, Carbondale, Ill., 1968.
- 4. R. Kaufman, Uniform convergence of Fourier series in harmonic analysis. Studia Sci. Math. Hungar. 10 (1975), 81-83.
- 5. A. M. Olevskii, Fourier series with respect to general orthogonal systems. Springer-Verlag, New York, 1975.
- 6. W. Rudin, Boundary values of continuous analytic functions. Proc. Amer. Math. Soc. 7 (1956), 808-811.
- 7. S. A. Vinogradov, Convergence almost everywhere of Fourier series of functions in L^2 and the behavior of the coefficients of uniformly convergent Fourier series. Soviet Math. Dokl. 17 (1976), no. 5, 1323-1327.

Department of Mathematics Florida State University Tallahassee, FL 32306